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Abstract. Rational consequence relations and Popper functions provide logics for rea-
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that Popper functions are probabilistic versions of rational consequence relations. I'll not
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1. Introduction

Rational consequence relations and Popper functions provide logics for rea-
soning under uncertainty, the former purely qualitative, the latter proba-
bilistic. Although many researchers are already familiar with one or both of
these logics, few seem to be aware of the close connection between them. It
turns out that Popper functions are just probabilistic versions of the rational
consequence relations. The relationship between them works like this:

1. For each Popper function P, the relation |~p defined as follows, satisfies
the axioms for the rational consequence relations:

B~p Aif and only if P[A | B] = 1.

2. For each rational consequence relation |~, there is a corresponding Popper
Junction P, such that:
P [A| B] = 1if and only if B |~ 4;
P_[C| B] =1 for all C'if and only if B |~ —=B;
P[A| B] = 0if and only if B |~ =A and B [} = B;
0< P.[A|B] <1ifand only if B ¥ Aand B [ ~A.
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This paper describes the essential features of these two logics, features
that make them particularly useful for certain kinds of projects in epistemol-
ogy. I will not assume that the reader is familiar with either logic. I present
each logic, and explicate the relationship between them, from the ground up.
Nevertheless, even experts will find some novel ideas here. For instance, I'll
present alternative axiomatizations for each logic, showing them to depend
on weaker axioms than usually recognized.

Throughout this paper I'll stick to countable languages for sentential
logic, and I'll treat rational consequence relations and Popper functions as
residing in the meta-language (where truth and logical entailment reside).
Before presenting the usual axioms, I'll first characterize these logics in terms
of ranked truth-tables (on finite languages — i.e. on languages containing
a finite number of sentence letters); I'll do that in section 3, where I define
truth-table consequence relations and truth-table conditional probability func-
tions. Sections 4 and 5, respectively, specify the usual axioms for rational
consequence relations and for Popper functions (on both finite and count-
ably infinite languages for sentential logic). In these sections we will also
see that most of the usual axioms for each logic may be replaced by much
weaker axioms. Finally, section 6 shows how to uncover the ranked structure
implicit in rational relations and Popper functions. Based on this, it shows
that for finite sentential languages the truth-table consequence relations are
just the rational consequence relations, and the truth-table conditional proba-
bility functions are just the Popper functions. Thus, the truth-table versions
of the consequence relations and conditional probability functions provide in-
sight into the essential features of these logics.! In advance of all this, the
next section provides an intuitive gloss of the nature of each logic.

2. The Main Idea

Rational consequence relations are nonmonotonic relations between (con-
junctions of) premises and conclusions. Failure of monotonicity means that
when statement B supports statement A (B |~ A), the addition of a further
premise C' to B may undermine that support ((B - C) ¥ A), and may even
result in support = A ((B-C') |~ =A). For rational relations the way in which
monotonicity can fail is tightly constrained. Monotonicity may fail only in
cases where premise B by itself supports the negation of new premise C' —
ie. B~ Aand (B-C) [ A only when B |~ =C'. Thus, when a new premise

'Due to lack of space, I’ve placed formal statements of theorems and their proofs in an
online appendix. The link is provided in the appendix section at the end of this paper.
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C is added to premise B, rational entailment is maintained provided that
B by itself doesn’t support —C": if B |~ A and B |¢ —C, then (B - C) |~ A;
this rule is called Rational Monotonicity, RM.

Rational entailments of form ‘B |~ A’ are often provided interpretative
readings of the following sort: “if B, then usually A”; “if B, then normally
A7, “if B, then typically A”. Such readings are somewhat misleading. They
suggest a weaker connection between premise B and conclusion A than is
implied by the logic of the rational relations. A more appropriate, more
literal reading of ‘B |~ A’ is, “among all states of affairs that count as cred-
ible in the context of premise B, all those that make B true also make A
true”. So, a more appropriate short-hand reading is, “when B, almost cer-
tainly A”. The important point is that the premise B of rational entailment
‘B |~ A’ functions in two ways: (1) it sets an epistemic context that re-
stricts the class of epistemically possible states of affairs to those considered
credible within that context, call these the the “B-credible states of affairs”;
(2) it then draws on those B-credible states of affairs that make B true,
and asserts that all of them make A true. Entailment ‘B |~ A’ allows that
some epistemically possible states of affairs may make B true and A false,
provided that in the context called for by B all such states may be “prop-
erly ignored” as too incredible to be worthy of consideration. The premise
of a rational entailment cues the appropriate epistemic context, which de-
termines the sub-class of possible states of affairs that count as “credible
enough” to be relevant.? This epistemic context-setting is essential to the
way nonmonotonicity works for rational relations.

Each rational consequence relation partitions the class of epistemically
possible states of affairs into a ranked hierarchy of sub-classes. The highest
ranked sub-class for a given relation |~ counts as the class of “most credible”
possible states for |~. Let’s call these “most credible” states the rank-1 states
for . All states at lower ranks for |~ count as incredible with respect to (in
the context of) the rank-1 states for . When B is true in some rank-1 state
for |~, we say that B’s rank is rank-1 for |~, and the B-credible states are
just these rank-1 states. In this case B’s occurrence as a premise in ‘B |~ A’
signals a context that draws only on the collection of rank-1 states.

When B is not true in any rank-1 states for |~, we assign B’s rank to
be the highest rank below rank-1 that contains a state that makes B true.
The states collected at this rank constitute the B-credible states for |~; they
are the states considered credible in the most prominent context where B is

2This conception of credible vs. incredible possibilities is closely akin to that of properly
ignored possibilities in some contextualist accounts of knowledge (e.g. see Lewis [6]).



4 James Hawthorne

possibly true. In this case, B’s occurrence as a premise in ‘B |~ A’ signals
a context that draws only on the collection of B-credible states — i.e. the
collection of all states at B’s rank (regardless of whether they make B true).
The entailment ‘B |~ A’ says that among these states (within this most
prominent context where B may be true), each of them that makes B true
also makes A true.

On this reading, the denial of a rational entailment of form ‘B pt -C" (it
is not the case that B |~ =(C') says that “there are B-credible states of affairs
where B is true and C' is true.” Then, these same B-credible states must
also be (B - C)-credible states (because this rank contains states that make
(B-C) true, and it’s the highest rank where B is true, so no higher rank can
make (B - C) true). Thus, monotonicity holds in such cases as follows: “in
all B-credible states of affairs where B is true, A is true” (B |~ A), “there
are B-credible states of affairs where B is true and C is true” (B |~ =(C'), so
“in all (B - C)-credible states of affairs (which are the B-credible states of
affairs) that make B true and C' true make A true” ((B-C) |~ A).

Cases of nonmonotonicity always involve switching to a lower rank, which
corresponds to a shift in epistemic context. Here is the common pattern: “in
all B-credible states of affairs where B is true, A is true” (B |~ A), but “in
all B-credible states of affairs where B is true, C is false” (B |~ =C'); in that
case the highest ranked (closest to rank-1) collection of states containing a
state that makes (B - (') true — the (B - C')-credible states, at (B-C)’s rank
— must be at some rank below the collection of B-credible states. There is
no guarantee that those (B - C')-credible states that make (B - C') true will
also make A true. Indeed, ‘(B - C) |~ A’ will fail to hold just in case some
(B - C)-credible state makes (B - C) true and A false.

The axioms for rational consequence relations do not explicitly refer to
these ranked hierarchies of classes of states. Rather, we may derive them
from the axioms. We’ll see how that works in section 6. However, before
we get to the axioms for rational relations, I'll first characterize the ranked
hierarchy of classes of states in another way — in terms of ranked truth-
tables, where the ranked hierarchy of classes of states is represented by a
ranked hierarchy of classes of truth-table lines.

Here is a typical example of a rational relation. In this case the relation |~
associates with the statement ‘the animal is a bird’ a context that excludes as
too incredible those states of affairs where the animal in question may belong
to a non-flying bird species. However, |~ associates with the conjunctive
statements “the animal is a bird and an ostrich” and “the animal is a bird
and a penguin” alternative contexts (at lower levels) containing possible
states where the animal in question may belong to a non-flying species.
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My brother, who lives with his family in New Hampshire, tells me he may
buy his daughter a pet for her tenth birthday, perhaps some kind of bird.
Here are some sensible rational entailments relevant to this situation.

Abbreviations for statements: ‘Bird’ = “the animal (the new pet) is
a bird”; ‘Flies’ = “the animal is a member of a species that can fly”;
‘African’ = “the animal is a member of a species native to Africa”;
‘Antarctic’ = “the animal is a member of a species native to the Antarc-
1A

tic”; ‘Ostrich’ = “the animal is a species of ostrich”; ‘Penguin’ = “the
animal is a species of penguin”:

(1) Bird p~ Flies; (2) Bird ¢ ~African; (3) Bird - African |~ Flies;
(4) Bird - Ostrich |~ —Flies; (5) Bird - African - Ostrich |~ —Flies;
(6) Bird - Antarctic ¥ Flies; (7) Bird - Antarctic ¥ —Flies;

(8) Bird - Antarctic - Penguin |~ —Flies;

(9) Bird - Antarctic - =Penguin |~ Flies.

The rules for rational consequence relations permit the derivation of (3)
from (1) and (2), of (10) ‘Bird |~ —Ostrich’ from (1) and (4), and of
(11) ‘Bird |~ ~Antarctic’ from (1) and (6).

Here, ‘Bird’ must trigger the same context as ‘Bird - Africian’. ‘Bird -
Ostrich’ and ‘Bird - Antarctic’ must trigger new contexts at ranks below
that of ‘Bird’. However, ‘Bird - Antarctic’, ‘Bird- Antarctic- Penguin’, and
‘Bird - Antarctic - = Penguin’ may all share the same lower rank.

In many cases it seems natural to extend a rational relation to a con-
ditional probability function. For example, given that ‘Bird - Antarctic [
Flies’ and ‘Bird - Antarctic ) —Flies’, perhaps the above rational relation
I~ may reasonably be extended to conditional probability function P where:
P[Flies | Bird- Antarctic] = .1 and P[—~Flies | Bird - Antarctic] = .9. This
can indeed be done. Each rational consequence relation |~ can be extended
to a conditional probability function that assigns P[A | B] = 1 whenever
B |~ A, and assigns a probability value strictly between 0 and 1 to P[A | B|
whenever B [ A and B [¥ —A. In each such extension, the corresponding
conditional probability function P turns out to be a Popper function.

Popper functions extend the logic of classical conditional probability by
making non-trivial use of statements that have probability 0.3 For classical
unconditional probability functions p, conditional probability is defined as

3Named after Karl Popper, who developed them in an appendix to the 1959 edition
of The Logic of Scientific Discovery, [8]. Makinson [7] for a thorough comparison of
approached to conditional probability functions.
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by the ratio formula: whenever p[B] > 0, p[A | B] = p|A - B]/p|B]; when-
ever p[B] = 0, p[A | B] is left undefined. A minor modification of this
usual approach is to require p[A | B] = 1 whenever p[B] = 0. This permits
conditional probabilities to remain defined when the condition has 0 proba-
bility. Specified this way, each classical conditional probability function is a
very simple kind of Popper function. More generally, each Popper functions
turns out to be a conditional probability function that consist of a ranked
hierarchy of classical probability functions, where conditionalization on a
sentence that has 0 probability at one rank brings about a shift to a differ-
ent classical probability function that lies at a lower rank in the hierarchy.
That is, for Popper function P, the function P][... | B] (holding statement
B fixed) behaves as a classical probability function; and for P[C | B] > 0,
P[A| B-C] = P[A-C | B]/P|C | B], matching the way probabilistic
conditionalization is defined classically. However, when P[C' | B] = 0, the
function PJ... | B - C] gotten by holding (B - C) fixed behaves as a distinct
classical probability function, one that resides at a lower rank in a hierarchy
of classical probability functions represented by P.

The existence of this ranked structure is not explicitly referred to by the
axioms for Popper functions, but can be derived from them. This ranked
structure is precisely of the kind derivable from the axioms for rational conse-
quence relations. P generates a ranked hierarchy of classes of possible states
of affairs together with an associated rank-specific weighting function on the
sentences of each rank. The rank of sentence B is the highest rank where
some state of affairs makes B true and where the associated rank-specific
function p assigns B a non-0 weight. So, when B occurs as the “premise
condition” for a conditional probability expression of form P[A | B], it cues
the context for B’s rank and associated rank-specific probability function p,
and assigns P[A | B] the value p[A - B]/p[B]. Thus, Popper functions are
just rational consequence relations supplemented with a weighting function
for sentences at each rank. We’ll see how this works in sections 3 and 6.

A Popper function may be used to represent a hierarchy of classical
Bayesian belief functions appropriate to distinct epistemic contexts. Con-
sider, for example, cases where it makes good sense to represent a hierarchy
of increasingly more skeptical contexts. In the least skeptical (highest level)
context, the Popperian credibility function treats all skeptical hypotheses
as too incredible to count among the “real possibilities”, and assigns them
0 credence. But conditionalization on evidence for a skeptical claim shifts
to a more open-minded context (at a lower level of the hierarchy), where a
broader range of hypotheses are included among the class of “credible pos-
sibilities”. But even within this more open-mined context, a range of even
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more highly skeptical claims may count as “too incredible”, and so be given
0 credence. Nevertheless, the acquisition of evidence for these claims can, via
conditionalization, bring the Popperian credibility function to shift to a yet
lower level context where even these claims may count among the credible
options, and receive positive credence.

More generally, suppose that each of several distinct but related epistemic
contexts are best represented by a different classical probability function.
Rather than deal with this situation piecemeal, one can represent all of
these probability functions together with their associated contexts in terms
of a single Popper function together with appropriate context-indicating
(context-shifting) statements. Conditionalization on an appropriate context-
indicating statement induces the Popper function to bring the appropriate
classical probability function online. The Popper function implements this
by arranging the collection of classical probability functions into a hierarchy.
It treats the classical probability function at the top of the hierarchy as the
most appropriate function to use. Conditionalization on a statement C
that has 0 probability at this level brings online the highest level classical
probability function in the hierarchy that provides statement C' a non-0
probability. This lower-level probability function remains online until some
statement (or conjunction of statements) D that has probability 0 at that
level is conditionalized on. This brings online an even lower level probability
function, the highest level probability function in the hierarchy that provides
non-0 probability to statement D. The logic by which Popper functions
implement this context-switching turns out to be precisely the logic of the
rational consequence relations.

Thus, for Popper functions probability 0 need not mean “is impossible”
or “is certainly false”, and probability 1 need not mean “is certainly true”.
Rather, for Popper functions probability 1 may mean “is almost certain” or
“is provisionally certain” — i.e. “is almost surely true, given the options
considered to be real possibilities in the present context.”

The remaining sections are strictly formal. They present axioms for
the rational consequence relation (section 4) and for the Popper functions
(section 5), explicate their ranked structures (section 6), and explicate the
formal features I've attributed to them thus far. I’ll leave their proofs to an
appendix (available online, due to lack of space here). Throughout I'll stick
to standard languages for sentential logic. However, many of the results
described here can be extended to languages for predicate logic.*

“See [1], [2] for treatments of Popper functions and rational consequence relations on
languages for predicate logic.
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3. Ranked Truth-Tables

The essential features of the rational consequence relations and the Pop-
per functions, and the relationships between them, are most easily compre-
hended in terms of the notion of ranked truth-tables on finite languages for
sentential logic (i.e. standard sentential languages containing only finitely
many sentence letters). In this section I'll spell out the notion of a ranked
truth-table and define the notion of a truth-table consequence relation. For
finite languages these consequence relations turn out to be coextensive with
the rational consequence relations (as explicated in section 6 and proved in
the appendix). Then I'll extend ranked truth-tables to probabilistic ranked
truth-tables and define the notion of a truth-table conditional probability func-
tion. For finite languages these functions turn out to be coextensive with the
Popper functions (as explicated in section 6 and proved in the appendix).
Thus, the approach through ranked truth-tables provides a simple, easy to
understand characterization of the essential natures of the rational conse-
quence relations, the Popper functions, and the relationship between them.

Let L be any finite language (or finite part of a countably infinite lan-
guage) for sentential logic. Suppose L contains n sentence letters. Here is
how to construct a ranked truth-table.

e First construct a truth-table of the usual sort for the sentence letters of
L (consisting of 2" truth-table lines where each line provides a unique
truth-value assignment to the sentence letters).

e At the top left corner of the table, immediately to the left of the first
sentence letter, write ‘rank’ and construct a new column below it.

e Under the ‘rank’ column, beside one or more truth-table lines, write ‘1’;
these are the rank-1 truth-table lines (the “highest ranked” lines).

e Perhaps all of the lines are marked ‘1’; but if not, then you may mark
some or all of the remaining lines with a ‘2’; these are the rank-2 lines
(the second highest ranked lines).

e If some lines have been marked ‘2’, and if any lines remain unmarked,
then you may mark some or all of them with a ‘3’.

e ... Continue in this way, marking as many ranks as you wish, up through
the entire 2" lines (for n sentence letters), if you wish. But you may leave
some of the lines un-numbered — some lines may not possess a finite
rank.
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e Finally, if any un-numbered lines remain, mark them ‘w’; these rank-w
lines, if any, will be on a par with contradictions — they will count as
“absolutely impossible” in a way that will be explained in a moment.

The rank-1 lines are the highest ranked lines; rank-2 lines are the next
highest ranked; ...; rank-w lines are at the lowest ranked. Given such a
ranked truth-table T for language L, we next assign ranks to sentences of L:

e For each sentence B of L, the rank of B for truth-table T is the highest
rank (lowest rank number) that 7" assigns to any line on which B is true;

e if B is a contradiction, then the rank of B is w.

e The rank-B lines of T" are all lines having the same rank as B (regardless
of whether they are lines that make B true).

e The rank-B sentences of T" are those having the same rank as B.

Associate with each such ranked truth-table T' the corresponding T truth-
table consequence relation, defined as follow.

Definition: Truth-table Consequence Relation: The truth-table consequence
relation generated by ranked truth-table 7" is the relation f~p such that,
for all sentences A and B in T’s language, B 1 A if and only if

1. the rank of B is w ; or

2. the rank of B is not w, and every rank-B line that makes B true also
makes A true.

Notice that when the rank of B is w, ‘B |~ A’ holds for all sentences A.

Every truth-table consequence relation satisfies the axioms for rational
consequence relations specified in section 4. Furthermore, each rational con-
sequence relation on a finite language can be generated as a truth-table conse-
quence relation for some ranked truth-table (see section 6 and the appendix).
So, the workings of the truth-table consequence relations captures the essence
of the rational consequence relations.

Notice that whenever B pr A and B pr —A, some rank-B lines of T
that make B true must make A false (otherwise we would have B r A)
and some rank-B lines that make B true must make A true (otherwise we
would have B |~ = A). One can well imagine that for a specific application
some truth-table lines within the same rank may count as more probable
than others. This suggests extending the notion of a ranked truth-table T'
to that of a probabilistic ranked truth-table, Tp. Here is how to do that.
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e First construct a ranked truth-table T as described above.

e Add a new column to T'; place this column between the column labeled
‘rank’ and the column for the first sentence letter, and label it ‘weight’.

e In this new column, next to each line of finite rank (each line not labeled
w), write an expression for a positive real number; leave the “weight”
entry blank for the rank w lines.

It would be natural to assign weights that sum to 1 within each rank.
The present construction permits this, but doesn’t require it. I’ll say more
about that in a moment.

Associate with each such probabilistic ranked truth-table Tp a corre-
sponding truth-table probability function P, defined as follows.

Definition: Truth-table Probability Function: The truth-table conditional
probability function generated by probabilistic ranked truth-table Tp is

the function P such that for all sentences A and B of Tp’s language,
P[A | B] = if and only if

1. the rank of B is w and r = 1; or

2. r = the sum of the weights of the rank-B lines that make (A- B) true
divided by the sum of the weights of the rank-B lines that make B
true.

Clause (i) implies that whenever the rank of B is w , P[A | B] = 1 for all
A. Furthermore, applying the definition of truth-table consequence relation
to the ranks of a probabilistic ranked truth-table Tp generates a truth-table
consequence relation 7 such that P[A | B] = 1 for Tp just in case B |~ A.

When assessing the conditional probability values for function P, clause
(ii) automatically normalizes the weights within each rank. That is, multipli-
cation of each weight within a rank by a constant positive factor ¢ will result
in precisely the same probability values, since factor ¢ will get “divided out”
when the probability values are computed from the weights. So, although
we can define the probabilistic truth-tables so as to require that the weights
of lines be probabilities (positive real numbers that sum to one) within each
rank, we may just as well permit the weights of lines to be positive real num-
bers of any size. From the non-probabilistic weights we can always generate
a corresponding probabilistic weight for each truth-table line — just divide
each line’s weight by the sum of all the weights of lines within its own rank.

A probabilistic ranked truth-table contains a classical probability function
at each finite rank. To fully specify the classical probability function p, at
rank-q of the probabilistic ranked truth-table Tp:
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at each rank ¢, for each sentence B (regardless of whether it is a rank-¢q
sentence), define p,[B] = the sum of weights of rank-¢ lines that make
B true divided by the sum of the weights of all rank-q lines.

It’s easy to see that for the ranked truth-table Tp, the classical proba-
bility function at each rank is related to the truth-table probability function
P as follows: P[A | B] = p4[A - B]/py[B] whenever the rank of B is ¢.

Clearly, for each probabilistic ranked truth-table Tp generated by a
ranked truth-table 7', the truth-table probability function P is related to
the truth-table consequence relation 7 in the following way:

P[A | B] =1 just in case B |7 A;

P[C'| B] =1 for all C if and only if B g —B;

P[A | B] =0 if and only if B 7 —A and B |1 —B;

0 < P[A| B] < 1ifand only if B ¢r A and B 1 —A.

Every truth-table conditional probability function satisfies the axioms for
Popper functions specified in section 5. Furthermore, each Popper function
on a finite language can be generated as a truth-table conditional probability
function for some ranked probabilistic truth-table (see section 6 and the

appendix). So, the workings of the truth-table probability functions captures
the essence of the Popper functions.

4. Axioms for Rational Consequence Relations

The rational consequence relations are usually characterized by first speci-
fying the axioms for the preferential consequence relation, then adding the
rational monotonicity axiom RM. This axiom is really quite strong. We’ll
see that in its presence we can considerably weaken the other usual axioms.
Here are the usual axioms for the preferential consequence relation.

Axioms for the Preferential Consequence Relations: A Preferential Conse-
quence Relation on a language L for sentential logic is any relation |~
between pairs of sentences of L that satisfies the following axioms:

0. For some E, F, E ¥ F (NT: Non-Triviality)

1. A A (R: Reflexivity)

2. If BEC,CEB, B A, then C |~ A (LCE: Left Classical Equiv.)
3. If C |~ B, B = A, then C i A (RW: Right Weakening)
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4. If C |~ A, B |~ A, then (C'V B) |~ A (OR: left disjunction)

5. If B~ A, B~ C, then (B-C) |~ A (CM: Cautious Monotonicity)

6. If C |~ B,C |~ A, then C |~ (B - A) (AND: right conjunction)

I've added axiom 0 to the usual axioms to eliminate the trivial rela-
tion that has each sentence preferentially entail every sentence. The usual

axioms for the rational consequence relations are those for the preferential
consequence relations plus the Rational Monotonicity rule, RM.

Usual Azioms for the Rational Consequence Relations: A Rational Con-
sequence Relation on a language for sentential logic is any Preferential
Consequence Relation that satisfies the following additional axiom:

7. It B A, B¢ —C, then (B-C) ~ A (RM: Rational Monotony)

The monotonicity rule CM for the preferential relations has a stronger
antecedent condition than does RM, which makes CM a weaker monotonicity
rule than RM. In the presence of the other axioms it is easy to derive CM
from RM. Indeed, RM turns out to be quite a strong rule, strong enough
that in its presence we can get by with much weaker axioms than those
supplied by the preferential relations. Compare the following axioms for
rational relations with axioms 0-7.

Weak Azioms for the Rational Consequence Relations: A weak Rational
Consequence Relation on a language for sentential logic is any relation |~
between pairs of its sentences that satisfies the following axioms:

0. for some E, F, E [ F (NT)

1. A A(R)

2. If BEC,CEB, Bl A, then C |~ A (LCE)

3. If C |~ B, B A, then C |~ A (RW)

4. If(B-C) I A, (B-—-C) |~ A, then B |~ A (WOR:Weak OR)

5. If B~ (C - A), then (B-C) |~ A (VCM: Very Cautious Monotony )
6.1 If (C-B) |~ A, then (C - B) |~ (B-A) (VWAND: Very Weak AND)
6.2 If B~ A, B |~ —A, then B |~ C (CNTRA: ConTRAdiction)

7. If B~ A, B¢ ~C,then (B-C) A (RM)

This Weak Axiomatization keeps Usual Axioms 0-3 and 7, but signif-
icantly weakens 4-6. All the Weak Axioms are easily derivable from the
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Usual Axioms. Conversely, from the Weak Axioms, AND, CM, and OR are
derivable (see appendix). Thus, the Weak Axioms characterize precisely the
same consequence relations as the Usual Axioms.?

In developing what we now call the Popper functions, Karl Popper was
not simply trying to axiomatize a generalized version of conditional proba-
bility functions. Rather, a primary objective was to provide a logic of con-
ditional probability that is completely autonomous from classical deductive
logic. So, Popper developed an autonomous azxiomatization for conditional
probabilities, where the axioms do not rely on classical deductive logic in
any way. (Section 5 will present such axiom for Popper functions.)

The rational consequence relations can be provided this kind of au-
tonomous axiomatization. Among the Weak Axioms, only axioms 2 and
3 draw on the classical notion of logical entailment. We can make do with
weaker axioms that don’t presuppose classical deductive logic in any way.
The logic of the rational consequence relations can be taken as basic, and the
classical logical entailment relation can then be shown to fall out as a special
rational relation, the one that consists of precisely those rational entailments
B |~ A shared by every rational consequence relations.

Autonomous Axioms for Rational Consequence Relations: An autonomous
Rational Consequence Relation on a language for sentential logic is any
relation p between its sentences that satisfies the following axioms: ©

0. For some E, F, E )X F (NT)

1. A A(R)

2. If (C- B) |~ A, then (B - C) |~ A (LC: Left Commutivity)
31 If C |~ (B-A), then C |~ B (SMP-L: Simplification-Left)
32 If C |~ (B A), then C |~ A (SMP-R: Simplification-Right)
3.3 If B |~ =—A, then B |~ A (DN: Double Negation)

34 If Cj~ (=(B-A)-B), then C |~ —A (SYL: Syllogism)
4. If(B-C) A, (B-—C) |~ A, then B |~ A (WOR)

5The usual semantics for preferential consequence relations draws on ranked models of a
specific kind, and the above axioms are shown to be sound and complete for this semantics
(see [4]). The usual semantics for rational consequence relations draws on ranked models
that satisfy an additional “smoothness” condition (see [5]).

5These axioms rely only on negation and conjunction. The other logical connectives are
treated as abbreviations, in the usual way: ‘(A V B)’ abbreviates ‘~(—A-—-B)’, (A D B)’
abbreviates ‘—(A - —B)’, ‘(A = B)’ abbreviates ‘(—=(A-—-B)-~(-A- B)).
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5. If B ) (C- A), then (B - C) b A (VCM)
6.1 If (C'- B) ) A, then (C'- B) ) (B - A) (VWAND)
6.2 If B A, B~ —A, then B ) C (CNTRA)

7. If B A, B ~C, then (B-C) f A (RM)

None of these axioms draws on classical deductive logic in any way (nor
is substitutivity of logically equivalent sentences supposed here). Each of
the 3.x axioms follows directly from Weak axiom 3, and autonomous axiom
2 follows directly from Weak axiom 2. Weak axiom 6 (AND) implies 6.1
and 6.2, but these two replacements are significantly weaker.” So, each ax-
iom for the Autonomous rational consequence relations is derivable from the
axioms for Weak rational consequence relations. We can also establish the
converse — the Weak Axioms are derivable from the Autonomous Axioms
(see appendix). Thus, the Autonomous rational consequence relations are
identical to the usual rational consequence relations.

5. Axioms for Popper Functions

The axioms for Popper functions take conditional probability as basic, not
defined in terms of unconditional probability. T’ll first specify a commonly
used set of axioms for them. Then I'll present a very weak-looking au-
tonomous axiom set, which doesn’t at all draw on classical deductive logic.

Usual Azioms for Popper Functions: A Popper function on a language for
sentential logic is any function P from pairs of its sentences to real numbers
that satisfies the following axioms:

For some E, F, G, H, P[E | F| # P|G | H]

P[A|B] >0

If CE B, BEC,then P[A| B] = P[A|C]

If BE A, then P[A| B] =1

C E —(B-A), then P(AVB) | C|] =P[A| C]+P[B| C]or
P[D|C]=1forall D

5. P[(A-B)| C]=Pl|A|(B-C)] x P[B|C]

Ll S

"E.g., as measured by the notion of probabilistic consequence (see[3]). Substituting
p[X | Y] > t in place of Y |~ X throughout axioms 0-6.1, each axiom holds for every
probability function p and threshold value ¢ > 0, and 6.2 holds for every t > 1/2. However,
7 (RM) holds only for threshold ¢t = 1, as does previous axiom 6 (AND).
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These axioms do not explicitly require P[A | B] < 1. That’s derivable.®

We can axiomatize the Popper functions in a way that does not rely on
classical deductive logic. These axioms won’t even assume that the values
of the functions they characterize lie between 0 and 1.9

Autonomous Axioms for the Popper Functions: An autonomous Popper
function on a language for sentential logic is any function P from pairs
of its sentences to real numbers that satisfies the following axioms:

0. For some E, F, G, H, P|[E | F| # P|G | H]

1. P[A| A] > P[B| B]

2. PA|(B-C)| > P[A|(CB)]

3. PIA|C]|>P[(A-B)|C]

4. P[A| B]+ P[~A| B] = P[B| B] or P[D | B] = P[B | B] for all D
5. P[(A-B)[Cl=PIA[(B-C)]x P[B|C]

The Autonomous Axioms are clearly derivable from the Usual Axioms.
We can also establish the converse (with a lot of effort — see the appendix).

Each truth-table probability function is a Popper function. This is proved
by checking that truth-table probability functions satisfy the axioms for Pop-
per functions. The converse, that each Popper function on a finite language
is a truth-table probability function, derives from showing that each Popper
function gives rise to a ranked hierarchy of non-overlapping classes of sen-
tences, and using that ranked hierarchy to produce a probabilistic ranked
truth-table whose truth-table probability function agrees with the associated
Popper function. The next section shows how to derive the appropriate
ranked structures from the axioms for Popper functions.

6. How Ranked Structures Derive from the Axioms

Rational consequence relations and Popper functions share a common ranked
structure that lies at the heart of how non-monotonicity works in these log-
ics. In this section we’ll first see how the ranked structures of rational con-
sequence relations may be derived from their axioms. The ranked structures
of Popper functions derives from their axioms in the same way, since the
probability 1 parts of Popper functions are rational consequence relations,

8Suppose P[A | B] > 1. Then, from axioms 2, 4, and 1 we derive a contradiction:
1=P[AV-A|B]=P[A|B]|+P[-A|B],so0>1—-P[A| B]=P[-A|B]>0.

9Popper first provided this kind of axiomatization in an appendix to [8].
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and so generate the same ranked structure. I'll only summarize the im-
portant facts about how the rankings arise, and their implications for the
relationship between rational consequence relations and Popper functions. 1
leave the details, including proofs of these claims, to the appendix.

For each rational consequence relation |~, we define an ordering relation
>} on the sentences of its language. We then show this relation to be a
total preorder on sentences of the language of |~ — i.e. > is a complete,
transitive relation on sentences of the language of |~. This relation provides
a ranking of the sentences of |~, where A and B have the same rank just
when A > B and B > A.

Definition: The Rank-Orderings of Sentences Imposed by Rational Con-
sequence Relations: For each rational consequence relation |~, define the
relation >, on sentences of its language as follow:

‘A > B’ abbreviates ‘either AVB [t =Aor AVB |~ —B’; read ‘A > B’

as “the rank of A is at least as high as the rank of B for .”

1. ‘A N B’ abbreviates ‘A > B and B > A’; read ‘A N B’ as “A
and B have the same rank for |~.”

2. ‘A >p B’ abbreviates ‘A > B and not B > A’;read ‘A > B’ as
“the rank of A is higher than the rank of B for |~.”

3. By definition, B has rank-w for |~ just when B |~ —=B.
4. By definition, B has rank-1 for |~ just when (C'V =C) |¥ =B.

Rank-1 is the rank of tautologies: each tautology D has rank-1, and
D >, F for every sentence E. Furthermore, if B has rank-1, then for every
tautology D, B~ D.10

Rank-w is the rank of contradictions: each contradiction D has rank-w,
and E > D for every sentence E. Furthermore, when B has rank-w: (1)
B |~ E for all E; and (2) for every contradiction D, B ~, D."

Whenever (AV B) |~ —A and (AV B) |~ =B, both A and B have rank-
w.'2 So, the definition of ‘A > B’ yields the following characterization:

9Suppose D is some tautology. Then (C'V—C) p¢ =D, so D has rank-1. Also, DV E pt
D (since DV E is logically equivalent to D), so D >, E. When B is rank-1, B >, D
(since B V D is logically equivalent to (C'V —=C'), so BV D [¥ =B).

HSuppose D is some contradiction. Then D I~ =D, so D has rank-w. Also, EVD |~ =D
(since =D is a tautology), so E >, D. When B has rank-w, D >, B (since B |~ =B and
DV B is logically equivalent to B, so DV B |~ —B).

2(AV B) v (-A--B) (AND), (AVB) ~ ((AV B) - (=A--B)) (R, AND), (AV B) |~
(A--A) (RW), ((AV B)-A) | —-A (VCM), A |~ -A (LCE). Similarly, B |~ —B.
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A > Bifand only if AV B )Y =A or both A and B have rank-w.

Thus, whenever either A or B does not have rank-w:

1. A> B just when AV B [t —A;

2. A>, Bjust when AV B |~ —B;

3. A=y B just when both AV B ¥ =A and AV B ¥ =B.

The relation > is transitive and complete (proved in the appendix).!3

So, the associated strict order relation >, and equivalence relation =,
together impose a (complete, transitive) ranking on sentences of |~.

We can use the ranked structure for |~ to establish the following result:
For each finite sub-language of the language for |~ that contains both A and
B,'B |~ A’ holds just in case, every state-description S that has the same
rank as B and logically entails B also logically entails A (see appendix).'4

This result holds regardless of whether the full language for |~ is finite or
countably infinite. Given the correspondence between state-descriptions and
truth-table lines, it follows that each rational consequence relation ~ defined
on a finite language is a truth-table consequence relation. Furthermore, each
truth-table consequence relation can be shown to satisfy the axioms for ratio-
nal consequence relations. So, on finite languages the truth-table consequence
relations just are the rational consequence relations.

For any given rational relation |~, we can supply it a weighting function
wq on sentences at each rank ¢ above w. From these weightings we can then
define a conditional probability function P} such that:

P [A| B] =1 when the rank of B is w; and
P [A| B] = wy[A - B]/wy[B] when the rank of B is q (¢ not w).

Thus, each rational consequence relation |~ can be extended to a Popper
function for which |~ is the probability 1 part. (The appendix shows how
to provide weighting functions on sentences at each rank.)

The relation |~p defined as the probability 1 part of Popper function
P is a rational consequence relation. So, all of the above results about
rankings applies to the relation >p generated by each Popper function P.
Each Popper function is representable by a ranked hierarchy of sentences
together with a weighting function w, for each rank ¢ above w. Formally,
given a Popper function P, we can identify a collection of rank-weight pairs
< ¢, wq > such that:

13 «Completeness” means that for any two sentences A, B, either A >w Bor B> A

YA state-description (on a finite language) is a conjunction of sentence letters and their
negations that contains each sentence letter or its negation (but not both).
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P[A | B] =1 when the rank of B is w;
P[A | Bl = wy[A - B]/wy[B] when the rank of B is ¢ (¢ not w ).

For finite languages, the weighting function for each rank ¢, w,, assigns
weights to state-descriptions at that rank. This effectively assigns a rank and
weight to the true-table lines that make the associated state-descriptions
true. The resulting probabilistic ranked truth-table yields the truth-table
probability function P in the way specified above. Thus, each Popper func-
tion defined on a finite language is represented by a truth-table conditional
probability function generated by a probabilistic ranked truth-table.

Appendix: For formal statements of theorems and their proofs go to
http://faculty-staff.ou.edu/H/James.A.Hawthorne-1/Primer- Appendix.pdf
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