
Appendix to “A Primer on Rational Consequence Relations, Popper Functions, and their Ranked Structures”

James Hawthorne

University of Oklahoma

Abstract of the paper. Rational consequence relations and Popper functions provide logics for reasoning under

uncertainty, the former purely qualitative, the latter probabilistic. But few researchers seem to be aware of the

close connection between these two logics. I'll show that Popper functions are probabilistic versions of rational

consequence relations. I'll not assume that the reader is familiar with either logic. I present them, and explicate

the relationship between them, from the ground up. I'll also present alternative axiomatizations for each logic,

showing them to depend on weaker axioms than usually recognized.

This appendix contains formal statements of definitions and results cited in the paper.

1. Section 3

Definition 1: Ranked Truth-Table: A ranked truth-table is the usual kind of truth-table for a finite language for

sentential logic supplemented with an additional column, the rank column, which indicates the rank of each truth-

table line (i.e. each truth-value assignment). The highest rank is rank-1; one or more lines are marked rank-1,

indicated by placing a ‘1’ beside them in the rank column. If any lines remain unranked, some (or all) of them

may be marked rank-2 by placing a ‘2’ beside them in the rank column. If any lines remain unranked, some (or

all) of them may be marked as rank-3 by placing a ‘3’ beside them in the rank column. ... This sequential,

numerical ranking may stop with rank-1, or may stop at any point before all lines have been numerically ranked,

or may continue until all lines have been numerically ranked. If some lines remain numerically unranked (i.e., not

marked by a finite positive integer), they are assigned rank-, and the symbol '' is placed beside them in the

column.

Definition 2: Truth-table Consequence Relation: The truth-table consequence relation generated by ranked truth-

table T is the relation |~T such that, for all sentences A and B in T’s language,

B |~T A if and only if

1. the rank of B is ; or

2. the rank of B is not , and every rank-B line that makes B true also makes A true.

Definition 3: Probabilistic Ranked Truth-Table: A probabilistic ranked truth-table is a ranked truth-table (as defined

above) for a finite language for sentential logic supplemented with an additional column, the weight column,

which indicates the weight of each truth-table line (i.e. each truth-value assignment). Rank- lines remain

unweighted – the weight column beside each rank- lines is left empty. The weight column beside each line

having a finite rank contains some positive real number.

Definition 4: Truth-table Probability Function: The truth-table conditional probability function generated by

probabilistic ranked truth-table TP is the function P such that for all sentences A and B in TP’s language,

P[A | B] = r if and only if

1. the rank of B is  and r = 1; or

2. r = the sum of the weights of the rank-B lines that make (A·B) true divided by

the sum of the weights of the rank-B lines that make B true.

2. Section 4

Definition 5: Usual Axioms for the Preferential Consequence Relations: Let L be a language having the syntax

of sentential logic. A Preferential Consequence Relation on L is any relation between pairs of sentences of L

that satisfies the following axioms:

0. for some E, F, E |/~ F NT (Non-Triviality)

1. A |~ A R (Reflexivity)

2. If B |= C, C |= B, B |~ A, then C |~ A LCE (Left Classical Equivalence)

3. If C |~ B, B |= A, then C |~A RW (Right Weakening)

4. If C |~ A, B |~ A, then (CB) |~ A OR (left disjunction)

5. If B |~ A, B |~ C, then (BC) |~ A CM (Cautious Monotonicity)

6. If C |~ B, C |~ A, then C |~ (BA) AND (right conjunction)

Definition 6. Usual Axioms for the Rational Consequence Relations: Let L be a language having the syntax of

sentential logic. A Rational Consequence Relation on L is any relation between pairs of sentences of L that

satisfies the axioms (0-6 above) for the preferential consequence relations together with the following axiom:

 7. If B |~ A, B |/~ C, then (BC) |~ A RM (Rational Monotony)

Definition 7: Weak Axioms for the Rational Consequence Relations: Let L be a language having the syntax of

sentential logic. A Weak Rational Consequence Relation on L is any relation between pairs of sentences of L

that satisfies the following axioms:

0. for some E, F, not E |~ F NT

1. A |~ A R

2. If B |= C, C |= B, B |~ A, then C |~ A LCE

3. If C |~ B, B |= A, then C |~A RW

4. If (BC) |~ A, (BC) |~ A, then B |~ A WOR (Weak OR)

5. If B |~ (CA), then (BC) |~ A VCM (Very Cautious Monotony)

6.1 If (CB) |~ A, then (CB) |~ (BA) VWAND (Very Weak AND)

6.2 If B |~ A, B |~ A, then B |~ C CNTRA (ConTRAdiction)

7. If B |~ A, B |/~ C, then (BC) |~ A RM

Definition 8: Autonomous Axioms for the Rational Consequence Relations:
1
 Let L be a language having the

syntax of sentential logic. An Autonomous Rational Consequence Relation on L is any relation between pairs

of sentences of L that satisfies the following axioms:

0. for some E, F, not E |~ F NT

1. A |~ A R

2. If (CB) |~ A, then (BC) |~ A LC (Left Commutivity)

3.1 If C |~ (BA), then C |~ B SMP-L (Simplification-Left)

3.2 If C |~ (BA), then C |~ A SMP-R (Simplification-Right)

3.3 If B |~ A, then B |~ A DN (Double Negation)

3.4 If C |~ ((BA)  B), then C |~ A SYL (Syllogism)

4. If (BC) |~ A, (BC) |~ A, then B |~ A WOR

5. If B |~ (CA), then (BC) |~ A VCM

6.1 If (CB) |~ A, then (CB) |~ (BA) VWAND

6.2 If B |~ A, B |~ A, then B |~ C CNTRA

7. If B |~ A, B |/~ C, then (BC) |~ A RM

Theorem 1: The following rules follow from the Autonomous Axioms for rational consequence relations:

(AND): If C |~ B, C |~ A, then C |~ (BA).

(CM) : If B |~ A, B |~ C, then (BC) |~ A (Cautious Monotonicity).

(DN+): If B |~ A, then B |~ A (Double Negation Addition).

(RC): If C |~ (BA), then C |~ (AB) (Right Commutivity).

(RNC): If C |~ (BA), then C |~ (AB) (Right Negation Commutivity).

(ADD): If C |~ B, then C |~ (AB) (Addition).

(LRE): If C |~ B, B |~ C, and B |~ A, then C |~ A (Left Rational Equivalence).

1
 These axioms rely solely on negation and conjunction. Other logical terms for sentential logic (or, if…then, if and

only if) may be treated as defined terms in the usual way: ‘(AB)’ abbreviates ‘(AB)’, ‘(AB)’ abbreviates

‘(AB)’, ‘(A≡B)’ abbreviates ‘((AB)(AB))’.

(LA): If (CB)D |~ A then C(BD) |~ A (Left Associativity).

(LR): If (CB)D |~ A then (CD)B |~ A (Left Reordering).

proof:

(AND): Suppose C |~ B, C |~ A, and C |/~ (BA) (for reductio).

C |/~ (BA) (3.3, DN), (C(BA)) |~ B (7, RM), (C(BA)) |~ ((BA)B) (6.1, VWAND),

(C(BA)) |~ A (3.4, SYL), (C(BA)) |~ A (7, RM), (C(BA)) |~ (BA) (6.2, CNTRA),

(C(BA)) |~ (C(BA)) (1, R), (C(BA)) |~ (BA) (3.2, SMP), C |~ (BA) (4, VWOR), contradiction.

(CM): Suppose B |~ A, B |~ C. Then B |~ CA (AND), so BC |~ A (VCM).

(DN+): Suppose B |~ A and B |/~ A. Then BA |~ A (RM), and BA |~ A (R, SMP), so BA |~ A

(CNTRA), and BA |~ A (R, SMP), so B |~ A contradiction.

(RC): Suppose C |~ (BA). Then C |~ B (SMP), C |~ A (SMP), C |~ (AB) (AND).

(RNC): Suppose C |~ (BA), C |/~ (AB). Then C(AB) |~ (BA) (RM), C(AB) |~ B (R, SMP, SMP),

C(AB) |~ (BA)B (AND), C(AB) |~ A (SYL), C(AB) |~ A (R, SMP, SMP), C(AB) |~ (AB)

(CNTRA), C(AB) |~ (AB) (R, SMP), C |~ (AB) (WOR) contradiction.

(ADD): Suppose C |~ B, C |/~ (AB). Then C(AB) |~ B (RM), C(AB) |~ B (R, SMP, SMP),

C(AB) |~ (AB) (CNTRA), C(AB) |~ (AB) (R, SMP), C |~ (AB) (WOR) contradiction.

(LRE) Suppose C |~ B, B |~ C, B |~ A. Then CB |~ A (CM), CB |~ A (DN+), CB |~ (AB) (ADD),

CB |~ (BA) (NC); CB |~ B (R, SMP), CB |~ (BA) (ADD); C |~ (BA) (WOR),

C |~ (BA)B (AND), C |~ A (SYL), C |~ A (DN).

(LA) Suppose (CB)D |~ A. (CB)D |~ (CB)D (R), so (CB)D |~ D (SMP) and (CB)D |~ (CB) (SMP), so

(CB)D |~ B (SMP) and CB)D |~ C (SMP); thus, so far we have (CB)D |~ D, (CB)D |~ B, (CB)D |~ C.

Then (CB)D |~ C(BD) (AND twice). Similarly, C(BD) |~ (CB)D. Thus C(BD) |~ A (LRE).

(LR) Suppose (CB)D |~ A. (CB)D |~ (CB)D (R), so (CB)D |~ D (SMP), (CB)D |~ (CB) (SMP),

(CB)D |~ B (SMP), (CB)D |~ C (SMP); thus, so far we have (CB)D |~ D, (CB)D |~ B, (CB)D |~ C.

Then (CB)D |~ (CD)B (AND twice). Similarly, (CD)B |~ (CB)D. Thus (CD)B |~ A (LRE).

Theorem 2: The Autonomous Axioms follow from the Weak Axioms.

 proof: The axioms are the same except for axioms 2 and 3. Autonomous Axiom 2 follows easily from Weak

Axiom 2. Autonomous axioms 3.1-3.4 follow easily from Weak Axiom 3.

Theorem 3: AND, CM, and OR follow from the Weak Axioms.

proof: AND and CM follow from the Autonomous Axioms (Tm1), which follow from the Weak Axioms (Tm2).

So AND and CM follow from the Weak Axioms. We derive OR using AND and the Weak Axioms, as follows:

(OR): If C |~ A, B |~ A, then (CB) |~ A.

Suppose C |~ A, B |~ A.

Suppose C |/~ B. Then C |/~ B (RW), so CB |~ A (RM), (CB)B |~ A (LCE), (CB)B |~ A (LLE

from B |~ A), (CB) |~ A.

Suppose C |~ B. Then (CB)C |~ B (LLE), (CB)C |~ B (R, RW), (CB) |~ B (WOR), B |~ (CB) (R,

RW), (CB) |~ A (LRE).

Theorem 4: The Weak Axioms are inter-derivable with the Usual Axioms. The Weak rational consequence relations

are just the Usual rational consequence relations.

proof: The axioms are the same except for 4, 5, and 6. It’s easy to derive Weak Axioms 4 (WOR), 5 (VCM), 6.1

(VWAND) and 6.2 (CNTRA) from the Usual Axioms. Theorem 3 shows that Usual Axioms 4 (OR), 5 (CM),

and 6 (AND) are derivable from the Weak Axioms.

Definition 9: rc-logical entailment, B | A:

‘B | A’ abbreviates “for every relation |~ that satisfies the Autonomous Axioms 0-7, B |~ A”.

Read ‘B | A’ as “B rc-entails A” – i.e. “B rational-consequence-entails A”.

Theorem 5: B | A if and only if B |= A (i.e. B logically entails C).

proof: (1) It is easy to see that |= satisfies Autonomous Axioms 1-7, so |= is a rational consequence relation; so

B | A implies that B |= A.

(2) We establish “B |= A implies B | A” by supposing B | A fails to hold, and constructing, via a

Henkin-proof-like method, that some truth-value assignment must make B true and A false. Thus, B |= A

fails to hold. Here is how that works.

Suppose B |/ A. Then for some particular relation |~0 that satisfies the Autonomous Axioms we have

B |/~0 A.

Define truth-set1 to be {A}. Define |~1 to be the relation such that for all sentences X, Y in the language

of |~0, X |~1 Y just in case XA |~0 Y. By (RM), whenever B |~0 C we have BA |~0 C, so B |~1 C; also

BA |/~0 A (if it did, then since BA |~0 A, we’d have B |~0 A (WOR), contradiction!), so B |/~1 A; and

it’s also easy to verify the |~1 satisfies the Autonomous Axioms (using the additional rules derived above

for the Autonomous Axioms).

Let S be some recursive enumeration of all the sentence in the language of |~0, where this enumeration

begins with sentence A. We inductively define a sequence of truth-setsk and rational consequence

relations |~k based on considering each sentence k in the enumeration. We take |~1 and truth-set1 defined

above as the basis of the induction.

Induction hypothesis: Suppose: (i) B |/~k B; (ii) |~k satisfies the Autonomous Axioms 1-7; (iii) for all Z

in truth-setk, X |~k Z for every sentence X in the language.

Induction Step: Let C be sentence k+1.

If B |~k C, define X |~k+1 Y to hold just when XC |~k Y, and let truth-setk+1 be the union of truth-setk

with {C}.

If B |/~k C, then B |/~k C: define X |~k+1 Y to hold just when XC |~k Y, and let truth-setk+1 be the

union of truth-setk with {C}.

(i) Notice that B |/~k+1 B.

(For, suppose B |~k+1 B.

Suppose B |~k C (for reductio): then BC |~k B, so BC |~k (CB) (ADD, RC); and

BC |~k C (R, SMP), so BC |~k (CB) (ADD); so B |~k (CB) (WOR), then

B |~k (CB)C (AND), so B |~k B (SYL) contra the induction hypothesis.

Thus B |/~k C: so B |/~k C (DN), so from B |~k+1 B we have BC |~k B; but

BC |~k B (R, SMP), so BC |~k C (CNTRA), BC |~k C (R,SMP), so B |~k C (WOR),

contradiction.)

(ii) Notice that |~k+1 must satisfy the Autonomous Axioms 1-7 (using the additional rules derived

above for the Autonomous Axioms), since |~k does.

(iii) Furthermore, notice that for all Z in truth-setk+1, X |~k+1 Z for every sentence X in the language,

because:

(I) if C was added to truth-setk to get truth-setk+1, then XC |~k C and XC |~k Z for all Z in truth-

setk, for all X in the language;

(II) if C was added to truth-setk to get truth-setk+1, then XC |~k C and XC |~k Z for all Z

in truth-setk, for all X in the language.

Now, define truth-set to be the union of all the truth-setk for all k. truth-set is effectively a truth-value

assignment. For, (i) truth-set must contain each sentence or its negation (since we went through an

enumeration of all sentence and added a sentence or its negation at each step); (ii) truth-set cannot

contain both a sentence and its negation (for, if it did, that would have first occurred at some step k+1, so

truth-setk would already have contained either sentence C or its negation, before step k+1; suppose it

already contained C; but by the construction we would already have had X |~k C and X |/~k C for all X;

so C would have been added to truth-setk+1 rather than C); and, (iii) truth-set contains (CD) just in

case it contains C and contains D: for,

(I) If truth-setk already contained C and D when (CD) comes up in the enumeration at step k+1, then

because AND holds we would already have B |~k (CD), so (CD) would be added to truth-setk+1.

(II) If truth-setk already contained (CD) when C (or D) comes up in the enumeration at step k+1, then

because (SMP) holds, we would already have B |~k C (or B |~k D), so C (or D) would be added to truth-

setk+1.

(III) If truth-setk already contained C (or D) when (CD) comes up in the enumeration at step k+1,

then because (ADD) (and (RNC)) hold, we would already have B |~k (CD), so (CD) would be

added to truth-setk+1.

(IV) If truth-setk already contained C and (CD) when D comes up in the enumeration at step k+1,

then because AND holds, we would already have B |~k (CD)C, so (via SYL) B |~k D, so D

would be added to truth-setk+1. (Similarly when D and (CD) is already in the truth-setk.)

Thus, truth-set supplies a truth-value assignment (i.e., assign true to all and only its members). This true-

value assignment makes B true (it has to contain B, since when we come to sentence B we must already

have B |~k B) and it makes A true and A false (because at each step truth-setk contains A).

Theorem 6: Weak Axioms 2 and 3 follow from the Autonomous Axioms.

 proof: Suppose the Autonomous Axioms hold.

(1) If B |= A and C |~ B then C |~ A.

Suppose B |= A and C |~ B. Then |= (BA), so C |= (BA), so C | (BA) (Tm 5), so

C |~ (BA). Then, since we’ve already derived AND from the Autonomous Axioms, C |~ (BA)B,

so C |~ A (SYL), so C |~ A (DN).

(2) If C |= B, B |= C, B |~ A, then C |~ A.

Suppose C |= B, B |= C, B |~ A. Then C | B and B | C (Tm5), so C |~ B and B |~ C, so C |~ A (LRE,

Tm 1).

Theorem 7: The Autonomous axioms are inter-derivable with the Weak Axioms and with the Usual Axioms. The

Autonomous rational consequence relations are just the Weak rational consequence relations, which are just the

Usual rational consequence relations.

proof: The axioms are the same except for 2 and 3. It’s easy to derive Autonomous Axioms 2 (LC), 3.1 (SMP-

Left) and 3.2 (SMP-Right), 3.3 (DN), and 4.4 (SYL) from the Weak Axioms. Theorem 6 shows that Weak

Axioms 2 (LCE) and 3(RW) are derivable from the Autonomous Axioms. Thus, the Autonomous Axioms are

inter-derivable with the Weak Axioms, and Theorem 4 shows that the Weak Axioms are inter-derivable with

the Usual Axioms.

Theorem 8: Every truth-table consequence relation is a rational consequence relation.

proof: Let |~T be the truth-table consequence relation for ranked truth-table T. We only need show that |~T has

to satisfy the Weak Axioms for rational consequence relation. We go through the axioms one at a time.

(0) For atomic sentence A, a rank-1 line makes AA true and fails to make AA true, so

AA |/~T AA.

(1) If B |= A and C |~T B, then every rank C line that makes C true must make B true, and so must make A

true as well.

(3) If B |= C and C |= B, then B and C are made true by precisely the same truth-table lines. So all and only

the rank C lines that make C true are rank B lines that make B true. Then, when B |~T A, every ranks B line

that makes B true makes A true, so every rank C line that makes C true makes A true.

(4) Suppose (BC) |~T A and (BC) |~T A. Then either (i) the rank of BC is higher than the rank of BC,

or (ii) the rank of BC is higher than the rank of BC, or (iii) BC has the same rank as BC. In case (i)

all the rank BC lines that make BC true must also make B true, and all rank B lines that make B true must

make BC true (each rank B line is either a rank BC line or a rank BC line, or both, but in this case all

BC lines are at a lower rank than BC lines; so all the rank B lines that make B true also make BC true);

thus, the rank BC lines that make BC true are precisely the rank B lines that make B true; so, form

(BC) |~T A it follows that all rank B lines that make B true must make A true as well. Case (ii) is similar,

but with ‘C’ interchanged with C. In case (iii), the rank of B can be no higher than that of either BC or

BC, and must be at least as high as one of them, so it must be the same rank as both of them; and the set

of rank B lines that make B true is just the union of the rank B lines that make BC true with the set of rank

B lines that make BC true; so from (BC) |~T A and (BC) |~T A we have that all rank B lines that make

B true must make A true, B |~T A.

(5) Suppose B |~T (CA). So all rank B lines that make B true make C true (so BC must be at the same rank as

B), and those same lines make A true; so all rank BC lines that make BC true must make A true.

(6.1) Suppose (CB) |~T A. Then all rank CB lines that make CB true make C true and B true and A true; so

all rank CB lines that make CB true make BA true as well.

(6.2) Suppose B |~T A and B |~T A. Then each rank B line that makes B true must make both A true and

make A true. No finite (non-) ranked line can do that. So the rank of B is ω. And when B has rank ω,

B |~T C for all C.

(7) Suppose B |~T A and B |/~T C. Then all rank B lines that make B true make A true, and not all of these

lines make C true. Thus, some rank B lines that make B true make BC true; and all of the rank B lines

that make BC true must be rank BC lines (since B cannot be true at any higher rank than rank B, so BC

cannot be true at any higher rank than rank B). Thus, since all rank B lines that make B true must also make

A true, all rank BC lines that make BC true must make A true.

3. Section 5

Definition 10: Usual Axioms for the Popper functions: Let L be a language having the syntax of sentential logic.

A Popper function is any function P from pairs of sentences of L to the real numbers such that:

0. For some E, F, G, H, P[E | F]  P[G | H] (non-triviality)

1. P[A | B]  0 (Non-negativity)

2. If C |= B, B |= C, then P[A | B] = P[A | C] (right logical equivalence)

3. If B |= A, then P[A | B] = 1 (logical entailment)

4. If C |= (BA), then P[(AB) | C] = P[A | C] + P[B | C] or P[D | C] = 1 (additivity)

5. P[(AB) | C] = P[A | (BC)]  P[B | C] (conditionalization)

Definition 11: Autonomous Axioms for the Popper functions: Let L be a language having the syntax of sentential

logic. An autonomous Popper function is any function P from pairs of sentences of L to the real numbers (not

necessarily restricted between 0 and 1) such that:

0. for some E, F, G, H, P[F | E]  P[G | H] (non-triviality)

and for all sentences A, B, C,

1. P[A | A]  P[B | B] (self-support)

2. P[A | (BC)]  P[A | (CB)] (right commutivity)

3. P[A | C]  P[(AB) | C] (left simplification)

4. P[A | B] + P[A | B] = P[B | B] or P[D | B] = P[B | B] for all D (weak additivity)

5. P[(AB) | C] = P[A | (BC)]  P[B | C] (conditionalization)

Theorem 9: The usual axioms for Popper functions imply that:

(i) 1  P[A | B]  0

(ii) If B |= A, then P[A | C]  P[B | C]

proof: (i) Axiom 1 already provides P[A | B]  0.

Suppose P[A | B] > 1. Then from axioms 2, 4, and 1 we derive a contradiction:

1 = P[AA | B] = P[A | B] + P[A | B], so 0 > 1  P[A | B] = P[A | B]  0, i.e. 0 > 0.

(ii) Suppose B |= A. Suppose P[D | C] < 1 for at least some D (otherwise P[A | C] = 1  P[B | C] and we

are done). From B |= A we get |= B(BA), so C |= B(BA); also |= (B(BA)), so

C |= (B(BA)); then (by axioms 3 and 4) 1 = P[B(BA) | C] = P[B | C] + P[(BA) | C]; from

C |= BB and C |= (BB) (by axioms 3 and 4) we have P[B | C] = 1  P[B | C]. Thus, P[B | C]

= 1  P[B | C] = P[(BA) | C] = P[B | AC]  P[A | C]  P[A | C].

Theorem 10: The Autonomous Axioms for Popper functions imply 1 = P[B | B]  P[A | B]  0.

proof: For all A, B, P[A | A] = P[B | B] = k for some real k (since by axiom 1, for some k, k = P[A | A]  P[B | B]

 P[A | A] = k). Notice that (from axioms 3 and 5) k = P[A | A]  P[(AA) | A]  P[(AA)A | A] =

P[(AA) | (AA)]  P[A | A] = k
2
. But for any real k, k

2
  0; so k  k

2
  0, so 1  k  0. Then axiom 4 yields:

either k = P[B | B] + P[B | B] = k + P[B | B] or P[D | B] = k for all D; so either P[B | B] = 0 or P[A | B] =

k; then (by axioms 3, 4) P[A | B]  P[AB | B] = P[A | BB]  P[B | B] = 0 or P[A | B] = k  0; thus

P[A | B]  0 (for all A, B).

Then (for all A, B) P[A | B]  0 and P[A | B]  0, so P[A | B] = k or k = P[A | B] + P[A | B]  P[A | B]; thus

k  P[A | B]  0 (for all A, B). Then (from axiom 3) P[A | AA] = k (since k  P[A | AA] = P[AA | AA] = k)

and P[A | A(AA)] = k (since k  P[A | A(AA)]  P[A(AA) | A(AA)] = k), so k = P[AA | AA] = P[A |

A(AA)]  P[A | (AA)] = k
2
; then k = k

2
  0, so either k = 0 or 1 = k. But if k = 0 we have (for all A, B) 0 = k 

P[A | B]  0, so P[A | B] = 0 (for all A, B); this contradicts axiom 0. Thus, 1 = k = P[B | B]  P[A | B]  0.

Theorem 11: The Autonomous Axioms imply that P[AB | C] = P[BA | C] (for all A, B, C).

proof: 1 = P[(A(BC)) | (A(BC))] = P[A | (BC)(A(BC))]  P[(BC) | (A(BC))], so 1 = P[(BC) | (A(BC))],

so 1  P[B | (A(BC))]  P[(BC) | (A(BC))] = 1. Thus, P[B | (A(BC))] = 1 = P[(BC) | (A(BC))]. Then

P[BA | (BC)] = P[B | A(BC)]  P[A | (BC)] = P[A | (BC)]; then P[(BA) | C]  P[(BA)B | C] =

P[BA | (BC)]  P[B | C] = P[A | (BC)]  P[B | C] = P[AB | C]; thus P[(BA) | C]  P[(AB) | C]. Similarly,

P[(AB) | C]  P[(BA) | C]. So P[(AB) | C] = P[(BA) | C].

Theorem 12: For each P that satisfies the Autonomous Axioms for the autonomous Popper functions, consider the

associated relation |~ defined as B |~ A just when P[A | B] = 1. Then |~ satisfies the Autonomous Axioms for the

rational consequence relations; thus |~P is a rational consequence relation.

proof: Let P be any function that satisfies the Autonomous Axioms for Popper functions

and define the relation |~

as follows: B |~ A just when P[A | B] = 1. We show that the Autonomous Axioms for the rational consequence

relations must hold for |~.

The derivations of Autonomous Axioms 0-3.2 for the rational consequence relations from the Autonomous

Popper function axioms are straightforward (given the results already proved for the Autonomous Popper

Functions). Here are derivations of the rest.

3.3 Suppose B |~ A. If P[D | B] = 1 for all D, then P[A | B] = 1, so B |~ A and we are done. So suppose, for

some D, P[D | B] < 1. Then 1 = P[A | B] = 1  P[A | B] = 1  (1  P[A | B]) = P[A | B], so B |~ A.

3.4 Suppose C |~ ((BA)B). If P[D | C] = 1 for all D, then P[A | C] = 1, so C |~ A and we are done. So

suppose, for some D, P[D | C] < 1. Then 1 = P[((BA)B) | C] = P[B(BA) | C]  P[B | C]  1, so P[B | C]

= 1; and 1  P[(BA) | C]  P[(BA)B | C] = 1, so 1 = P[(BA) | C] = 1  P[BA | C]. Then 0 = P[BA | C]

= P[AB | C] = P[A | BC]  P[B | C] = P[A | BC]  0, so 0 = P[A | BC] = 1  P[A | BC], so P[A | BC] =

1. Then 1 = P[A | B  C]  P[B | C] = P[AB | C] = P[BA | C] = P[B | AC]  P[A | C], so P[A | C]

= 1, thus C |~ B.

4. Suppose BC |~ A, BC |~ A. Then P[A | BC] = 1 and P[A | BC] = 1. If P[D | B] = 1 for all D, then

P[A | B] = 1, so B |~ A and we are done. So suppose that for some D, P[D | B] < 1. Then P[A | CB] =

P[A | BC] = 1 and P[A | CB] = P[A | BC] = 1. So P[C | AB]  P[A | B] = P[CA | B] = P[AC | B] =

P[A | CB]  P[C | B] = P[C | B] and P[C | AB]  P[A | B] = P[CA | B] = P[AC | B] = P[A | CB] 

P[C | B] = P[C | B] = 1  P[C | B]. Then, 1 = P[C | B] + P[C | B] = (P[C | AB]  P[A | B]) +

(P[C | AB]  P[A | B]) = P[A | B]  (P[C | AB] + P[C | AB]); thus, 1 = P[A | B]  (P[C | AB] +

P[C | AB]). Now either P[D | AB] = 1 for all D or else P[C | AB] + P[C | AB] = 1; so either P[C | AB]

+ P[C | AB] = 2 or else P[C | AB] + P[C | AB] = 1; so P[C | AB] + P[C | AB]  1; so 1 = P[A | B] 

(P[C | AB] + P[C | AB])  P[A | B]  1; so P[A | B] = 1. Then, B |~ A.

5. Suppose B |~ (CA), then 1 = P[CA | B] = P[AC | B] = P[A | CB]  P[C | B], so 1 = P[A | CB] =

P[A | BC], so BC |~ A.

6.1 Suppose (CB) |~ A. Then P[A | CB] = 1, so P[BA | (CB)] = P[B | A(CB)]  P[A | CB] = P[B | A(CB)],

and 1 = P[A(CB) | A(CB)] = P[(CB)A | A(CB)]  P[(CB) | A(CB)] = P[(BC) | A(CB)] 

P[B | A(CB)]  1, so 1 = P[B | A(CB)] = P[B | A(CB)]  P[A | CB] = P[BA | (CB)]; then CB |~ BA.

6.2 Suppose B |~ A, B |~ A. Then P[A | B] = 1 = P[A | B], so 2 = P[A | B] + P[A | B] > 1, so P[C | B] = 1;

thus B |~ C.

7. Suppose B |~ A, B |/~ C. Then P[C | B] < 1, so P[C | B] = 1 − P[C | B] > 0 , and 1 = P[A | B] =

1  P[A | B]; so 0 = P[A | B] = P[C | AB]  P[A | B] = P[CA | B] = P[AC | B] = P[A | CB] 

P[C | B], so 0 = P[A | CB] = 1  P[A | CB], so 1 = P[A | CB] = P[A | BC]; thus BC |~ A.

Definition 12: pf-logical entailment, B |-- A:

‘B |-- A’ abbreviates “for every function P that satisfies the Autonomous Axiom, P[A | B] = 1”.

Read ‘B |-- A’ as “B pf-entails A” – i.e. “B Popper-function-entails A”.

Theorem 13: B |-- A if and only if B |= A.

proof: (i) Suppose B |= A. Then B | A – i.e., for each rational consequence relation, B |~ A holds. Let P be any

autonomous Popper function (i.e. any function that satisfies the Autonomous Axioms). Then the

relation |~P, defined as X |~P Y just in case P[Y | X] = 1, is a rational consequence relation; so B |~P A;

so P[A | B] = 1. So, for each P that satisfies the Autonomous Axioms, P[A | B] = 1. Thus, B |--A.

(ii) Suppose not B |= A. Then there is a truth-value assignment that makes B true and A false – i.e. a

truth-value assignment T that makes (B  A) false. Define a function T[Y | X] such that: (1)

T[Y | X] = 1 whenever truth-value assignment T makes (X  Y) true; (2) T[Y | X] = 0 whenever T

makes (X  Y) false. It’s easy to check that the function T[Y | X] satisfies the Autonomous Axioms

for Popper functions. But T[A | B] = 0  1. So there is a Popper function P such that P[A | B]  1.

Then not B |-- A.

Theorem 14: The functions that satisfy the Autonomous Axioms for Popper functions are identical to the functions

that satisfy the Usual Axioms for Popper functions.

proof: (i) If P satisfies the Usual Axioms for Popper functions, then P satisfies the Autonomous Axioms. For ...

All of the Autonomous Axioms are obviously derivable from the Usual Axioms, except perhaps

axiom 3. But the Usual Axioms imply that whenever B |= A, P[A | C]  P[B | C]; Autonomous

Axiom 3 follows immediately from this.

(ii) We show that the Usual Axioms are derivable from the Autonomous Axioms (so every function

that satisfies the Autonomous Axioms must also satisfy the Usual Axioms). This is obvious for

Usual Axioms 0, 1 (via Tm 10), and 5. We derive the others here.

2. Suppose that C |= B and B |= C. Then AC |= B and AB |= C, so then C |-- B, B |-- C, AC |-- B,

AB |-- C. Let P be an Autonomous Popper function

(i.e. a function that satisfies the

Autonomous Axioms). Then P[B | C] = 1 = P[C | B] and P[B | AC] = 1 = P[C | AB] (Tm 13).

Then (using only Autonomous Axioms and things we’ve already derived from them) P[A | B] =

P[C | AB]  P[A | B] = P[CA | B] = P[AC | B] = P[A | CB]  P[C | B] = P[A | CB] =

P[A | BC] = P[A | BC]  P[B | C] = P[AB | C] = P[BA | C] = P[B | AC]  P[A | C] = P[A | C].

3. Suppose that B |= A. Then B |-- A, so P[A | B] = 1.

4. Suppose that C |= (BA). We can suppose that for some D, P[D | C]  1 (otherwise, for all D,

P[D | C] = 1, which is one disjunct of the conclusion to be derived, which completes the

derivation). From C |= (BA) we have C |= (AB), so C |-- (AB), so P[(AB) | C] = 1, so

P[AB | C] = 0.

We must have either, for some D, P[D | AC]  1, or for some D, P[D | BC]  1 – otherwise

we get a contradiction, as follows:

Suppose for all D P[D | AC] = 1 and for all D P[D | BC] = 1. Then P[C | AC] = 1

and P[C | BC] = 1, so 0 = 1  P[C | C] = P[C | C]  P[CA | C] = P[C | AC] 

P[A | C] = P[A | C] and 0 = 1  P[C | C] = P[C | C]  P[CB | C] = P[C | BC] 

P[B | C] = P[B | C]; so P[A | C] = 0 and P[B | C] = 0, and P[B | C] = 1. So, 0 =

P[AB | C] = P[A | BC]  P[B | C] = P[A | BC] = 1  P[A | BC] = 1  (P[A | BC] 

P[B | C]) = 1  P[AB | C] = 1  P[BA | C] = 1  P[B | AC]  P[A | C] = 1, so 0 = 1,

contradiction.

With no loss of generality, suppose it’s for some D, P[D | BC]  1.

By the definition of ‘’ in terms of ‘’ and ‘’we have

P[AB | C] = P[(AB) | C] = 1  P[AB | C] = 1  P[A | BC]  P[B | C] =

1  (1  P[A | BC])  P[B | C] = 1  P[B | C] + P[AB | C] = P[B | C] + P[B | AC] 

P[A | C]. Then either P[B | AC] = 1 and so P[AB | C] = P[A | C] + P[B | C] and we are done,

or P[B | AC]  1 and so P[AB | C] = P[B | C] + (1  P[B | AC])  P[A | C] = P[B | C] +

P[A | C]  P[AB | C] = P[A | C] + P[B | C].

Theorem 15: For each probabilistic ranked truth-table, the associated truth-table probability function is a Popper

function.

proof: It’s easy to check that each truth-table probability function must satisfy the Usual Axioms for Popper

functions.

4. Section 6

Definition 13: The Rank-Orderings of Sentences Imposed by Rational Consequence Relations: For each rational

consequence relation |~, define the relation |~ on sentences of its language as follows:

‘A |~ B’ abbreviates “AB |/~ A or AB |~ B”;

read ‘A |~ B’ as “the rank of A is at least as high as the rank of B for |~.”

1. ‘A |~ B’ abbreviates A |~ B and B |~ A;

read ‘A |~ B’ as “A and B have the same rank for |~.”

2. ‘A >|~ B’ abbreviates “A |~ B and not B |~ A”;

read ‘A >|~ B’ as “the rank of A is higher than the rank of B for |~.”

3. By definition, B has rank- for |~ just when B |~ B.

4. By definition, B has rank-1 for |~ just when (CC) |/~ B.

5. By definition, A is a rank B sentence for |~ just when A |~ B.

Theorem 16: From these definitions it follows immediately that:

1. A |~ A.

2. if A |~ B, then B |~ A.

3. A >|~ B if and only if not B ≥|~ A.

4. If |= D, then D is rank-1 – rank-1 is the rank of tautologies.

5. If |= D, then D ≥|~ E for all E.

6. B is rank-1 if and only if, for some D such that |= D, B |~ D.

7. If A and B are both rank-1, then A |~ B.

8. If |= D, then D is rank- – rank- is the rank of contradictions.

9. If |= D, then E ≥|~ D for all E.

10. B is rank- if and only if, for some D such that |= D, B |~ D.

11. If A and B are both rank-, then A |~ B.

12. (AB |~ B and AB |~ A) if and only if A and B are both rank-

13. If A and B are not both rank-, then

13.1. A |~ B if and only if AB |/~ A;

13.2. A |~ B if and only if AB |/~ A and AB |/~ B;

13.3. A >|~ B if and only if AB |/~ A and AB |~ B.

14. If B |= A, then A ≥|~ B.

15. If A ≥|~ B, then AB |~ A.

proof: All of these follow quickly from Definition 3 together with easily derived properties of rational

consequence relations. 14 and 15 are a bit tricky, so I provide their derivations.

14. Suppose B |= A. Then B |~ B (R), so B |~ A (RW) and A |~ A (R), so AB |~ A (OR). Then either

AB |/~ A (thus A ≥|~ B), or else: AB |~ A, so AB |~ AA (AND), so AB |~ B (RW), then

A ≥|~ B.

15. Suppose A ≥|~ B. (i) Then AB |/~ A or AB |~ B, so A(AB) |/~ A or A(AB) |~ B (LCE),

so A(AB) |/~ A or [A(AB) |~ A and A(AB) |~ B], so A(AB) |/~ A or

A(AB) |~ AB (AND), so A(AB) |/~ A or A(AB) |~ (AB), then A ≥|~ AB.

(ii) A |= AB, so AB ≥|~ A (14 above). Thus, AB |~ A.

Theorem 17: Completeness: A |~ B or B |~ A.

proof: Suppose not A |~ B. Then not [AB |/~ A or AB |~ B], so AB |~ A and AB |/~ B. Then,

clearly, either AB |~ A or AB |/~ B. Thus, by definition, B |~ A.

Theorem 18: Transitivity: If A |~ B and B |~ C, then A |~ C.

proof: Suppose A |~ B and B |~ C – i.e. suppose [AB |/~ A or {AB |~ A and AB |~ B}] and

[BC |/~ B or { BC |~ B and BC |~ C}]. Then [AB |/~ A or {AB |~ AB, so

AB |~ (AB)(AB) }] and [BC |/~ B or {BC |~ BC, so BC |~ (BC)(BC)}]. Then, [AB |/~ A

or {AB |~ A(AA) and AB |~ B(AA)}] and [BC |/~ B or {BC |~ B(AA) and BC |~ C(AA)}].

Then, [AB |/~ A or {(AB)A |~ (AA) and (AB)B |~ (AA)}] and [BC |/~ B or {(BC)B |~ (AA)

and (BC)C |~ (AA)}]. Thus, [AB |/~ A or {A |~ (AA) and B |~ (AA)}] and [BC |/~ B or

{B |~ (AA) and C |~ (AA)}].

So: either (i) AB |/~ A and BC |/~ B;

or (ii) AB |/~ A and B |~ (AA) and C |~ (AA);

or (iii) BC |/~ B and A |~ (AA) and B |~ (AA);

or (iv) A |~ (AA) and B |~ (AA) and C |~ (AA).

Suppose (for reductio) not A |~ C. Then not [AC |/~ A or AC |~ C].

So AC |~ A and AC |/~ C. We show that each of (i) through (iv) leads to a contradiction; and that will

complete the reductio proof.

Suppose (i). Then, from AC |~ A, ((AB)C)(AC) |~ A (LCE), and ((AB)C)(AC) |= A, so

((AB)C)(AC) |~ A (R,RW), so ((AB)C) |~ A (by WOR). If ((AB)C) |/~ (AB), then

(RM) ((AB)C)(AB) |~ A, so (AB) |~ A (LCE), contradiction with (i). Thus,

((AB)C) |~ (AB), so ((AB)C) |~ B (RW). If ((AB)C) |/~ (BC), then by RM

((AB)C)(BC) |~ B, so (BC) |~ B (LCE), contradiction with (i). Thus, ((AB)C) |~ (BC), so

((AB)C) |~ C (RW). Thus, ((AB)C) |~ ((AB)C) (two applications of AND). Then

((AB)C) |~ ((AB)C) (RW) and ((AB)C) |~ ((AB)C) (R), so

((AB)C) |~ ((AB)C)((AB)C) (AND), so ((AB)C) |~ (AB)A (RW), so

((AB)C)(AB) |~ A (VCM), so (AB) |~ A, contradiction with (i).

Suppose (ii). From C |~ (AA) we get C |~ (AC)C (RW), so C(AC) |~ C (VCM), so (AC)C |~ C

(LCE). Also, (AC)C |~ (AC)C (R), so (AC)C |~ C (RW). Then (AC) |~ C (WOR), but we

also have (AC) |/~ C, (directly above “Suppose (i)”) contradiction.

Suppose (iii). From B |~ (AA) we get B |~ (BC)B (RW), so B(BC) |~ B (VCM), so (BC)B |~ B

(LCE). Also, (BC)B |~ (BC)B (R), so (BC)B |~ B (RW). Then (BC) |~ B (WOR), but we

also have (BC) |/~ B (iii), contradiction.

Suppose (iv). Exactly the same argument as for (ii), leading to a contradiction.

Theorem 19: For each rational consequence relation |~, its associated relation ≥|~ is a total preorder on the sentences

of its language (i.e. a complete, transitive relation); the associated relation |~ is an equivalence relation (i.e. a

reflexive, symmetric, transitive relation). The relation ≥|~ yields a partition of the sentences of the language into an

ordered hierarchy (ordered according to >|~) of mutually exclusive and exhaustive equivalence classes (equivalent

under relation |~) of sentences.

proof: Follows directly from Theorems 16-18.

Theorem 20: For each rational consequence relation |~ (on a finite or countably infinite language), B |~ A holds just

in case either (i) B is at rank-, or (ii) in every finite sub-language L of the language of |~ that contains all

sentence letter in A and B, every rank B state-description in L that logically entails B also logically entails A. (A

state description in L is a conjunction consisting of every sentence letter in L or its negation, but not both).

proof: (I -- only if part): Let |~ be a rational consequence relation. Let A and B be any two sentences in a finite

sub-language L of the language of |~, and suppose that B |~ A. Suppose B is not at rank-. Let S be a state-

description in L that is at the rank of B and logically entails B. (We show that S |= A).

Since S is at the same rank as B, either they are both at rank-, or neither is at rank- and BS |/~ S and

BS |/~ B. But we are suppose B not at rank-, so neither is at rank-, Notice that S |/~ S (else, if

S |~ S, then (BS)S |~ S (LCE), and (BS)S |~ S (R, RW), so (BS) |~ S (WOR), contradiction).

Notice that (BS) is logically equivalent to B (since B |= BS, and B |= B and S |= B, so BS |= B). Then,

since B |~ A, BS |~ A (LCE), so (BS)S |~ A (RM), so S |~ A (LCE), so S |~ (SA) (R, AND), so SA is

logically consistent (otherwise S |~ S (RW), contra.), So B does not logically entail A. But each state-

description in the language containing A either logically entails A or logically entails A; so S must logically

entail A.

(II -- if part): Let |~ be a rational consequence relation. Let A and B be any two sentences in a finite sub-

language L of the language of |~, and suppose that (i) B is at rank-, or (ii) B is not at rank-, and in every

finite sub-language L of the language of |~ that contains all sentence letter in A and B, every rank B state-

description in L that logically entails B also logically entails A. (We show that B |~ A.)

(i) Suppose that B is at rank-. Then B |~ B (by definition of rank-) and B |~ B (R), so B |~ BB, so

B |~ A.

(ii) Suppose B is not at rank- and in every finite sub-language L of the language of |~ that contains all

sentence letter in A and B, every rank B state-description in L that logically entails B also logically entails

A. Suppose (for reductio) B |/~ A. Then B |/~ (BA).

Now, let L be any language that contains all sentence letters in A and B. Then B is logically equivalent to a

disjunction of state-descriptions of L, say (B1...Bn). Each Bi must be rank B or lower

[else, for Bi at a higher rank than B, BiB |/~ Bi and BiB |~ B, so (BiB)Bi |~ B (RM), so Bi |~ B

(LCE), and Bi |~ (B1...Bi...Bn) (R, RW (n−1) times), so Bi |~ B (RW), then Bi |~ Bi (AND, RW)

and BiB |~ Bi (R, RW), so Bi(BiB) |~ Bi (OR), so BiB |~ Bi (LCE) contradiction].

With no loose of generality we may let {B1, ..., Bk} be the rank B state-descriptions in (B1...Bn), and

{Bk+1, ..., Bn} be lower ranking state-descriptions. {B1, ..., Bk} must not be empty (else, for all Bi in

(B1...Bn), B |~ Bi, so B |~ B1...Bn (AND n times), so B |~ (B1...Bn) (RW), so B |~ B (RW),

so B has rank-, contra.). Now, since each rank B state-description that logically entail B also logically

entails A, we must have (B1...Bk) |= A; so (B1...Bk) |~ A (R,RW).

(B1...Bk) has rank B (because, whenever C and D have the same rank above , CD has that same rank

as C, since: CD |/~ C and CD |/~ D, so (CD) |/~ CD, so (CD) |/~ (CD), so

(CD)C |/~ (CD) and (CD)C |/~ C).

(Bk+1...Bn) has lower rank than B (because, whenever D and E both have lower rank than C, CD |~ D

and CE |~ E, so (CD) |~ (DE) and (CE) |~ (DE) (RW), so (CD)(CE) |~ (DE) (OR), so

C(DE) |~ (DE) (LCE)).

Then, (B1...Bk)(Bk+1...Bn) |~ (Bk+1...Bn), so (B1...Bk)(Bk+1...Bn) |~ (B1...Bk) (R, AND,

RW), and (B1...Bk) |~ (B1...Bk)(Bk+1...Bn) (R, RW), and we already have (B1...Bk) |~ A, thus

(B1...Bk)(Bk+1...Bn) |~ A (LRE, Tm 16). Thus, B |~ A.

Theorem 21: Each truth-table consequence relation is a rational consequence relation (on a finite language). Each

finite part of a rational consequence relation |~ (each part of |~ defined on a finite sub-language of the language of

|~) is a truth-table consequence relation.

proof: We’ve already proved the first claim: Theorem 8.

To see that each finite part of a rational consequence relation |~ (the part of |~ defined on a finite sub-language)

is a truth-table consequence relation:

Let L be a finite sublanguage of the language of |~. Order the state-descriptions into a ranked hierarchy of

equivalence classes (equivalent according to |~), ranked in the order provided by >|~. Construct ranked truth-

table T by constructing a truth-table for L; assign rank-1 to just those the truth-table lines that make the highest-

ranked (rank-1) state-descriptions true according to ordering ≥|~; assign rank-2 to the truth-table lines that make

the second highest ranked state-descriptions true according to ≥|~; ...; assign rank- to those truth-table lines that

make rank- state-descriptions true according to ≥|~. The resulting ranked truth-table will provide a truth-table

consequence relation ||~ that agrees with |~, due to the 1-1 relationship between truth-table lines and the state-

descriptions that make them true; and the fact that a truth-table line makes a sentence B true just when the state-

description that line makes true logically entails B; this also aligns the ranks of sentences, since the rank of B

for |~ on L is the highest rank of the state-descriptions that entail B, and the rank of B for ||~ on L is the highest

rank of the truth-table line that makes it true. Thus, Theorem 20 and the construction:

B |~ A if and only if “B has rank- or all rank B state-descriptions that logically entail B also logically entail

A” if and only if

“B has rank- or all rank B truth-table lines that make B true also make A true”.

Theorem 22: For each rational consequence relation |~ there is a Popper function P such that for all sentences A, B

in the language of |~, P[A | B] = 1 just when B |~ A.

proof: Given a rational consequence relation |~, we construct a Popper function P|~ for |~ such that P[A | B] = 1

just when B |~ A.. To do this, first specify the sentence letters of the language in some “alphabetical order”.

Then, for each n, consider the finite language Ln for sentential logic that is based on only the first n sentence

letters. Construct the set of state-descriptions, Sn, for Ln. where each state-description in Sn has its sentences

letters (or their negations) in the alphabetical order for sentence letters. For set Sn of state-descriptions, find the

rank of each of its members according to |~, and assign it a weight wq,n within its rank, q, in the following way:

A member of set Sn has form A1...An1An, where each Ak is a sentence letter or its negation, and where An is

either the “new” sentence letter (i.e. the sentence letter not in Ln−1) or the negation of the “new” sentence

letter. Call that “new” sentence letter ‘C’. Thus, A1...An1An is of form A1...An1C or A1...An1C, where

A1...An1 is a state description from set Sn1 for language Ln−1. Notice that A1...An1 is logically equivalent

to (A1...An1C)(A1...An1C). So the rank of (A1...An1C)(A1...An1C) is the rank of A1...An1.

If (A1...An1C)(A1...An1C) |~ (A1...An1C) and

(A1...An1C)(A1...An1C) |/~ (A1...An1C), then (A1...An1C) will be at the same rank, q, as

(A1...An1), and (A1...An1C) will be at some lower rank u. Assign wq,n[A1...An1C] =

wq,n−1[A1...An1], wq,n[A1...An1C] = 0. Assign wu,n[A1...An1C] = 1 (or any other weight above 0).

If (A1...An1C)(A1...An1C) |/~ (A1...An1C) and

(A1...An1C)(A1...An1C) |~ (A1...An1C), then (A1...An1C) will be at the same rank, q, as

(A1...An1), and (A1...An1C) will be at some lower rank u. Assign wq,n[A1...An1C] =

wq,n−1[A1...An1], wq,n[A1...An1C] = 0. Assign wu,n[A1...An1C] = 1 (or any other weight above 0).

If (A1...An1C)(A1...An1C) |/~ (A1...An1C) and

(A1...An1C)(A1...An1C) |/~ (A1...An1C), then (A1...An1C) and (A1...An1C) are both at

the same rank, q, as A1...An1. Then assign wq,n[A1...An1C] = wq,n[A1...An1C] = (1/2) 

wq,n−1[A1...An1] (or assign wq,n[A1...An1C] and wq,n[A1...An1C] any weights above 0 you like,

provided that wq,n[A1...An1C] + wq,n[A1...An1C] = wq,n[A1...An1]).

If (A1...An1C)(A1...An1C) |~ (A1...An1C) and (A1...An1C)(A1...An1C) |~ (A1...An1C),

then both (A1...An1C) and (A1...An1C) will be at rank-ω, and (A1...An1) must already be at rank-

(no weights are assigned to rank- sentences).

Finally, for each sentence B above rank-ω:

if B has rank q, assign wq,n[B] =

 the sum of the values of wq,n[S] for all rank q state-descriptions S in Sn that logically entail B,

if B has some rank other than q, assign wq,n[B] = 0.

Notice that if B is a sentence in language Ln−1, then B is logically equivalent to a disjunction of state-

descriptions, each state-description having form (A1...An1). It’s easy to check that the above construction

yields the following result:

if B has rank q, assign wq,n[B]

 = the sum of the values of wq,n[S] for all rank q state-descriptions S in Sn that logically entail B

 = the sum of the values of wq,n−1[S] for all rank q state-descriptions S in Sn−1 that logically entail B

if B has some rank other than q, assign wq,n[B] = 0 = wq,n−1[B].

 Now define P|~ as follows:

Pn|~[A | B] = 1 when the rank of B is ω; and

Pn|~[A | B] = wq,n[AB]/wq,n[B] when the rank of B is q (but not ω).

Clearly, when A and B are both in Ln−1:

if the rank of B is q (but not ω), then Pn|~[A | B] = wq,n[AB]/wq,n[B] = wq,n−1[AB]/wq,n−1[B] = Pn−1|~[A | B];

if the rank of B is , then Pn|~[A | B] = 1 = Pn−1|~[A | B].

It’s easy to check that P1|~ must be a Popper function on the language L1 (which contains only one sentence

letter). Suppose Pn−1|~ on a finite language Ln−1 is a Popper function (i.e. satisfies the Popper function axioms).

Then it is easy to show that Pn|~ is a Popper function that agrees with Pn−1|~ on Ln−1. (E.g. We’ve already

shown that each truth-table probability function is a Popper function (Tm 15); it’s easy to show that P1|~ is a

truth-table probability function; and whenever Pn−1|~ is a truth-table probability function – where each truth-

table line is assigned the rank and weight that corresponds to the rank and weight for the state-description of

Ln−1 made true by that truth-table line – then Pn|~ as defined above must also be a truth-table probability

function that extends Pn−1|~ to the language Ln.)

Thus, the sequence of functions Pn|~ on finite languages Ln is a nested sequence of Popper functions.

If the language L is finite, then it is the largest language Ln in the sequence: define P|~ to be Pn|~.

If the language L is countably infinite, define P|~ on language L as follows:

P|~[A | B] = Pn|~[A | B] for the first finite language Ln in the sequence that contains both A and B.

P|~ satisfies the axioms for Popper functions on L (since any violation of a Popper function axiom by

sentences of language L implies that very same violation for the same sentences on the first finite language Ln

in the sequence that contains all those sentence).

Theorem 23: For each Popper function P, there is a rational consequence relation |~ that specifies the same ranks

for sentences as P specifies. Furthermore, for each rank of |~, there are additive weighting functions wq at each

rank q above ω that specify the probability values for P as follows:

P[A | B] = 1 when the rank of B is ω; and

P[A | B] = wq[AB]/wq[B] when the rank of B is q (but not ω).

The additivity of wq means that whenever |= (BC) and (BC) has rank q, wq[BC] = wq[B] + wq[C].

proof: Given Popper function P, let |~ be the consequence relation defined as follows:

B |~ A just when P[A | B] = 1.

Then |~ is a rational consequence relation (Tm 12), and |~ provides ranks to all sentences of the language L

of P. We will show how to use the Popper function P to define a weighting function wq on each rank q of |~.

We then show that |~ together with these weighting functions yield back the Popper function P via the rules:

P[A | B] = 1 when the rank of B is ω for |~; and

P[A | B] = wq[AB]/wq[B] when the rank of B is q (but not ω) for |~.

We will establish additivity along the way.

Here are the details.

The following lemma will prove useful.

(*) Important fact: Suppose P[Y | Z] > 0.

Then P[X | (XY)Z]/P[Y | (XY)Z] = P[X | Z] / P[Y | Z].

So, when XY |= Z, P[X | (XY)]/P[Y | (XY)] = P[X | Z] / P[Y | Z].

proof: P[X | Z] = P[X(XY) | Z] = P[X | (XY)Z]  P[XY | Z]

P[Y | Z] = P[Y(XY) | Z] = P[Y | (XY)Z]  P[XY | Z]

P[X | Z] / P[Y | Z] = P[X | (XY)Z] / P[Y | (XY)Z]. Done.

To specify the weighting functions, we first arrange the sentence letters of the language L for P in an

“alphabetical order”. Then, for each n, for the set of the first n sentence letters, let Ln be the language for

sentential logic based on just those sentence letters. Construct the corresponding set of state-descriptions Sn

for Ln, where each state-description in Sn has its sentences letters (or their negations) in alphabetical order.

For set Sn of state-descriptions, find the rank of each of its members S according to |~, and assign it a weight

wq(S) in the following way:

For each rank q, let the sentence Fq be the first state-description that has rank q (via the alphabetical

ordering) among the sequence of sets of state-descriptions <S1, ..., Sn, ...>.

For a given set of state-descriptions Sn, each of its members takes the form A1...An1An, where each Ak is

a sentence letter or its negation, and where An is either the “new” sentence letter, call it C, or its negation,

C, where C is a sentence letter that does not occur in language Ln−1 (so doesn’t occur in the state-

descriptions in set Sn1). Thus, A1...An1An is of form A1...An1C or A1...An1C, where A1...An1 is a

state description from set Sn1. State-description A1...An1 is logically equivalent to

(A1...An1C)(A1...An1C). So the rank of (A1...An1C)(A1...An1C) is the rank of A1...An1.

Let A1...An1 be a rank q state-description in Sn−1, and consider the state descriptions A1...An1C and

A1...An1C in Sn. Here is how we assign them weights:

(1) If (A1...An1C)(A1...An1C) |/~ (A1...An1C) (i.e. if

P[(A1...An1C) | (A1...An1C)(A1...An1C)] < 1) and

(A1...An1C)(A1...An1C) |~ (A1...An1C) (i.e. if

P[(A1...An1C) | (A1...An1C)(A1...An1C)] = 1),

then (A1...An1C) is at the same rank as (A1...An1), and (A1...An1C)is at some lower rank u.

Assign wq[A1...An1C] = P[A1...An1C | (A1...An1C)Fq]/P[Fq | (A1...An1C)Fq];

assign wv[A1...An1C] = 0 for all ranks v other than q and ;

assign wv[A1...An1C] = 0 for all ranks v other than u and ;

assign wu[A1...An1C] = P[A1...An1C | (A1...An1C)Fu]/P[Fu | (A1...An1C)Fu], unless u is

rank .

(2) If (A1...An1C)(A1...An1C) |~ (A1...An1C) (i.e. if

P[(A1...An1C) | (A1...An1C)(A1...An1C)] = 1) and

(A1...An1C)(A1...An1C) |/~ (A1...An1C) (i.e. if

P[(A1...An1C) | (A1...An1C)(A1...An1C)] < 1)

then (A1...An1C) is at the same rank as (A1...An1), and (A1...An1C) is at some lower rank u.

Assign wq[A1...An1C] = P[A1...An1C | (A1...An1C)Fq]/P[Fq | (A1...An1C)Fq];

assign wv[A1...An1C] = 0 for all ranks v other than q and ;

assign wv[A1...An1C] = 0 for all ranks v other than u and ;

assign wu[A1...An1C] = P[A1...An1C | (A1...An1C)Fu]/P[Fu | (A1...An1C)Fu], unless u is

rank .

(3) If (A1...An1C)(A1...An1C) |/~ (A1...An1C) (i.e. if

P[(A1...An1C) | (A1...An1C)(A1...An1C)] < 1) and

(A1...An1C)(A1...An1C) |/~ (A1...An1C) (i.e. if

P[(A1...An1C) | (A1...An1C)(A1...An1C)] < 1),

then (A1...An1C) and (A1...An1C) are both at the same rank as A1...An1.

Assign wq[A1...An1C] = P[A1...An1C | (A1...An1C)Fq]/P[Fq | (A1...An1C)Fq];

assign wq[A1...An1C] = P[A1...An1C | (A1...An1C)Fq]/P[Fq | (A1...An1C)Fq];

assign wv[A1...An1C] = 0 for all ranks v other than q and ;

assign wv[A1...An1C] = 0 for all ranks v other than q and .

(4) If (A1...An1C)(A1...An1C) |~ (A1...An1C) and

(A1...An1C)(A1...An1C) |~ (A1...An1C),

then both (A1...An1C) and (A1...An1C) will be at rank ω, and A1...An1 must also be at rank .

Assign wv[A1...An1C] = 0 for all ranks v other than ;

assign wv[A1...An1C] = 0 for all ranks v other than .

The rest of the proof show that this way of assigning weightings yields the desired results.

This assignment of weights to state-descriptions yields the following when the rank of A1...An1 is q (not ):

wq[A1...An1] = wq[A1...An1C] + wq[A1...An1C].

To show this, we go through each of the cases above.

(1) Since wq[A1...An1C] = 0, we need only show that wq[A1...An1C] = wq[A1...An1]. Here is how.

In this case we have P[A1...An1C | (A1...An1C)Fq] = 0.

It follows from (*) (taking Z to be (A1...An1)Fq, X to be A1...An1C, and Y to be Fq), that (since

XY |= Z) we have

0 = P[A1...An1C | (A1...An1C)Fq]/P[Fq | (A1...An1C)Fq] =

P[A1...An1C | (A1...An1)Fq]/P[Fq | (A1...An1)Fq].

It follows from (*) (taking Z to be (A1...An1)Fq, X to be A1...An1C, and Y to be Fq), that (since

XY |= Z) we have

wq[A1...An1C] = P[A1...An1C | (A1...An1C)Fq]/P[Fq | (A1...An1C)Fq] =

P[A1...An1C | (A1...An1)Fq]/P[Fq | (A1...An1)Fq] =

P[A1...An1C | (A1...An1)Fq]/P[Fq | (A1...An1)Fq] +

P[A1...An1C | (A1...An1)Fq]/P[Fq | (A1...An1)Fq] (since this term = 0) =

P[A1...An1 | (A1...An1)Fq]/P[Fq | (A1...An1)Fq] = wq[A1...An1C].

(2) Since wq[A1...An1C] = 0, we need only show that wq[A1...An1C] = wq[A1...An1]. Here is how.

Exactly like case (1), but with ‘C’ interchanged with ‘C’ throughout.

(3) We need to show that wq[A1...An1C] + wq[A1...An1C] = wq[A1...An1]. Here is how.

It follows from (*) (taking Z to be (A1...An1)Fq, X to be A1...An1C, and Y to be Fq), that (since

XY |= Z) we have

wq[A1...An1C] = P[A1...An1C | (A1...An1C)Fq]/P[Fq | (A1...An1C)Fq] =

P[A1...An1C | (A1...An1)Fq]/P[Fq | (A1...An1)Fq].

It follows from (*) (taking Z to be (A1...An1)Fq, X to be A1...An1C, and Y to be Fq), that (since

XY |= Z) we have

wq[A1...An1C] = P[A1...An1C | (A1...An1C)Fq]/P[Fq | (A1...An1C)Fq] =

P[A1...An1C | (A1...An1)Fq]/P[Fq | (A1...An1)Fq].

Then wq[A1...An1C] + wq[A1...An1C] = P[A1...An1C | (A1...An1)Fq]/P[Fq | (A1...An1)Fq] +

P[A1...An1C | (A1...An1)Fq]/P[Fq | (A1...An1)Fq] =

P[A1...An1 | (A1...An1)Fq]/P[Fq | (A1...An1)Fq] = wq[A1...An1C].

Given this result, it is straightforward to show (by induction on m) that for each m, for all n ≤ m, if S is a rank

q state-description in Sn, then wq[S] = the sum of the rank q state-description in Sm that logically entail S.

For each sentence B at a rank above rank ω, we assign B a weight at each rank as follows:

Given sentence B, let Sn be the first state-description set in the ordering that contains all of the sentences

letter contained in B. Assign wq[B] = the sum of the weights wq[S] for all rank q state-descriptions S in Sn

that logically entail B; assign wq[B] = 0 if no rank q state-descriptions in Sn logically entails B.

This assignment provides a unique rank q weight to each sentence B, regardless of whether B itself is a rank q

sentence. (Notice that when S is a rank q state-description that first occurs in Sn, this assignment yields wu[S]

= 0 when rank u is not the same rank as q; but when q it the rank of S, it makes the trivial assignment wq[S] =

wq[S] – in which case the specification of wq[S] above makes wq[S] > 0. Also notice that any state-description

that contains all of the sentence letters in B must either logically entail B or logically entail B.)

Given sentence B, let Sm be any state-description set in the ordering that contains all of the sentences letter

contained in B. It follows that wq[B] = the sum of the weights of all rank q state-descriptions in Sm that

logically entail B. To see why:

Let Sn be the first state-description set in the ordering that contains all of the sentences letter contained in B,

and let S be any rank q state-description in Sn that logically entail B. Then, for any state-description set Sm

with m > n, wq[S] = the sum of the weights of all rank q state-descriptions in Sm that logically entail S – and

since S logical entails B, each of these state-descriptions also logically entail B. Thus, given sentence B, let

Sm be any state-description set in the ordering that contains all of the sentences letter contained in B. Then,

wq[B] = the sum of the weights wq[S] for all rank q state-descriptions S in Sn that logically entail B = the

sum of the weights of all rank q state-descriptions in Sm that logically entail the state-descriptions S in Sn

that logically entail B = the sum of the weights of all rank q state-descriptions in Sm that logically entail B.

 Additivity of wq follows:

Suppose |= (BC) and (BC) has rank q. Then either (1) B has rank q and C has a rank below q, or (2) C

has rank q and B has a rank below q, or (3) both B and C have rank q. Let Lm be the first language in the

sequence that contains all sentence letters in BC. We consider the state-descriptions in Sm, the state-

descriptions for a language Lm that contains all sentence letters in B and all sentence letters in C (although it

may not be the first language to do so).

In case (1), no rank q state-description in Sn can logically entail C (otherwise C would have rank q or a

higher rank), so wq[C] = 0; and since |= (BC), no state-descriptions can entail both B and C; so, all and

only the rank q state-descriptions in Sn that logically entail B also logically entail BC, so wq[BC] =

wq[B]; thus, wq[BC] = wq[B] + wq[C].

Case (2) is just like case (1), but with ‘B’ and ‘C’ exchanged.

In case (3), wq[B] + wq[C] = the sum of the weights of rank q state-descriptions that logically entail B and

the weights of rank q state-descriptions that logically entail C = the sum of the weights of rank q state-

descriptions that logically entail (BC) (since no state-description entails both B and C) = wq[BC].

To complete the proof we only need to establish that P[A | B] = wq[AB]/wq[B] when the rank of B is q (not

ω) for |~. (For, obviously, whenever the rank of B is ω for |~, P[A | B] = 1: for, suppose the rank of B is ω for

|~; then B |~ B, so P[B | B] = 1, so P[B | B] + P[~B | B] = 2  1, so P[A | B] = 1 since P is a Popper

function.)

To see that this works, suppose B has rank q. We know that AB cannot have rank above B, so its rank is q or

lower.

1. If (AB) has rank below q then P[A | B] = P[AB | B] = 0; but in that case our construction clearly makes

wq[AB] = 0 and wq[B] > 0, so P[A | B] = wq[AB]/wq[B].

2. Suppose AB has rank q as well. Let Sn be the first state-description set that has all sentence letters of AB,

and let D be the disjunction of all rank q state-descriptions from Sn that logically entail B. Then P[A | B] =

P[AB | B] = P[AB | D], and also wq[D] = wq[B]. Let E be the disjunction of all rank q state-descriptions

from Sn that logically entail AB. Then P[E | D] = P[AB | D], and wq[E] = wq[AB]. Thus, showing that

P[E | D] = wq[E]/wq[D] will suffice, since P[A | B] = P[E | D] = wq[E]/wq[D] = wq[AB]/wq[B].

Notice that E |= D (i.e. the state-descriptions that make up E are a subset of those that make up D. Without

loss of generality we can take E to have the form S1...Sk, and D has the form S1...SkSk+1...Sm,

where the Sj are the appropriate state-descriptions from Sn. Additivity yield wq[E] = ∑ j=1
k
 wq[Sj] and

wq[D] = ∑ j=1
m
 wq[Sj].

For each state-description Sj, wq[Sj] = P[Sj | SjFq] / P[Fq | SjFq] (that’s how their weights were defined).

Further, abbreviating D as (S1...Sm), from observation (*) we have (for Sj as X, Fq as Y, (S1...Sm)Fq

as Z, with XY |= Z)

P[Sj | SjFq] / P[Fq | SjFq] = P[Sj | (S1...Sm)Fq] / P[Fq | (S1...Sm)Fq]. Thus,

wq[E] = ∑ j=1
k
 wq[Sj] = ∑ j=1

k
 P[Sj | (S1...Sm)Fq] / P[Fq | (S1...Sm)Fq] and

wq[D] = ∑ j=1
m
 wq[Sj] = ∑ j=1

m
 P[Sj | (S1...Sm)Fq] / P[Fq | (S1...Sm)Fq].

Then, since

∑ j=1
m
 P[Sj | (S1...Sm)Fq] = P[(S1...Sm) | (S1...Sm)Fq] and

∑ j=1
k
 P[Sj | (S1...Sm)Fq] = P[(S1...Sk) | (S1...Sm)Fq], we have

wq[E] / wq[D] = P[(S1...Sk) | (S1...Sm)Fq] / P[(S1...Sm) | (S1...Sm)Fq]

 = P[(S1...Sk) | (S1...Sm)] / P[(S1...Sm) | (S1...Sm)]

(from (*) with X as (S1...Sk), Y as (S1...Sm), Z as (S1...Sm)Fq, with XY |= Z – indeed, X |= Y and

Y |= Z, so XY |= Z in this case).

So, wq[E] / wq[D] = P[(S1...Sk) | (S1...Sm)] = P[E | D].

Therefore, P[A | B] = P[E | D] = wq[E]/wq[D] = wq[AB]/wq[B].

Theorem 24: Each finite part of a Popper function P (the part of P defined on a finite sublanguage) is a truth-table

conditional probability function.

proof: Follows from the ranked structure of Popper functions, Theorem 23, and the direct connection between

state-descriptions and truth-table lines, as specified in the ranked truth-table construction described in the proof

of Theorem 21.

