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ABSTRACT. Jeffrey updating is a natural extension of Bayesian updating to cases where
the evidence is uncertain. But, the resulting degrees of belief appear to be sensitive to the
order in which the uncertain evidence is acquired, a rather un-Bayesian looking effect.
This order dependence results from the way in which basic Jeffrey updating is usually
extended to sequences of updates. The usual extension seems very natural, but there are
other plausible ways to extend Bayesian updating that maintain order-independence. I will
explore three models of sequential updating, the usual extension and two alternatives. I will
show that the alternative updating schemes derive from extensions of the usual rigidity
requirement, which is at the heart of Jeffrey updating. Finally, I will establish necessary
and sufficient conditions for order-independent updating, and show that extended rigidity
is closely related to these conditions.

KEY WORDS: Bayesian updating, Jeffrey conditionalization, probability kinematics, prob-
abilistic logic, uncertain evidence

1. INTRODUCTION

Evidence claims are often uncertain. Perhaps they should always be re-
garded as such. For, sensory experiences must play a prominent role in
providing whatever confidence we may legitimately have in the truth of
contingent claims. But experiences are non-propositional states. And al-
though some statements are tied to them more directly than others, we
have no purely phenomenalistic observation language available to pre-
cisely express their content. So, there is always at least a bit of epistemic
distance between statements that express evidence and the experiences or
observations that ground our confidence in them. Evidence statements are
fallible and an agent’s doxastic state should reflect this by marking them
as less than certain.

Although evidence statements may be uncertain, their credibility or
empirical support comes more directly from observations and experiences
than does the support of other contingent claims. Evidence statements
function as conduits through which empirical support is passed to more
remote claims. How this transmission may occur is what logical theories
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of inductive inference are all about, and there is disagreement about the
nature of such inferences. But, prima face, the most plausible way to de-
velop a logical model of empirical support that explicitly represents the
role of experience is to model it in terms of an evidential link of some sort
from non-propositional (non-doxastic, experiential) states of the agent to
defeasible belief strengths in some evidence statements that may in turn
provide support for the rest of the agent’s empirical corpus. In this paper
I’ll explicate and extend a Bayesian model of belief updating on uncer-
tain evidence, first developed by Richard Jeffrey (1965), that fits this bill
extremely well.

The Jeffrey model of empirical support also has a more practical side.
Increasingly, the logic of Bayesian inference is utilized in automated expert
systems in the form of Bayesian networks. The evidential updating of such
systems with claims that are less than certain for one reason or another
should prove to be quite useful. Consider, for example, how an automated
inference aid for medical diagnosis might function. It has a hierarchy of hy-
potheses and sub-hypotheses about possible diseases and syndromes that
branches down to an evidence level consisting of claims about observed
symptoms and test results that may be fairly directly known. Updating
the system amounts to telling it which of the possible evidence claims
exhibited at its bottom level have been observed in the patient. The system
then uses Bayesian inference to update the systems plausibility ratings or
“belief strengths” for all hypotheses up the network hierarchy. In the design
of such systems it will often be impractical to construct a hierarchy that
runs all the way down to the kind of detailed, low level evidence claims
that a physician may observe directly, and report with certainty – e.g.,
to such claims, ‘a report from the lab asserts that in a specific sample
of this patient’s blood the white cell count was 2317 cells per micro-
liter.’ Rather, it may be more practical to have the system terminate at a
higher level – e.g., ‘the patient is very anemic’ – call statements at this
level “the evidence statements,” and require the user to update the system
by inputting her belief strengths for these higher level “evidence state-
ments”, based on whatever she observes more immediately (e.g., detailed
but fallible lab reports). Also, some kinds of evidence may be explicitly
reported to the physician with confidence levels attached – e.g., ‘the blood
test indicates, with degree of confidence .75, the presence of traces of a
weak neuron-toxin.’ Bayesian networks may accommodate such evidence
by permitting the user to attach belief strengths or confidence levels to
evidence statements.

Whether the probabilities acquired by uncertain evidence statements
result from inexpressible experiences of an agent, or from propositionally
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expressible reports that fail to be expressible within a given automated
system, Jeffrey’s model is applicable. For convenience I will refer to inex-
pressible information that directly affects evidence statements, for an agent
or for an expert system, simply as experiences or as non-propositional
states of the agent. This terminology may seem strained when applied to
expert systems. The inexpressible states of the system used to update its
evidential probabilities usually do not reside in the system itself, but in the
user or in experts the user employs. In a sense the agent in this case is the
expert system together with its “sensory apparatus”, which consists of the
user and his experts.

One of the most controversial issues for the Jeffrey model is whether
the order in which updating occurs should legitimately influence the values
of the resulting belief-strengths of the agent. That is, when a sequence
of states brings about a sequence of updates, should the order in which
the states are acquired make a difference? Jeffrey realized from the start
that the way in which he originally extended his approach to sequences
of updates tends to produce a high degree of order-dependence (1965,
pp. 161–162). Some investigators, convinced by Jeffrey’s work, have con-
cluded that update order should indeed matter – that states responsible for
updating should fail to commute. However, such order dependence can
lead to highly undesirable effects.

Imagine two Bayesian medical diagnosticians that initially share the
same epistemic state. The results of various tests on the patient are deliv-
ered to both agents, but arrive in a different order. As a result they acquire
quite different belief strengths regarding the various diseases that the pa-
tient may have; so they arrive at very different diagnoses. If this kind of
problem is to be avoided, Jeffrey updating will need to be re-formulated in
a way that produces order independent results.

The extent to which Jeffrey updating depends on order, and whether
it should, remains highly controversial. Jeffrey’s original scheme for per-
forming sequential updates is clearly order dependent. So, if by ‘Jeffrey
Updating’ one just means Jeffrey’s original extension, then the issue is
whether that original way is the right way for agents to update their be-
lief functions. However, Jeffrey himself seems to have given up his orig-
inal proposal for extending updating to sequences. His more recent work
embraces an alternative updating scheme first proposed by Hartry Field
(1978). So let us use the term ‘Jeffrey Updating’ broadly, to apply to Basic
(non-sequential) Jeffrey Updating and to any of the various ways of ex-
tending it to sequences of updates. Let’s call Jeffrey’s original extension
of Basic Updating to sequences ‘Standard Sequential Updating’. And let’s
call Field’s alternative extension of Basic Jeffrey Updating, ‘Field Updat-
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ing’. The issue, then, is this: what is the most plausible way to extend
Basic Jeffrey Updating to sequences of states? Are there reasons to prefer
Standard Sequential Updating, or Field Updating, or some other approach?

Although Jeffrey has revised his view,1 other researchers still defend
Standard Sequential Updating as the correct approach, or as superior to
Field Updating.2 The controversy largely turns on precisely what kind of
factor at the evidence level should most directly represent the impact of
non-propositional states? That is, when a sequence of propositionally inex-
pressible states brings about a sequence of uncertain updates, should these
updates most immediately take the form of direct changes in probability
for evidence statements, or should they take the form of update factors of
some other kind that then bring about changes in the probabilities of evi-
dence statements? This issue may sound arcane, but its resolution largely
determines the extent to which update order may leave its mark on eviden-
tial probabilities, and on the probabilities of all higher level statements that
the evidence may influence.

I will explicate the formalism of Jeffrey Updating in a way that shows
precisely how Standard Sequential Updating compares with two alterna-
tive approaches, one of them a generalization of Field’s approach. I will
show how these two alternatives to Standard Sequential Updating derive
from extensions of the usual rigidity requirement, which is the heart of
Basic Jeffrey Updating. We will see that on the two alternative schemes
updating is independent of order. I will also show how the main objection
to Field Updating, due to Garber (1980), may be overcome. Finally, I will
establish necessary and sufficient conditions for order-independent updat-
ing, and show how closely related these conditions are to the extensions of
rigidity employed by the two order-independent update schemes.

2. BASIC JEFFREY UPDATING

Jeffrey’s scheme for belief updating is a natural extension of Bayesian
updating to cases involving uncertain evidence. The idea is that although
important aspects of an agent’s experiences may fail to be expressible
propositionally, the experiences may, nevertheless, bring about a direct
change in her belief strengths in some propositions, which may in turn
provide evidence for other propositions.

To express this idea formally, let Q be the agent’s degree-of-belief
function at a given time. We employ the usual Bayesian idealization. The
agent is supposed to be an ideal model of rational belief in the sense that
her degrees of belief may be represented by a function from sentences
of her language to real numbers between 0 and 1 that satisfies the usual
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probability axioms. Let e be a propositionally inexpressible state for the
agent. Suppose that, corresponding to e, there is a set of sentences, {Ei}
(associated with e by the agent) that are influenced more directly by e than
are other sentences. The influence of state e on the agent’s belief strengths
for the associated evidences sentences {Ei} is represented by a transfor-
mation of the agent’s previous degree-of-belief function Q to a new belief
function Qe that assigns new belief strengths Qe[Ei] to sentences in {Ei}.
I will call {Ei} the evidence basis directly affected by e. An evidence basis
is a partition – i.e. a mutually exclusive and exhaustive set of sentences.3

The evidential import of an experience or observation e is supposed to be
completely captured by the influence it has on the belief strengths of sen-
tences of its evidence basis. The agent’s belief strengths for other sentences
may only be influenced by e through the mediation of e’s evidence basis.

The evidence basis captures the evidential import of e through its ability
to “screen off” the rest of the agent’s beliefs from direct influence by e.
That is, for any sentence S in the agent’s language, each member of the
basis {Ei} affected by e satisfies the relationship Qe[S | Ei] = Q[S | Ei]
(providedQe[Ei] > 0).4 This means that each sentence S is independent of
state e, given Ei . This screening off condition is sometimes called rigidity.
It represents the idea that the sentences Ei in the evidence basis directly
affected by e already carry all of the evidential import of e that is relevant
to the agent’s other sentences S. Given that any one of the basis sentence
Ei holds, e adds nothing more to the agent’s degree of confidence in S.

When rigidity is satisfied, the belief strength for a sentence S due to
a state e is determined by the influence of e on sentences of its evidence
basis together with the evidential support that each basis sentence sup-
plies S prior to e’s introduction: Qe[S] = ∑

i Q[S | Ei] · Qe[Ei] =∑
{i:Q[Ei ]>0}Q[S · Ei] · (Qe[Ei]/Q[Ei ]). Given rigidity, this formula is

just a theorem of probability theory.5

This formula implies that if state e makes some sentence Ej in its basis
certain (i.e. ifQe[Ej ] = 1), then the new probability of a sentence S based
on e is Qe[S] = Q[S | Ej ], where Bayes’ theorem governs Q[S | Ej ] in
the usual way:Q[S | Ej ] = Q[Ej | S] ·Q[S]/Q[Ej ]. Thus, Jeffrey updat-
ing is a generalization of Bayesian updating to cases where the evidence
remains uncertain.

3. BASIC SEQUENTIAL JEFFREY UPDATING

The agent may be subject to a sequence of experiences that influence her
belief strengths, each through its own evidence basis. Suppose an agent
whose present belief function is Qe has an additional experience f that
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directly affects an evidence basis {Fj }, where rigidity holds relative to each
Fj – i.e.Qef [S | Fj ] = Qe[S | Fj ]. Then Jeffrey updating iterates to yield,
for each sentence S, Qef [S] = ∑

{j :Qe[Fj ]>0}
∑

{i:Q[Ei ]>0}Q[S · Ei · Fj ] ·
(Qe[Ei]/Q[Ei]) · (Qef [Fj ]/Qe[Fj ]).6

The process of updating on additional uncertain evidence reiterates in
the same way. That is, suppose that the agent’s current belief function is
a probability function Q. The agent’s beliefs strengths may be (further)
updated by a sequence of non-propositional states a, b, . . . , e, f, g, affect-
ing evidence bases {Ai}, . . . , {Ei}, {Fi}, {Gi}, respectively. This produces
a sequence of updated belief functionsQa, . . . ,Qa...ef ,Qa...efg. Then, sup-
posing rigidity holds in each case relative to the respective bases (i.e.,
supposing for each Qa...b and state c with basis {Ci}, Qa...bc[S | Ci] =
Qa...b[S | Ci]) we have the following result:

BASIC SEQUENTIAL UPDATE FORMULA. For all S, Qa...efg[S] =∑
{i:Qa...ef [Gi ]>0} . . .

∑
{k:Q[Ak]>0}Q[S ·Ak · · · · ·Fj ·Gi] ·(Qa[Ak]/Q[Ak]) ·

· · · · (Qa...efg[Gi]/Qa...ef [Gi]).
This formula holds even when some of the non-propositional states affect
the same evidence basis. But when two states share a basis some of the
terms in the formula reduce. For example, if g and b affect the same basis
{Gi} (so each Bk in the basis for b is one of the mem bers of {Gi}), the
belief strengthsQ[S ·An ·Bk · · · · ·Fj ·Gi] must be 0 in all cases where Bk is
not the same sentence asGi . Thus, when states g and b share a basis the up-
date formula becomes Qa.b...efg[S] = ∑

{i:Qa.b...ef [Gi ]>0}
∑

{j :Qa...e[Fj ]>0} . . .∑
{n:Q[An]>0}Q[S ·An · · · · ·Fj ·Gi]·(Qa[An]/Q[An])·(Qab[Gi]/Qa[Gi])·

· · · · (Qab...ef [Fj ]/Qab...e[Fj ]) · (Qab...efg[Gi]/Qab...ef [Gi]).
Also notice that if a final sequence of states affect a common basis, they

may be treated like a single state. That is, suppose ε is a sequence of states
(e.g., ε is a sequence e . . . fgh) that occurs just after a sequence a, . . . , c, d.
And suppose all states in ε affect the same basis {Ei}. Then the Basic Se-
quential Update Formula becomes Qa...cdε[S] = ∑

{i:Qa...cd [Ei ]>0}∑
{j :Qa...c[Dj ]>0} . . .

∑
{k:Q[Ak]>0}Q[S ·Ak · · · · ·Dj ·Ei] · (Qa[Ak]/Q[Ak]) ·

· · · · (Qa...cd [Dj ]/Qa...c[Dj ]) · (Qa...cdε[Ei ]/Qa...cd [Ei]).7
The Basic Sequential Update Formula follows solely from the usually

axioms for probabilities together with rigidity (applied to each basis). So
it is just part of Basic Jeffrey Updating, not an extension of it. Standard
Sequential Updating, which is the usual extension of Jeffrey updating to se-
quences, goes further. It requires an additional assumption about how prob-
abilities of basis sentences are to be updated by non-propositional states.
We are now prepared to explore it, and to investigate the two alternative
extensions to Basic Jeffrey Updating.
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4. UPDATE FACTORS

An experience e updates a belief function Qβ , previously updated on a
sequence of states β, by supplying new probabilities Qβe[Ej ] for e’s basis
sentences {Ei}. Let us call these new probabilities probabilistic update
factors. Does experience directly supply probabilistic update factors to the
agent, or does it more directly supply some other kind of update factor,
a factor which in turn produces the probabilistic updates of basis sentences.
This issue has important implications for how sequential Jeffrey updating
works.

If probabilistic update factors are derivative of some more primitive
factors, what might these more primitive update factors be? Well, notice
that the ratios of form (Qβe[Ej ]/Qβ[Ej ]) in the Basic Sequential Update
Formula represent the amount by which the addition of e to β increases
the “prior” degree of belief Qβ[Ej ] to produce the “posterior” degree of
belief Qβe[Ej ], resulting from the addition of e. Because these ratios play
such a prominent role in belief updating, we might suppose that they are
stand-ins for some kind of autonomous factor, call it a Normed-Likelihood
update factor, NL[Qβ, e,Ej ], that generates the posterior belief function
Qβe[Ej ] from the prior belief function Qβ [Ej ], as follows: Qβe[Ej ] =
NL[Qβ, e,Ej ] · Qβ[Ej ].8 The thought is that these factors may be more
immediately generated by non-propositional states than are the updated
probabilities for bases. These factors then pass on the influence of a new
state to the probabilities of basis sentences by updating the prior belief
strengths for basis sentences to produce posterior belief strengths. That is,
the state projects some kind of weightings onto its basis sentences; and
these weightings are measurable on a scale that employs the non-negative
real numbers and has the structural features of normalized likelihoods.

Inspection of the Basic Sequential Update Formula shows that sequen-
tial Jeffrey updating depends only on Normed-Likelihood update factors
and on the agent’s belief function Q prior to the sequence of updates. That
is, we may rewrite the Basic Sequential Update Formula as follows:

BASIC SEQUENTIAL UPDATE FORMULA: NORMED-LIKELIHOOD
FACTOR VERSION. For all S, Qa...efg[S] = ∑

{i:Qa...ef [Gi ]>0} . . .∑
{k:Q[Ak ]>0}Q[S ·Ak · · · · ·Gi] · NL[Q, a,Ak] · · · · · NL[Qa...ef , g,Gi].

An agent’s initial belief function Q together with the Normed-Likelihood
update factors affected by states in α suffice to generate the updated de-
grees of belief Qα for all of her sentences.

So, which kind of update factor do non-propositional states supply more
directly, Normed-Likelihood update factors NL[Qβ, e,Ej ], or Probability
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update factors Qβe[Ej ], or some other kind of update factors? Notice that
each of the two kinds of update factors we’ve explored so far may be used
to generate the other from the prior probabilities of basis sentences. So the
issue regarding which kind of factor should be taken as primitive is not a
purely mathematical matter. It is an epistemological, or an empirical, or a
pragmatic issue.9

Rather than try to settle on one kind of factor as the right one, we
may develop several theories, each an extension of Jeffrey updating that
takes a different kind of update factor as more primitive – as affected more
directly by non-propositional states. Indeed, it may turn out that there is
no one true theory of uncertain updating – that each theory has its uses,
its domain of applicability. However, the various theories will, it turns out,
suggest different natural extensions of Basic Sequential Jeffrey Updating
that have different mathematical characteristics. And these characteristics
might make the various extensions more or less suitable as models of cer-
tain types of agents. In particular, taking a factor as primitive tends to lead
to differences regarding whether update order influences the agent’s net
belief strengths.

5. THE AMNESTIC UPDATE MODEL

Jeffrey’s original model takes the experiential state e to supply new prob-
abilities Qβe[Ei] directly to the agent, unmediated by any other factor.
Normed-Likelihood factors are then an artifact, defined as ratios of the
probabilistic update factors Qβe[Ei] over initial belief strengths Qβ[Ei].
Those who hold this view go further. They take each new experience e
to so overwhelm the agent’s belief function on its basis sentences that no
trace of the impact of previous experiential states remains. That is, they
adopt the following thesis:

AMNESTIC UPDATE-FACTOR THESIS. For any state e that directly
affects an evidence basis {Ei} and for any other state d and sequence of
states α,Qαde[Ei ] = Qαe[Ei].
Let’s say that a sequence of belief functions connected through successive
updates on non-propositional states fits the Amnestic Update Model just in
case the sequence satisfies both the usual Jeffrey rigidity requirement and
the Amnestic Update Thesis. Amnestic updating provides one fairly natural
way to extend Basic Sequential Jeffrey Updating. Indeed Amnestic Updat-
ing is just Standard Sequential Updating – Jeffrey’s original approach to
sequential updating.10
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The Amnestic Model treats the agent as subject to a strange sort of
amnesia. Her belief strengths in statements that most immediately reflect
the evidence of her senses can only accommodate her most recent rele-
vant experience. On this model, when I next see my car in dim light, its
appearance at that moment completely overwrites my beliefs regarding its
true color. This seems highly implausible. One might reasonably think that
my belief strengths regarding its true color should be the product of my
present experience in combination with past experiences of a similar kind,
together with many other relevant beliefs – e.g., that it usually looks about
like this in the dark, that it is newly waxed, that waxing has not previously
resulted in color change, etc.

When the Amnestic Update Thesis is applied to the Basic Sequential
Update Formula we find that the degree of belief Qa...ef [S] after expe-
riences a . . . ef ultimately depends only on the initial belief function Q
and the influence of states on their bases. Furthermore, the belief strengths
for basis sentences, Qa[Ai], . . . ,Qf [Fj ],Qg[Gk], do not depend on the
initial belief function Q at all, but only on the experiential states them-
selves. When the Basic Sequential Update Formula is decomposed into
these components, the update order effect on sentence S is carried by the
structure of the resulting formula.11

Some instances of Amnestic Updating may turn out to be independent
of order. But this can only occur under very special circumstances. The
order effect in Amnestic Updating is so strong that a pair of states e and f
will commute forQβ (i.e.Qβef [S] = Qβfe[S] for all S) just in case neither
e nor f can, on its own, influence (even indirectly) the basis sentences of
the other – i.e. just in case for each Ei,Qβf [Ei] = Qβ[Ei], and for each
Fj ,Qβe[Fj ] = Qβ[Fj ].12 However, usually states do indirectly influence
the belief strengths of sentences from other bases. Thus, on the Amnestic
Model update order-independence will be rare.13

To see how strongly update order on distinct bases can influence belief
strengths, let us consider an example. Consider a case where the results
of two diagnostic tests, a chest x-ray and a sputum cytology test, supply
uncertain evidence regarding whether a patient has lung cancer. I will keep
the example simple and symmetric so that the effect of update order is
relatively easy to trace. Let us suppose the following: given the patient’s
symptoms, the physician’s initial degree of belief that “the patient has
some form of lung cancer”, Q[C], is .5; the likelihood that “an image of a
mass is present on the x-ray” if “cancer is present”, Q[E | C], is .95, and
(suppose) the likelihood that “an image of a mass shows up” if “no cancer
is present”, Q[E | ∼C], is .05; the likelihood that “cancer-like cells are
present in the sputum sample” if “cancer is present”, Q[F | C], is also .95,
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and the likelihood that “cancer-like cells will be present” if “no cancer is
present” in the patient, Q[F | ∼C], is .05. In addition let’s suppose that
the likelihoods for the outcomes of the two different tests are independent
given that cancer is present, Q[E · F | C] = Q[E | C] · Q[F | C]; and
the outcomes are also independent if cancer is not present,Q[E ·F | C] =
Q[E | ∼C] ·Q[F | ∼C]. The evidence bases here are just {E,∼E} and
{F,∼F }.

The sputum sample is taken and sent to the lab. At about the same time
a chest x-ray is performed and goes to the radiologist for analysis. The lab
technician is not certain that any of the cells he examines are malignant,
but sees some suspicious-looking cells. His degree of confidence that no
cancer-like cells are present in the sputum sample is .90. However, the
radiologist is fairly confident that one of the shadows she sees was pro-
duced by a small mass. Her degree of confidence that an image of a mass
is present on the x-ray is .90. Both results are sent to the physician.

Suppose that the physician receives the sputum cytology result first. She
updates her belief by adopting the technician’s degree of confidence about
the presence of cancer-like cells, Qf [∼F ] = .90. Then she updates her
degree of belief that the patient has lung cancer accordingly: Qf [C] = .14.
When the x-ray report comes in the physician adopts the radiologist’s de-
gree of confidence that an image of a mass is present, Qe[E] = Qfe[E] =
.90. As a result she updates her degree of belief that the patient has lung
cancer to Qfe[C] = .68.

However, if the physician receives the lab results in the opposite order,
her updated belief strength, based on the radiologist’s report, will first be
Qe[C] = .86. Then, upon receiving the sputum cytology report her cumu-
lative belief strength that the patient has lung cancer falls toQef [C] = .32.
Thus, in this example the cumulative effect of the diagnostic tests is either
to raise the physician’s belief strength by .18 (from .5 to .68) or to lower it
by .18 (from .5 to .32), depending on the order in which she incorporates
the test results into her belief function. But, given the symmetry of the
likelihoods and the test result belief strengths in this example, intuitively
the conflicting test reports should cancel each other out. Intuitively the
physician should return to her initial .5 belief strength for cancer after the
two opposing test results are figured in.14

The Basic Sequential Update Formula relies only on rigidity and the
standard axioms of probability theory. The addition of the Amnestic Up-
date Thesis is just one way to extend Basic Jeffrey Updating to sequences.
The resulting Amnestic Model raises two related concerns. First, it seems
implausible that the most recent experience or non-propositional state
should completely dictate belief strengths for basis sentences, with no



UPDATING ON UNCERTAIN EVIDENCE 99

regard for the import of previous experiences or states. There may be
some specialized systems for which this model is appropriate. But it seems
wrong as a model of (idealized) human agents, and wrong for most appli-
cations of automated Bayesian inference networks. The second concern is
that, as a result of this amnesia, the order in which states or experiences are
acquired will almost always have a very significant influence on an agent’s
belief strengths. This order effect is very troubling.15

6. THE NORMED-LIKELIHOOD FACTOR MODEL

An alternative way to extend Basic Jeffrey Updating is to take the non-
propositional state e to directly supply the agent with Normed-Likelihood
update factors NL[Qβ, e,Ei ]. Then the Normed-Likelihood factor version
of the Basic Sequential Update Formula generates new degrees of belief
for each of the agent’s sentences. When update factors are viewed in this
way Qβe[Ei] looks very much like a posterior probability based on the
joint “evidence” β and e.

The idea that the update of a basis sentence is a transition from a prior to
a posterior probability has a distinctly Bayesian flavor. It suggests that we
might get more insight into the relationship between Normed-Likelihood
factors and probabilities by looking at how non-propositional states would
be treated if they were expressible as sentences. Let’s treat them as such for
a moment, as a heuristic device, to see what a standard Bayesian analysis
might suggest.

Consider a sequence of one or more states ε that all sharing the same ba-
sis {Ei}, and consider another state d that affects a different basis {Di}. Let
Qα be a belief function previously updated on sequence α. Now suppose
that d and ε could be adequately expressed as sentences, and let us consider
how they would function in the Bayesian update of Qα[Ei]. (Think of the
members of {Ei} as alternative hypotheses and think of d and ε as evi-
dence claims relevant to them). Notice that the Normed-Likelihood factor
NL[Qαd, ε,Ei] = (Qαdε[Ei]/Qαd[Ei]) would then be equal to a ratio of
conditional probabilities: NL[Qαd, ε,Ei] = (Qα[Ei | d · ε]/Qα[Ei | d]).
Then Bayes’ theorem yields NL[Qαd, ε,Ei] = (Qα[d | Ei · ε]/Qα[d |
Ei]) · (Qα[Ei | ε]/Qα[Ei]) · (Qα[d] ·Qα[ε]/Qα[d · ε]).16

Notice that the Normed-Likelihood factor forQα due to ε alone (i.e. ab-
sent d) would be this: NL[Qα, ε,Ei] = Qα[Ei | ε]/Qα[Ei]. Substituting
this expression into the previous equation gives a relationship between two
Normed-Likelihood factors, one that results if d is encountered before ε,
the other if only ε is encountered: NL[Qαd, ε,Ei] = NL[Qα, ε,Ei] ·
(Qα[d | Ei · ε]/Qα[d | Ei]) · (Qα[d] ·Qα[ε]/Qα[d · ε]).
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The standard rigidity condition, which is the heart of Jeffrey updating,
requires that the basis sentences Ei for ε screen off all other sentences
from ε. This includes sentences in d’s basis, and should include d as
well if it were a sentence. Indeed, if d were expressible as a sentence,
standard rigidity would yield Qα[d | Ei · ε] = Qα[d | Ei] – i.e. d
would be independent of ε given Ei . With this application of rigidity the
equation at the end of the previous paragraph yields NL[Qαd, ε,Ei] =
NL[Qα, ε,Ei]·(Qα[d]·Qα[ε]/Qα[d ·ε]). This expresses a relationship be-
tween Normed-Likelihood factors for ε with and without intervening state
d on a different basis.17 This relationship between Normed-Likelihood fac-
tors would follow from standard rigidity alone if ε and d were sentences.
So this relationship might plausibly be adopted as an extension of standard
rigidity to cases when ε and d are not sententially expressible, if only we
had a way to express this relationship without treating ε and d as though
they were sentences in the term ‘Qα[d] ·Qα[ε]/Qα[d · ε]’ of the formula.
Is there a way to do this?

Notice that the term ‘Qα[d] · Qα[ε]/Qα[d · ε]’ does not depend on
which sentence from {Ei} is involved; it has the same value r, regard-
less. So the previous analysis suggests the following extension of rigidity
to sequences of states αdε and to the corresponding sequences of belief
functions Q, . . . ,Qα,Qαd, . . . ,Qαdε (where each state affects a basis for
which the usual rigidity requirement holds).

EXTENDED RIGIDITY THESIS: NORMED-LIKELIHOOD FACTOR
VERSION. For any sequence ε of states that affect a common basis {Ei}
and any state d that affects some different basis, there is a real number
r > 0 such that for each Qαdε-possible sentence Ej in {Ei} (i.e. each Ej
such that Qαdε[Ei] > 0), NL[Qαd, ε,Ej ] = r · NL[Qα, ε,Ej ].
The presence of a state d preceding ε can only affect the posterior belief
strengths Qαdε[Ei] of ε’s basis through two channels: through the priors
Qαd[Ej ], and through the update factors NL[Qαd, ε,Ej ]. The Extended
Rigidity Thesis implies that when the basis of d is distinct from the basis
of ε, the only influence that d has on ε’s basis sentences is the affect it had
in updating Qα[Ei] to Qαd [Ei].18 The Thesis says that d makes no sub-
stantial contribution to the update factors through which ε affects its basis;
d’s only influence on ε’s Normed-Likelihood factors is to multiply them by
a constant r. And that is virtually no influence at all. It merely introduces
a scaling factor to get the resulting posterior probabilities to sum to 1.

In other words, if the agent were to acquire a state d with a basis
distinct from ε’s just before she acquires ε, the acquisition of d would
have precisely the same affect on how each of ε’s own basis sentences
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come to be updated by ε – i.e. for any two sentence Ei and Ej from ε’s
basis, NL[Qαd, ε,Ei]/NL[Qα, ε,Ei] = NL[Qαd, ε,Ej ]/NL[Qα, ε,Ej ].
Put another way, the quantity by which ε changes the agent’s belief strength
in Ei as compared to the quantity by which it changes her belief strength
in Ej remains exactly the same in the presence of d as it would be absent d
– i.e. NL[Qαd, ε,Ei]/NL[Qαd, ε,Ej ] = NL[Qα, ε,Ei]/NL[Qα, ε,Ej ].
This means that the presence or absence of d cannot influence the relative
changes in belief strengths induced by ε on its own evidence basis.

The Extended Rigidity Thesis does not presuppose that states d and
ε may be adequately expressed by sentences. We treated them as such
several paragraphs back merely as a heuristic device to help us see how
closely the Thesis is related to the usual rigidity requirement. But once we
understand what the Thesis says about how ε dominates the update factors
of its own basis, the Thesis stands as a plausible updating requirement on
its own. We’ll say that a sequence of belief functions connected through
successive updates fits the Normed-Likelihood Factor Update Model just in
case the sequence satisfies both the usual Jeffrey rigidity requirement and
the Normed-Likelihood Factor Version of the Extended Rigidity Thesis.

Normed-Likelihood Updating is a more natural, more Bayesian ex-
tension of Basic Jeffrey Updating than is Amnestic Updating. The Ex-
tended Rigidity Thesis says that a homogeneous sequence of states has
autonomous control over update factors that affect its own basis. But other
states may continue to exert an indirect influence on this basis. Their influ-
ence is carried by the prior belief strength due to previous updating, which
substantially affects the posterior belief strength of the basis sentences.
By contrast, the Amnestic Update Thesis says that the most recent state
overwrites belief strengths on its basis so completely that no trace of the
effects of any previous updates on its basis remains.

When Extended Rigidity holds, the Basic Sequential Update Formula
may be refined. To see how, consider the belief strength Qa...def ε[S] for an
arbitrary sentences S due to the sequence of states a . . . def ε, where ε is
a basis-homogeneous sequence of states that affect basis {Gi}, and where
state f affects {Fi} distinct from {Gi}. (We allow that some of the states
a, . . . , d, e, f , may share the same evidence basis, and that some may
even share ε’s basis.) Let us focus on a non-zero term from the Sequential
Update Formula of form Q[S · Am · · · · · Ek · Fj · Gi] · NL[Q, a,Am] ·
· · · · NL[Qa...d , e, Ek] · NL[Qa...de, f, Fj ] · NL[Qa...def , ε,Gi]. (Notice
that whenever two states share a basis, this non-zero term must use the
same basis sentence for both states – i.e. if e has the same basis as ε, then
sentence Ek must be Gi; otherwise Q[S · Am · · · · · Ek · Fj · Gi] would
be 0, and so the whole term would be 0.)
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Extended Rigidity implies NL[Qa...def , ε,Gi] = r · NL[Qa...de, ε,Gi],
where r is the same for each Gi . This says that the state f to the left of
ε may be stripped away, leaving behind a multiplicative constant r. This
stripping away of states to the left of ε may continue in the same way
to yield NL[Qa...def , ε,Gi] = r · s · · · · · NL[Q, ε,Gi] unless some
state, say e, has the same basis as ε. If ε and e share the same basis,
then, after stripping away f , the original term becomes Q[S · Am · · · · ·
Gi · Fj ·Gi] · NL[Q, a,Am] · · · · · NL[Qa...d , e,Gi] · NL[Qa...de, f, Fj ] ·
NL[Qa...de, ε,Gi] · r (since Ek must be Gi). Now, notice that in this for-
mula the terms for Gi give us NL[Qa...d , e,Gi] · NL[Qa...de, ε,Gi] =
(Qa...de[Gi]/Qa...d[Gi]) · (Qa...deε[Gi]/Qa...de[Gi]) = NL[Qa...d , eε,Gi].
This means that combining the twoGi terms gives usQ[S ·Am · · · · ·Gi ·Fj ·
Gi]·NL[Q, a,Am]· · · · ·NL[Qa...de, f, Fj ]·NL[Qa...d, eε,Gi]·r, where eε
is now a basis homogeneous sequence of states. Thus, basis homogeneous
states accumulate.

Continuing to strip away states in this way for each factor, the term
from the Sequential Update Formula eventually is transformed into a term
of form Q[S · Am · · · · · Fj · Gi] · NL[Q,α,Am] · · · · · NL[Q,β, Fj ] ·
NL[Q, γ,Gi] · K. The constant K is the product of all of those constants
like r that accumulate as states are stripped away; and α, . . . , β, γ are
basis-homogeneous sequences of states that affect bases {Ai}, . . . , {Fi},
{Gi}, respectively.

Putting these reduced terms back into the Sequential Update Formula
yieldsQa...efg[S] = K ·∑{i:Q[Gi ]>0}

∑
{j :Q[Fj ]>0} . . .

∑
{k:Q[Am]>0}Q[S ·Am·

· · · · Fj · Gi] · NL[Q,α,Am] · · · · · NL[Q,β, Fj ] · NL[Q, γ,Gi]. This
result would be more enlightening if only we could determine the value
of constant K. And indeed we can. Notice: 1 = Qa...efg[tautology] = K ·∑

{i:Q[Gi ]>0}
∑

{j :Q[Fj ]>0} . . .
∑

{k:Q[Am]>0}Q[Am· · · · ·Fj ·Gi]·NL[Q,α,Am]·
· · · · NL[Q,β, Fj ] · NL[Q, γ,Gi]. Thus, we get the following version of
the Sequential Update Formula.

EXTENDED SEQUENTIAL UPDATE FORMULA: NORMED-LIKELI-
HOOD FACTOR VERSION. Let δ be a sequence of states and, for belief
function Q, let α, . . . , γ be the basis-homogeneous subsequences of states
from δ (where α, . . . , γ each maintain the same order among their states
as these states are ordered in δ, and jointly contain all states in δ). Let {Ai}
be the evidence basis affected by α, . . ., and let {Ci} be the basis affected
by γ . Then, for all sentences S,

Qδ[S] =
∑
i

∑
j . . .

∑
k Q[S ·Ak · · · · · Ci] · NL[Q,α,Ak] · · · · · NL[Q, γ, Ci]

∑
i

∑
j . . .

∑
k Q[Ak · · · · · Ci] · NL[Q,α,Ak] · · · · · NL[Q, γ, Ci]

(sums over the basis sentences such that Q[Ci], . . . ,Q[Ak] are non-zero).
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Thus, the updated belief function Qδ is completely specified by the initial
belief function Q together with Normed-Likelihood factors that express
how each basis-homogeneous subsequence of states from δ updates Q.
Inspection of this formula shows that the resulting belief strengths are inde-
pendent of update order – except, perhaps, within the basis homogeneous
subsequences.

7. THE LIKELIHOOD-RATIO FACTOR MODEL

Normed-Likelihood update factors appear to do a better, more Bayesian
looking job of representing the impact of non-propositional states than
Amnestic update factors. However, there is another closely related factor
that, from a Bayesian perspective, is even better suited to belief updating.
Bayesians have long considered likelihood ratios as the factors that carry
the full, unadulterated import of evidence for hypotheses – and with good
reason.

First, notice that Normed-Likelihoods are somewhat tainted by the prior
belief strengths of basis sentences. You can easily see this in the case where
ε positively supports Ej . Then, Qβε[Ei] = NL[Qβ, ε,Ei] · Qβ[Ei] >
Qβ [Ei]. So, the prior probability of Ei , Qβ[Ei], which is not affected
by state e, must nevertheless constrain the value that ε may induce in
NL[Qβ, ε,Ei]. It can be no greater than 1/Qβ[Ei ], otherwise Qβε[Ei]
would be greater than 1. Thus, experiences ε are not free to produce what-
ever values they may (within some fixed range) for Normed-Likelihood
factors.19

To find an update factor that doesn’t fall under the influence of the prior
probabilities of basis sentences, let us again suppose, as a heuristic, that se-
quence ε is propositionally expressible. Consider a pair of alternative “hy-
potheses” E1 and E2 from ε’s basis. Bayes’ theorem for each hypothesis
Ej yieldsQβε[Ej ] = Qβ[Ej | ε] = (Qβ[ε | Ej ]/Qβ[ε]) ·Qβ[Ej ]. Divid-
ingQβε[E2] byQβε[E1] we getQβε[E2]/Qβε[E2] = (Qβ[ε | E2]/Qβ[ε |
E1])·(Qβ[E2]/Qβ[E1]). The likelihood ratio termQβ[ε | E2]/Qβ[ε | E1]
in this equation is completely unaffected by the prior probabilities of sen-
tences in {Ej }. It may take any non-negative value, with no regard for the
values of the prior probabilities. It updates the ratio of belief strengths for
E2 over E1 solely on the basis of what E2 says about how likely it is that
ε should occur as compared to what E1 says about the likelihood of ε.

This analysis suggests that Likelihood-Ratio update factors may pro-
vide a better representation of the immediate impact of evidence than do
Normed-Likelihood factors. A Likelihood-Ratio factor is a factor
LR[Qβ, ε,Ej ,Ek] that, when multiplied by a ratio of prior belief strengths
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for the basis {Ei} of state ε, generates the ratio of posterior belief strengths:
Qβε[Ej ]/Qβε[Ek] = LR[Qβ, ε,Ej ,Ek] · (Qβ[Ej ]/Qβ[Ek]).

Think about Likelihood-Ratio factors this way. A state projects relative
weightings onto pairs of its basis sentences that may be measured on a
scale employing the non-negative real numbers. Although states are free
to specify any non-negative values for Likelihood-Ratio factors, some in-
ternal consistency constraints among these factors must be obeyed. That
is, they need to satisfy rules that are typical for likelihood ratios. The
following rules suffice to govern their behavior. (Hint: To understand what
these rules say, just think of LR[Qβ, ε,Ei, En] as a likelihood ratio,Qβ[ε |
Ei]/Qβ[ε | En], as though ε were a sentence. However, the point of
spelling these rules out is to show that the rules governing Likelihood-
Ratio factors may be adequately expressed without treating ε as a sen-
tence.)

For any homogeneous state sequence ε on a basis {Ei}, and for any
belief function Qβ , there is an En such that for all Ei,Ej ,Ek :

(1) either LR[Qβ, ε,Ei, Ej ] ≥ 0 or undefined (i.e. has no value);
(2) LR[Qβ, ε,Ei, En] is defined;
(3) LR[Qβ, ε,Ei, En] = 0 iff LR[Qβ, ε,Ej ,Ei] is undefined;
(4) if LR[Qβ, ε,Ej ,Ei] > 0, LR[Qβ, ε,Ei, Ej ] = 1/LR[Qβ, ε,Ej ,Ei];
(5) if LR[Qβ, ε,Ek,Ej ] and LR[Qβ, ε,Ej ,Ei] are defined, then

LR[Qβ, ε,Ek,Ei] = LR[Qβ, ε,Ek,Ej ] · LR[Qβ, ε,Ej ,Ei];
(6) if ε is of form γ e and LR[Qβ, ε,Ej ,Ei] is defined, then

LR[Qβ, ε,Ej ,Ei] = LR[Qβγ , e,Ej ,Ei] · LR[Qβ, γ,Ej ,Ei].
Let us now take Likelihood-Ratio factors as primitive. From this per-

spective Normed-Likelihood factors are merely defined as ratios of belief
strengths: NL[Qβ, ε,Ej ] = (Qβε[Ej ]/Qβ [Ej ]). The way Likelihood-
Ratio factors update belief strengths for basis sentences (i.e. Qβε[Ej ]/
Qβε[Ek] = LR[Qβ, ε,Ej ,Ek] · Qβ[Ej ]/Qβ[Ek]), entails they equal ra-
tios of Normed-Likelihood factors: LR[Qβ, ε,Ej ,Ek] = NL[Qβ, ε,Ej ]/
NL[Qβ, ε,Ek] (when Qβε[Ek] > 0). So, taking Likelihood-Ratio factors
as primitive, the version of the Extended Rigidity Thesis that applies to
them is this:

EXTENDED RIGIDITY THESIS: LIKELIHOOD-RATIO FACTOR VER-
SION. For any sequence of states ε with common basis {Ei} and any
state d not affecting {Ei}, there’s a sentence Ek in {Ei} such that, for
eachQαdε-possible sentence Ej in {Ei}, LR[Qαd, ε,Ej ,Ek] is defined and
LR[Qαd, ε,Ej ,Ek] = LR[Qα, ε,Ej ,Ek].
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Let us say that a sequence of belief functions connected by successive
updates employs the Likelihood-Ratio Factor Update Model just in case
the sequence satisfies both the usual Jeffrey rigidity requirement and the
Likelihood-Ratio Factor Version of the Extended Rigidity Thesis. Likeli-
hood-Ratio factors that satisfy Extended Rigidity are roughly equivalent
to the factors proposed by Field (1978). So let’s call updating based on
such factors ‘Field Updating’, or sometimes ‘Likelihood-Ratio factor up-
dating’.20

The Likelihood-Ratio version of Extended Rigidity implies the follow-
ing form of the Extended Sequential Update Formula.

EXTENDED SEQUENTIAL UPDATE FORMULA: LIKELIHOOD-
RATIO FACTOR VERSION. Let δ be a sequence of states and, for be-
lief function Q, let α, . . . , γ be the evidence-basis-homogeneous subse-
quences of states from δ (where α, . . . , γ each maintain the same order
among their states as these states are ordered in δ, and jointly contain all
states in δ). Let {Ai} be the evidence basis affected by α, . . . , and let {Ci}
be the basis affected by γ . Then, for all sentences S,

Qδ [S] =
∑
i

∑
j . . .

∑
k Q[S ·Ak · · · · · Ci] · LR[Q,α,Ak,A] · · · · · LR[Q, γ,Ci, C]

∑
i

∑
j . . .

∑
k Q[Ak · · · · · Ci ] · LR[Q,α,Ak, A] · · · · · LR[Q, γ,Ci, C]

(sums over basis sentences such that Q[Ci], . . . ,Q[Ak] are non-zero).21

This is essentially equivalent to the update formula proposed by Field
(1978). Inspection of this formula shows that belief strengths generated
by the Likelihood-Ratio Model through Field Updating are independent of
update order – except, perhaps, within basis homogeneous subsequences of
states. The only way update order may have an effect is if some reordering
among states affecting a common basis makes a difference.22

If non-propositional states of an agent produce Likelihood-Ratio update
factors directly, then her previous belief function Q should be irrelevant to
these factors. Only her experiences should affect them. Notice, however,
that factors like LR[Q, γ,Ci, C] are expressed as functions of Q. What
gives? Think of it this way. An update factor of form LR[Qa...b, c, Ci, C]
should depend on Qa...b, not because this belief function itself has an
influence on it, but because Qa...b may have “encoded” in it other states
that also affect the basis {Ci} directly. If the sequence a . . . b contains no
such states and if the belief function Q is not itself the result of updating
on any previous states that affect {Ci} directly, then indeed Qa...b should
be irrelevant to the update factor, and we may represent this by writing
LR[Qa...b, c, Ci, C] = LR[c, Ci, C].
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More generally, if the belief function Q in the Likelihood-Ratio ver-
sion of the Extended Sequential Update Formula has not come about from
experiences that affect any of the bases {Ai}, . . . , {Ci}, then the relevant
update factors may take the form LR[α,Ak,A], . . . ,LR[γ,Ci, C]. Only
explicitly represented experiential states affect the update factors for Q.
Thus, under these conditions the Likelihood-Ratio version of the Extended
Sequential Update Formula becomes:

Qδ[S] =
∑
i . . .

∑
j Q[S · Aj · · · · · Ci] · LR[α,Aj ,A] · · · · · LR[γ,Ci, C]

∑
i . . .

∑
j Q[Aj · · · · · Ci] · LR[α,Aj , A] · · · · · LR[γ,Ci, C] .

The agent’s degree of belief in each sentence S depends only on her be-
lief function Q and update factors that depend only on the agent’s non-
propositional states.

Let’s see what Bayes’ Theorem looks like under the Likelihood-Ratio
Model of updating on uncertain evidence. When the sentence S is a hy-
pothesis Hk from some partition of alternative hypotheses {Hm}, the Ex-
tended Sequential Update Formula yields the following generalization of
Bayes’ Theorem:

Qδ [Hk] = Q[Hk] · ∑
i . . .

∑
j Q[Aj · · · · · Ci | Hk] · LR[α,Aj ,A] · · · · · LR[γ,Ci, C]

∑
m Q[Hm] · ∑

i . . .
∑
j Q[Aj · · · · · Ci | Hm] · LR[α,Aj ,A] · · · · · LR[γ,Ci, C] .

If in addition the evidence sentences within bases are conditionally in-
dependent given the hypotheses (which will usually be the case in appli-
cations such as Bayesian inference nets) this formula may be written as
follows:

Qδ[Hk]=
Q[Hk] · (∑j Q[Aj | Hk] · LR[α,Aj ,A]) · · · · · (∑i Q[Ci | Hk] · LR[γ, Ci, C])

∑
m Q[Hm] · (∑j Q[Aj | Hm] · LR[α,Aj , C]) · · · · · (∑i Q[Ci | Hm] · LR[γ, Ci ,C])

= Qε [Hk] · (∑i Q[Ci | Hk] · LR[γ, Ci, C])
∑
m Qε [Hm] · (∑i Q[Ci | Hm] · LR[γ, Ci, C]) ,

where ε here is the sequence of all states in δ except those in γ , andQε[Hk]
is the degree of belief in Hk updated on all states other than those in γ .

An example of belief updating on Likelihood-Ratio factors may be in-
structive. Let’s reconsider the cancer diagnosis example in Section 5. Let’s
keep the physician’s belief function prior to the lab reports exactly the same
as before, but change how evidence regarding the sputum sample and the
chest x-ray is reported from the lab. (In this example the partitions are sim-
pler than usual – they are {F,∼F } and {E,∼E}, i.e. {cancer-like cells are
present, no cancer-like cells are present} and {a lung mass image is present
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on the x-ray, no lung mass image is present on the x-ray}. More generally,
evidence partitions may include a number of possible alternatives – e.g.,
that lung mass images of various types or densities are detected.)

A lab technician examines the sputum sample microscopically and finds
no cells that he is certain are malignant. But he sees some suspicious-
looking cells. His degree of confidence that no cancer-like cells are present
may well turn out to be .90, just as before. However, this probability may
partially result from his prior belief strength about whether cancer-like
cells will be contained in the sample – based, perhaps, on how frequently
he finds samples to have such cells. So, what the physician wants from
the technician is his Likelihood-Ratio update factor, e.g., LR[f, F,∼F ] =
.50, rather than his updated degree of belief. This factor represents how
well the microscopic appearance of this sample fits with the proposition F
(that cancer-like cells are present) as compared to how well its appearance
fits with the proposition ∼F (that no cancer-like cells are present). In a
Bayesian context it is this factor that carries the pure evidential import
of the lab technician’s observations. The technician’s report of a factor
LR[f, F,∼F ] = .50 says in effect that he takes his experience f to be
twice as likely to have occurred if “no cancer-like cells are present” than
if “cancer-like cells are present.” The physician utilizes the technician’s
expertise by adopting the technician’s update factor, LR[f, F,∼F ] = .50,
as her own. This provides her an updated belief strength that the patient
has lung cancer: Qf [C] = .35.

Regarding the chest x-ray, the radiologist sees a shadow that she is fairly
confident was produced by a small mass. She takes the appearance of the
x-ray film to be twice as likely to have occurred if a mass was present
in the lung than if no mass was present; so the evidential value of her
experiential state is a Likelihood-Ratio update factor LR[e,E,∼E] = 2.
Upon receiving that report the physician adopts the radiologists update
factor as her own and comes to a new updated degree of belief that the
patient has lung cancer: Qfe[C] = .50.

This example was constructed to make the two update factors counter-
act each other. Notice, however, that whatever values the update factors
and the resulting belief function may have, update order will produce net
no effect: Qfe[C] = Qef [C].23

8. ON THE ORDER-INDEPENDENCE OF SEQUENTIAL UPDATES

Both the Likelihood-Ratio and Normed-Likelihood versions of the Ex-
tended Sequential Update formula show their versions of Extended Jeffrey
Updating to be independent of order across bases. As a result, if each
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experience affects a distinct basis, then such updating will be completely
independent of order. This stands in sharp contrast to Amnestic Updating
of Probabilistic Update Factors, which is order dependent both within and
across bases.24

Let’s focus on Field Updating – i.e. Likelihood-Ratio factor updating.
What I will say about it largely applies to Normed-Likelihood updating as
well. Given our analysis so far, it remains possible for Likelihood-Ratio
Updating to depend on order within each basis. Indeed, one could further
extend the Likelihood-Ratio Update Model by requiring that the most re-
cent state overwrites all previous states that share its basis. In that case
each term of form LR[Q, γ,Ci, C] in the likelihood ratio version of the
Extended Sequential Update Formula will equal a factor LR[Q, c,Ci, C],
where c is the last state in the sequence γ affecting basis {Ci}. Let us call
this the Basis-Overwrite Version of the Likelihood-Ratio Update Model.
On this model, given its most recent update, each basis has an order-
independent effect on the updates of all other sentences. That is, if two
distinct bases are each updated by states that overwrite their likelihood ra-
tio update factors, the order in which these two updates occur can make no
net difference to the belief strengths of any sentence in the belief network.

The Overwrite Version is just one way to further extend the Likeli-
hood-Ratio Update Model. There is an alternative extension that maintains
order-independence even within bases (as well as across bases). To see
how it works, first notice that, as stated, the Extended Rigidity Thesis
imposes no requirements on how update order works within bases. But
it is perfectly compatible with commutivity holding there. For, the Ex-
tended Rigidity Thesis is compatible with treating states as though they
were evidence sentences that update belief strengths of their basis sen-
tences via likelihood ratios in Bayes’ theorem. And Bayesian updating
on sentences is always independent of order. Thus, it is both internally
consistent and quite natural to extend the Likelihood-Ratio Update Model
by simply stipulating that updating within bases is to be order-independent.
That is, we may extend Likelihood-Ratio Updating by adding the require-
ment that for any basis homogeneous sequence γ , if β is any reordering
of γ , then LR[Q,β,Ci, C] = LR[Q, γ,Ci, C]. Let us call this the Basis-
Commuting Version of the Likelihood-Ratio Update Model. Sequential up-
dating is completely order-independent on this model.

Notice that requiring commutivity among states that share a basis does
not amount to extending the Extended Rigidity Thesis to apply within
bases. That is, when states d and e affect the same basis and commu-
tivity holds (i.e. when Qαde[Ej ] = Qαed[Ej ]), the Extended Rigidity
relationships of form LR[Qαd, e,Ej ,Ek] = LR[Qα, e,Ej ,Ek] between
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update factors may, nevertheless, fail to hold. And, indeed, we should want
Extended Rigidity to fail within bases in at least some cases (while com-
mutivity is maintained). To see why, let us again employ the heuristic of
treating states as sentences. Suppose that state e and sequence ε share ba-
sis {Ei}. And suppose that e and ε are adequately expressible as sentences.
Then we would have LR[Qαε, e,Ej ,Ek] = Qαε[e | Ej ]/Qαε[e | Ek] =
Qα[e | Ej · ε]/Qα[e | Ek · ε]. This would result in a version of Extended
Rigidity within the basis if each basis sentence Ei screens off state e form
past states ε on their common basis (i.e. Qα[e | Ei · ε] = Qα[e | Ei]). In
that case we would have the following form of Extended Rigidity within a
basis: LR[Qαε, e,Ej ,Ek] = LR[Qα, e,Ej ,Ek].25 And that would entail
that the Likelihood-Ratio factors for a sequence of states cd . . . e on a com-
mon basis decompose as follows: LR[Qα, cd . . . e, Ej ,Ek] = LR[Qα, c,
Ej ,Ek] · LR[Qα, d,Ej ,Ek] · · · · · LR[Qα, e,Ej ,Ek]. But, I’m claiming,
we shouldn’t in general want this decomposition to hold. For, when e and
ε share a basis, the equality of form Qα[e | Ej · ε]/Qα[e | Ek · ε] =
Qα[e | Ej ]/Qα[e | Ek] should often fail to hold – because, when e and
ε share the same basis, the states in ε may imply something about the
nature of the state e that is not captured sufficiently by basis sentences Ei
to permit them to screen off e from past states ε. (I’ll illustrate this with
an example in a moment.) Thus, the intuitive motivation behind Extended
Rigidity fails within bases. But commutivity may well continue to hold,
since LR[Qα, εe,Ej ,Ek] = Qα[ε · e | Ej ]/Qα[ε · e | Ek] = Qα[e · ε |
Ej ]/Qα[e · ε | Ek] = LR[Qα, eε,Ej ,Ek].

An example may help. Suppose that the sequence of experiences
cd . . . e results from a series of n repeated glances at the same perceptu-
ally foggy situation. And suppose that each glance is perceptually similar
enough to produce a nearly identical propositionally inexpressible state
in the agent. Then the evidential import of each state taken on its own
should be the same – i.e. LR[Qα, c,Ej ,Ek] = LR[Qα, d,Ej ,Ek] =
· · · = LR[Qα, e,Ej ,Ek]. If Extended Rigidity were to hold in this case,
then the Extended Sequential Update Formula would yield Qαcd...e[S] =
(
∑
j Qα[S ·Ej ] ·LR[Qα, e,Ej ,Ek]n)/(∑j Qα[Ej ] ·LR[Qα, e,Ej ,Ek]n).

It can be shown that for whichever sentence Ej yields the largest update
factor LR[Qα, e,Ej ,Ek], the right-hand side of this equation must ap-
proach the value of Q[S | Ej ] as the number of glances n increases. In
particular this means that when S is the basis sentence Ej itself, a large
number of glances will result inQαcd...e[Ej ] ≈ Q[Ej | Ej ] = 1. The prob-
lem is, repeated glances at the same perceptually foggy situation should
furnish too little new information to force near certainty on one of the basis
sentences. Rather, after a few very similar glances, additional glances with
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the same foggy appearance should furnish practically no additional evi-
dence, and should clearly not push one of the basis sentences to certainty.

This is exactly the kind of situation described in Garber’s (1980) counter-
example to Field Updating. Field’s (1978) update formula is essentially
equivalent to Likelihood-Ratio version of the Extended Sequential Update
Formula. But Field’s version of Likelihood-Ratio Updating would in effect
have Extended Rigidity apply to all states, even those that affect the same
basis. As a result it runs afoul of the kind of problematic example just
described.

To avoid the counter-example we need only acknowledge that Extended
Rigidity may fail to apply within bases. But, as I’ve already pointed out,
the failure of Extended Rigidity within bases does not entail that commu-
tivity must fail within bases as well. Indeed, the further extension of the
Likelihood-Ratio Model to the Basis-Commuting Version, which requires
commutivity to hold within bases, is quite natural, since on the Likeli-
hood Ratio Model all updates flow from factors that behave like likelihood
ratios, and commutivity naturally attends likelihood ratios.

So my response to Garber’s example is that when repeated glances
result in experiential states that affect the same basis, they may not be
independent enough of one another (given each Ej ) to get the analog of
Extended Rigidity to hold. But this does not mean that the updates must
depend on order. It only means that the value of an update factor for a
sequence of basis-homogeneous states may not always decompose into the
product of update factors for the individual states. Rather, the update factor
decomposes as follows: LR[Qα, cd . . . e, Ej ,Ek] = LR[Qα, c,Ej ,Ek] ·
LR[Qαc, d,Ej ,Ek] · · · · ·LR[Qαcd..., e, Ej , Ek]. So, if no substantial new
information results from glances after c, that is only because the terms
LR[Qαc, d,Ej ,Ek], . . . ,LR[Qαcd..., e, Ej , Ek] all equal (or nearly equal)
1, and the update factor for the whole sequence of glances is just equal to
(or nearly equal to) the update factor for the first glance – LR[Qα, cd . . . e,
Ej ,Ek] = LR[Qα, c,Ej ,Ek].

Now suppose that the states resulting from glances had occurred in a
different order. For example, suppose that the glance that resulted in state
d had preceded the glance resulting in c, and that the glances still individu-
ally yield the same information – LR[Qα, c,Ej ,Ek]= LR[Qα, d,Ej ,Ek].
Then we would instead have all factors after d equal to 1 (i.e. LR[Qαd, c,
Ej ,Ek] = · · · = LR[Qαdc..., e, Ej , Ek] = 1) and the cumulative up-
date factor for the whole sequence of glances would equal the update
factor on d alone, which has the same value as an update on c alone
– LR[Qα, dc . . . e, Ej ,Ek] = LR[Qα, d,Ej ,Ek] = LR[Qα, c,Ej ,Ek].
Thus, on the Likelihood-Ratio Update Model commutivity may well hold
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within bases (though extended rigidity fails), and Garber’s problem dis-
solves.

9. A NECESSARY AND SUFFICIENT CONDITION

ORDER-INDEPENDENT UPDATING

Let us now put aside the Extended Rigidity Theses and the Amnestic Up-
date Thesis, and let us address the following broader issue: under what
conditions is Basic Sequential Updating independent of the order of the
states involved? Extended Rigidity implies order independence among ba-
sis homogeneous subsequences. But the discussion in the previous section
indicates that it may be possible to have order-independence without Ex-
tended Rigidity. Thus, the Extended Rigidity Thesis, though sufficient,
may be stronger than absolutely necessary to achieve order-independence.
This suggests that it will be worthwhile to find a necessary and sufficient
condition for order-independence expressed in terms of the update factors
on which Extended Rigidity operates. Such a condition may shed addi-
tional light on the connection between the Extended Rigidity Theses and
the influence of update order on belief strengths.

When either version of the Extended Rigidity Thesis holds, any re-
ordering of states that preserves the order among basis-sharing states is
guaranteed to produce the same belief strengths. But neither version im-
plies anything special about the effects of reorderings among states that
share bases. It would be nice to have a Reordering Theorem (specifying
necessary and sufficient conditions) that is both general enough to apply
to all states, regardless of whether they share bases, and is related closely
enough to Extended Rigidity to provide a good comparison when basis-
sharing states maintain their order. It turns out that pretty much the same
Reordering Theorem holds regardless of whether we design it to also apply
to basis-sharing states. So I’ll phrase the result in a way that is easily ap-
plied to both kinds of cases – to reorderings of all states, and to reorderings
that maintain the order among basis-sharing states.

The following definitions will provide a somewhat more compact means
of expressing the Reordering Theorem:

DEFINITIONS: SUITABLE SEQUENCES AND SUITABLE REOR-
DERINGS. Let’s call a sequence of states dε within a possibly larger
sequence of form αdεβ (α and β possibly empty) suitable (for commu-
tation) (relative to Q) just in case ε is a basis-homogeneous sequence of
states with a basis distinct from d’s basis. A sequence of states δ will be
called a suitable reordering of a sequence γ (relative to Q) just in case it
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maintains γ ’s order among states that share bases – i.e. if states e and g
share a basis, and e occurs somewhere before g in γ , then e also occurs
somewhere before g in δ.26

The necessary and sufficient condition for reordering states given in the
coming theorem is a minimal condition. It applies to all sequences of
Basic Jeffrey Updates. It only assumes that each probability function in
the sequence of updates satisfies the standard axioms of probability the-
ory, and that updates are related by the usual basic rigidity condition.
The necessary and sufficient condition it specifies is closely related to
the Normed-Likelihood Version of the Extended Rigidity Thesis, but is
somewhat weaker. Here is the theorem:

THE UPDATE REORDERING THEOREM. The following two claims
are equivalent:

(1) For each state sequence γ , every suitable reordering of it δ agrees
with it (relative to Q) – i.e. for all sentences S,Qδ[S] = Qγ [S].

(2) For every state sequence αdε with suitable part dε (relative toQ), for
each Qαdε-possible Di in d’s basis, there is an r = NL[Qαε, d,Di]/
NL[Qα, d,Di] > 0 such that for eachEj in ε’s basisQαdε-compatible
with Di , NL[Qαd, ε,Ej ] = r · NL[Qα, ε,Ej ].

Furthermore, if the restriction to reorderings and sequences αdε that are
suitable is removed from both clauses, the resulting claims, which apply to
all reorderings, are still equivalent.

Recall that saying Di is “Qαdε-possible” just means that Qαdε[Di] > 0;
similarly, and saying that Ej is “Qαdε-compatible withDi” just means that
Qαdε[Di · Ej ] > 0. Proof of the theorem is in the Appendix.27

What does the Reordering Theorem tell us about the conditions under
which states may be reordered without altering belief strengths? Think of
it this way. For each of d’s Qαdε-possible basis sentences Di , define its
Qαdε-compatibility class 〈Di〉αdε, to be the set of all sentences from ε’s
basis {Ei} that areQαdε-compatible with it. Then, in terms of compatibility
classes, the theorem says that ε commutes with d just in case for each
Qαdε-compatibility class, there is a value of r, which may be specific to
that compatibility class (where 0 < r = NL[Qαε, d,Di]/NL[Qα, d,Di]),
such that every Ej in that compatibility class satisfies the relationship
NL[Qαd, ε,Ei] = r · NL[Qα, ε,Ej ]. This falls only a little short of the
Extended Rigidity Thesis for Normed-Likelihood factors. To get Extended
Rigidity all that’s needed is for every r associated with the various Qαdε-
compatibility classes (for the various possible Di) to have the same value.
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One way to get to Extended Rigidity from the necessary and sufficient
condition expressed by clause (2) of the theorem is this. Suppose there is at
least oneDi whoseQαdε-compatibility class 〈Di〉αdε contains everyQαdε-
possible basis sentence in {Ei}. Then every Qαdε-possible basis sentence
Ej in {Ei} must satisfy the formulas NL[Qαd, ε,Ej ] = r · NL[Qα, ε,Ej ]
for the same value of r. If that happens, then Extended Rigidity clearly
holds.

An alternative way to get Extended Rigidity from clause (2) is this.
Suppose no such all-inclusiveQαdε-compatibility class exists. But suppose
that any pair of distinct Qαdε-compatibility classes has at least one Ej in
common – i.e. each pair of compatibility classes overlap. Then, again, all
sentences Ej in the basis {Ei} that are Qαdε-possible satisfy the formulas
NL[Qαd, ε,Ej ] = r · NL[Qα, ε,Ej ] for the same value of r; so Extended
Rigidity holds.

Now, suppose not every pair of Qαdεβ-compatibility classes overlap.
But suppose any two Qαdεβ-compatibility classes that fail to overlap are
both overlapped (i.e. chained together) by a thirdQαdεβ-compatibility class.
Then again, all must have the same value for r, and Extended Rigidity
holds.

Most generally, suppose that every pair of Qαdεβ-compatibility classes
is linked together through a chain of overlappingQαdεβ-compatibility clas-
ses. Then, again, all Qαdε-possible sentences Ej in the basis {Ei} satisfy
the formulas NL[Qαd, ε,Ej ] = r · NL[Qα, ε,Ej ] for the same value of r;
so Extended Rigidity holds.

Finally, even if there are pairs of Qαdεβ-compatibility classes that fail
to be linked through a common chain, Extended Rigidity will still hold
provided that such classes (and whatever smaller, isolated chains they may
be linked with) happen to all share the same value for r.

And even when Extended Rigidity fails, update order will still make no
difference to belief strengths when (and only when) each Qαdεβ-compa-
tibility class has its own value for r that relates each Ej belonging to it
by the equation NL[Qαd, ε,Ej ] = r · NL[Qα, ε,Ej ], provided that the
constraint r = NL[Qαε, d,Di]/NL[Qα, d,Di] is satisfied. Indeed, since
this is a necessary (and sufficient) condition for belief-strength-equivalent
reorderings, Extended Rigidity itself must entail this condition for its r.

Finally, let’s consider the case where d has the same evidence basis,
{Ei}, as ε. This can’t happen when dε is suitable. So now we’ll see the
difference between the condition under which all states may be reordered
and the condition for reorderings that preserve order among basis-sharing
states. When d has ε’s basis, what does the condition in clause (2) of the
theorem (with the suitability condition dropped) say about αdε? Notice
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that ε’s basis sentence Ej can be Qαdε-compatible with d’s basis sentence
Ei (from the same basis) just in case Ej and Ei are the same sentence,
since that’s the only way to have Qαdε[Ei · Ej ] > 0. Also notice that each
Normed-Likelihood factor in clause (2) just represents a ratio of belief
functions – e.g.,Qαdε[Ei]/Qαd[Ei ] = NL[Qαd, ε,Ei], etc. Plugging these
equivalences into clause (2), we find that all it says in the case where d and
ε share a basis is this: “for each Ei in d and ε’s basis, if 0 < Qαdε[Ei],
then Qαdε[Ei] = Qαεd[Ei].” That is, clause (2) merely says that ε and d
commute on their own shared Qαdε-possible basis sentences.

Thus, the necessary and sufficient condition for the belief-strength-
preserving reordering of all states is identical to the condition that applies
when order is maintained among basis-sharing states, supplemented by the
condition that pairs of basis-sharing states commute on their own basis sen-
tences. This is precisely the supplement to Extended Rigidity I suggested
in the previous section, which yields the Basis Commuting-Version of the
Likelihood Ratio Model. I argued there that although Extended Rigidity
should not apply to basis sharing states, it is quite plausible that these states
should commute on their own basis sentences. And Extended Rigidity to-
gether with this supplement guarantees that belief strengths are completely
independent of the order in which updates are acquired.

10. CONCLUSION

Basic Jeffrey Updating is a natural extension of Bayesian updating to cases
where the evidence is uncertain. Its only restriction on how sequences
of uncertain updates evolve is that each new update must do its work
through the mediation of an evidence basis. The standard rigidity require-
ment is the only constraint on how that mediation works. Its implications
are completely captured by the Basic Sequential Update Formula. How-
ever, several interesting ways to extend the Basic Model to sequences of
updates suggest themselves. Each is motivated by a different conception
of how propositionally inexpressible states may influence belief strengths
for the sentences of their evidence bases.

Standard Sequential Updating – Jeffrey’s original extension of Basic
Updating to sequences of states – derives from rigidity together with the
Amnestic Update Thesis. To many investigators this has seemed the most
natural approach. Its primary motivation is the idea that a new state should
impose itself completely on the belief strengths of its basis sentences, en-
tirely overwhelming any previous belief strengths they may have acquired.
The effect of updating is then passed to other sentences by combining the
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new basis probabilities with previous belief strengths through the Basic
Sequential Update Formula. As a result of the direct way in which belief
strengths for basis sentences are updated, the belief strengths of all sen-
tences tend to be highly dependent on the order in which each new state is
acquired.

Field Updating is an alternative, more Bayesian-like extension of Basic
Jeffrey Updating to sequences of states. It derives from rigidity together
with the Likelihood-Ratio Update Thesis. On this model Likelihood-Ratio
update factors play a role similar to that of likelihood ratios in standard
Bayesian updating. These update factors do not depend on previous be-
lief strengths or on previous states that directly affect other bases. The
Extended Rigidity Thesis is an expression of this autonomy of a state’s
Likelihood-Ratio factors from other states on other bases. The resulting
Extended Update Formula shows precisely how updating reduces to the
combination of Likelihood-Ratio factors for new states with prior belief
strengths. And these Likelihood-Ratio Updates exhibit the independence
of update order that one might expect of Bayesian updating.

More generally, picture the idea behind Jeffrey Updating this way. The
sentences of a basis function rather like a set orthogonal coordinates against
which a non-propositional state is measured. The state projects its shadow
some distance along each coordinate. An update factor represents the rel-
ative length of that shadow along each coordinate. The basis of a state
is its basis because it is the best set of coordinates available to the agent
for imaging that state – for capturing all of the information it contains
that is relevant to propositionally expressible ways the world might be.
Finally, this image of the new state is integrated into a belief function, on
an equal footing with the images projected by other states on other bases,
to generate new plausibility weightings for all statements. The Sequential
Update Formula shows how this integration works.

Likelihood-Ratio factors are well suited to the role of update factors
because they employ a scale for measuring the length of a state’s shadow
along its coordinate bases that does not fall under the influence of the
measures of other states on other bases. Amnestic Update Factors share
this scale independence, but give a kind of priority to the measure of the
most recent state that overpowers the measures of all past states.

Which extension of Basic Jeffrey Updating is the more plausible model
of human agents? I’m a logician, not a psychologist. But Amnestic Up-
dating seems psychologically less plausible than the more Bayesian ap-
proaches, not because it is un-Bayesian, but because it seems unlikely
that we dismiss previous experiences so completely. However, I am mainly
interested in whether these models capture useful normative conceptions
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of belief updating, and whether they might find useful employment in
automated reasoning systems.

On the normative side, we want to know whether these models have
interesting and useful logical properties, such as a tendency to convergence
on true hypotheses, or the ability to single out “best” hypotheses for some
interesting conception of best. Of particular interest is how each model
might link up with standard Bayesian themes such as dutch-book and con-
vergence results. Such questions need to be addressed, but I cannot pursue
them here.

Among the models we have investigated, we’ve found two varieties of
Likelihood-Ratio Updating that may provide the most useful normative
guides to good reasoning. They are the Basis-Overwrite Version and the
Basis-Commuting Version of the Likelihood-Ratio Update Model. Each is
a variety of Field Updating. And either may be appropriate ways to update
belief in the right context.

Likelihood-Ratio Models are close kin to Normed-Likelihood Models,
but appear to be superior to them. For, Likelihood-Ratio factors have all of
the advantages of Normed-Likelihood factors, but avoid the defect of the
latter’s sensitivity to the prior probabilities of basis sentences.

The Likelihood-Ratio Models should provide very useful approaches
to incorporating uncertain evidence into automated Bayesian inference
networks. Indeed, for that purpose they seem clearly superior to Stan-
dard Sequential Updating, with its amnestic attitude. For, the Amnestic
Model depends way too much on update order, due to way it utilizes new
information to blot-out the influence of previous states.28

APPENDIX: PROOF OF THE UPDATE REORDERING THEOREM

THE UPDATE REORDERING THEOREM. The following two claims are equivalent:

(1) For each state sequence γ , every suitable reordering of it δ agrees with it (relative
toQ) – i.e. for all sentences S, Qδ[S] = Qγ [S].

(2) For every state sequence αdε with suitable part dε (relative to Q), for each Qαdε-
possible Di in d’s basis, there is an r = NL[Qαε, d,Di ]/NL[Qα, d,Di ] > 0
such that for each Ej in ε’s basis Qαdε-compatible with Di , NL[Qαd, ε,Ej ] =
r · NL[Qα, ε,Ej ].

Furthermore, if the restriction to reorderings and sequences αdε that are suitable is re-
moved from both clauses, the resulting claims, which apply to all reorderings, are still
equivalent.

It will be convenient to break this theorem up into two distinct equivalences. The first is
this:
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THE COMMUTATION REDUCTION THEOREM. The following two claims are equiv-
alent:

(1) For each sequence of states γ , every suitable reordering of it δ agrees with it (relative
toQ).

(2) For each sequence of states αdεβ (α and β possibly empty), every suitable dε com-
mutes ( forQ) – i.e. for all sentence S, Qαdεβ[S] = Qαεdβ [S].

Furthermore, if the restriction to reorderings and to sequences αdε that are suitable is
removed, the resulting claims, which applies to all reorderings, are still equivalent.

Proof. This theorem is obvious (and not really needed) when the restriction to suit-
able sequences and reorderings is lifted. So we’ll focus exclusively on the case where the
suitability restriction is in place.

Notice that clause (2) comes from clause (1) directly, since going from αdεβ to αεdβ
does not change the order of states that share a basis. So let’s see how to get clause (1)
from clause (2).

To get clause (1) from clause (2), consider the following process. Start with γ . It must
be of the form αdε, where ε is either a single state or a basis-homogeneous block of states
and d is a state with a different basis (unless γ is a basis-homogeneous block of states
itself, in which case we’re done). Reorder, as clause (2) permits, to get αεd . Now keep
pushing ε in through α (across other states like d) until it runs up against some state e
that shares its basis. When that happens we have transformed γ into a sequence of form
σeεβ. Now treat eε as a basis-homogeneous block, and continue to push it on through σ ,
as clause (2) permits. (If eε runs against a state g with the same basis, perhaps even as the
very next state in σ , just let geε be the basis-homogeneous block, and continue). We end
up with a transformation of γ into a new sequence with a basis-homogeneous block on the
left (having ε’s basis), with all states in the same order as they occurred in γ ; and there are
no states with ε’s basis anywhere else in the new sequence. Now, begin the same process
again using whatever state is at the right end of this new sequence (it should be d), and push
it in through the new sequence, accumulating into basis-homogeneous blocks as it runs up
against other states that share its basis. When done, we have a sequence consisting of an
initial left block of states that share d’s basis, a block to its immediate right that shares
ε’s basis, and perhaps a remaining heterogeneous sequence going to the right. Begin the
process again with the state at the right end. Reiterate the process until all that remains is
a sequence of basis-homogeneous blocks, each on a distinct basis. Call this sequence γ ∗.
Clause (2) implies that Qγ ∗ [S] = Qγ [S].

Now consider any δ that reorders γ but maintains the same order among states that
share a basis. Apply the same process to δ, yielding δ∗, which consists of a sequence of
basis-homogeneous blocks, each with a distinct basis. Clause (2) implies that Qδ∗ [S] =
Qδ [S]. δ∗ must consist of exactly the same basis-homogeneous blocks as γ ∗; but perhaps
these blocks occur in a different order. However, notice that clause (2) permits any homo-
geneous block in δ∗ to be moved from right to left through the states of an adjacent block,
one state at a time. So δ∗ can be reordered into γ ∗: e.g., reorder δ∗ by first finding in it the
block that γ ∗ has at its right end; move that block all the way to the left end of δ∗; call the
result ‘δ∗∗’; then move the block that γ ∗ has second from its right end all the way to left
end of δ∗∗; call the result ‘δ∗∗∗’; continuing this process eventually transforms δ∗ into γ ∗.
Thus, Qδ[S] = Qδ∗ [S] = Qγ ∗ [S] = Qγ [S], which establishes the theorem. ✷
Here is the second equivalence, which taken together with the theorem just proved yields
the Reordering Theorem.
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THE COMMUTATION THEOREM. The following claims are equivalent:

(1) For each sequence of states αdεβ (α and β possibly empty), every suitable dε com-
mutes ( forQ) – i.e.Qαdεβ[S] = Qαεdβ [S] for all sentences S.

(2) For every sequence αdε with suitable dε (relative to Q) and for each Qαdε-possible
Di in d’s basis, there is an r = NL[Qαε, d,Di ]/NL[Qα, d,Di ] > 0 such that
for each Ej in ε’s basis that’s Qαdε-compatible with Di , NL[Qαd, ε,Ej ] = r ·
NL[Qα, ε,Ej ].

Furthermore, if the restriction to reorderings and to sequences αdε that are suitable is
removed, the resulting claims, which applies to all reorderings, are still equivalent.

Proof. I’ll carry out this proof in terms of suitable sequences and reorderings. But
notice that the proof goes through in the same way without the restriction. The proof of
this theorem will be facilitated by first establishing two lemmas.

BASES DECOMPOSITION LEMMA. Let Bi, . . . , Gm,Hn be basis sentences for states
b, . . . , g, h respectively. Both of the following claims hold:

(1) Qαb...gh[Bi · · · · ·Hn] = Qα[Bi · · · · ·Hn]·(Qαb[Bi ]/Qα[Bi ])· · · · ·(Qαb...gh[Hn]/
Qαb...g[Hn]) = Qα[Bi · · · · ·Hn] ·NL[Qα, b, Bi ] · · · · ·NL[Qαb...g, h,Hn], if none
ofQα[Bi ], . . . ,Qαb...g[Hn] equal 0; otherwiseQαb...gh[Bi · · · · ·Hn] = 0.

(2) For all sentences S, Qαb...gh[S] = ∑
i . . .

∑
n Qα[S | Bi · · · · ·Hn] ·Qαb...gh[Bi ·

· · · ·Hn].
Clause (1) of the lemma comes from first observing that when any of Qα[Bi ], . . . ,
Qαb...g[Hn] are 0, it must be the case that Qαb...gh[Bi · · · · · Hn] = 0 as well (see
note 4); then observe that when none of these are 0, the Basic Sequential Update Formula,
applied to state sequence αb . . . gh and with ‘Bi · · · · · Hn’ plugged in for ‘S’, yields
the formula in clause (1). Clause (2) follows from the Basic Sequential Update Formula
together with clause (1). ✷
Clause (2) of the lemma shows that the only way in which reordering the sequence of
non-propositional states can change the degree of belief in a sentences is by changing the
degree of belief in a conjunction of the basis sentences affected by the states involved. That
is, the formula in clause (2) implies the:

BASES REDUCTION LEMMA. Let αγ be any sequence of states and let δ be any
reordering of γ . Then, for all sentences S, Qαγ [S] = Qαδ[S] just in case for each
conjunction Bi · · · · ·Gm ·Hn containing exactly one sentence drawn from each basis for
the states in δ, Qαγ [Bi · · · · ·Gm ·Hn] = Qαδ[Bi · · · · ·Gm ·Hn].

For, clearly, if Qαγ [S] = Qαδ[S] for all sentences S, then Qαγ [Bi · · · · · Gm · Hn] =
Qαδ[Bi · · · · ·Gm ·Hn] holds for each conjunction of basis sentences Bi · · · · ·Gm ·Hn.
Conversely, ifQαγ [Bi · · · · ·Gm ·Hn] = Qαδ[Bi · · · · ·Gm ·Hn] holds for each conjunction
of the basis sentences Bi · · · · ·Gm ·Hn, then clause (2) of the Bases Decomposition Lemma
implies that Qαγ [S] = Qαδ[S] for all sentences S.

Now we are ready to prove the Commutation Theorem. We first prove the “only if”
direction, from (1) to (2) – then the “if” direction. (Notice that the proof still works if all
occurrences of the term ‘suitable’ are dropped.)
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“Only if” direction: Suppose clause (1) of the theorem. And suppose dε is some partic-
ular suitable sequence (for Qα). Let Di be a Qαdε-possible basis sentence of d’s. Let Ej
be any basis sentence for ε that is Qαdε-compatible with Di (i.e. such that Qαdε[Di ·
Ej ]> 0). Then (since we are supposing clause (1) of the theorem – that commutivity
holds for all suitable dε) we have from clause (1) of the Bases Decomposition Lemma:
0 < Qα[Di ·Ej ] ·NL[Qα, d,Di ] ·NL[Qαd, e,Ej ] = Qαdε[Di ·Ej ] = Qαεd [Di ·Ej ] =
Qα[Di · Ej ] · NL[Qα, ε,Ej ] · NL[Qαε, d,Di ]. So NL[Qα, d,Di ] · NL[Qαd, e, Ej ] =
NL[Qα, ε,Ej ] · NL[Qαε, d,Di ] (becauseQαdε[Di ·Ej ] > 0 impliesQα[Di ·Ej ] > 0).
Thus, for any Qαdε-possible basis sentence Di of d’s, NL[Qαε, d,Di ]/NL[Qα, d,Di ]
> 0, and for each Ej in ε’s basis that’s Qαdε-compatible with Di , NL[Qαd, e,Ej ] =
(NL[Qαε, d,Di ]/NL[Qα, d,Di ])·NL[Qα, ε,Ej ]. This completes the “only if” direction.

“If” direction: Suppose clause (2) of the theorem. Consider a particular sequence αdε
withsuitable dε (for Q). Let Di and Ej be particular basis sentences from d’s and ε’s
bases, respectively. Then either Di and Ej are not Qαdε-compatible, or they are. We’ll
show that in either case, Qαdε[Di · Ej ] = Qαεd [Di · Ej ]; so this equality holds for all
basis sentencesDi andEj from d’s and ε’s bases. It then follows thatQαdε[S] = Qαεd [S]
for all sentences S (by the Bases Reduction Lemma), and the Theorem is almost proved.
(To complete it we just need to show that adding any additional sequence of states β that
contains no states with ε’s basis will still giveQαdεβ[S] = Qαεdβ [S] for all sentences S.)
So let’s address each case.

(Case 1): Suppose Di and Ej are not Qαdε-compatible – i.e. Qαdε[Di · Ej ] = 0.
I’ll show that Qαεd should equal 0 as well. But to show this we need help from a very
plausible principle. Let x be a state with basis sentence Xk . Note 4 expresses the principle
that ifQαy [Xk] = 0, thenQαyx[Xk] = 0 as well – updating a basis sentence on one of its
states should not turn its probabilistic impossibility into a probabilistic possibility. It is also
reasonable to add this principle: if Qαxy [Xk] = 0 iff Qαyx[Xk] = 0 – merely switching
the order of the updates involving a state and one of its basis sentence should not change
its 0 probability into a positive probability. (One might investigate some kind of updating
logic that permits such updates; but update order will obviously be non-commutative for
such a logic). So, let’s assume this plausible principle.

One more thing: Notice that if Qβy [Xk] > 0 and Xk is not from y’s basis {Yi}, then
Qβ [Xk] > 0 (since 0 < Qβy[Xk] = ∑

{i:Qβ [Xi ]>0}Qβ [Xk · Yi ] · (Qβy[Yi ]/Qβ [Yi ]), so
for some Yi , 0 < Qβ [Xk ·Yi ] ≤ Qβ [Xk]. And a similar result shows thatQα [Di ·Ej ] > 0
when Qαεd [Di · Ej ] > 0 – i.e., 0 < Qαεd [Di · Ej ] = ∑

{j :Qαε [Ej ]>0}
∑

{i:Qαεd [Di ]>0}
Qα[Di · Ej ] · (Qαε[Ej ]/Qα[Ej ]) · (Qαεd [Di ]/Qαε[Di ]); soQα[Di · Ej ] > 0.

So, to address Case 1: Suppose Di and Ej are not Qαdε-compatible – i.e. Qαdε[Di ·
Ej ] = 0. ThenQαεd [Di ·Ej ] should equal 0 as well. For, suppose otherwise – i.e. suppose
thatQαεd [Di ·Ej ] > 0. ThenQαεd [Ej ] ≥ Qαεd [Di ·Ej ] > 0; soQαdε[Ej ] > 0 and (so)
Qαε[Di ] > 0; thus (Qαdε[Ej ]/Qαε[Di ]) > 0. Also,Qαεd [Di ] ≥ Qαεd [Di ·Ej ] > 0; so
Qαdε[Di ] > 0 and (so) Qαε[Di ] > 0; so by the result in the previous paragraph (applied
to each), Qαd [Di ] > 0 and Qα[Di ] > 0; thus (Qαd [Di ]/Qα[Di ]) > 0. Also Qα[Di ·
Ej ] > 0 (from the previous paragraph). Then, 0 < Qα [Di · Ej ] · (Qαd [Di ]/Qα[Di ]) ·
(Qαdε[Ej ]/Qαε[Di ]) = Qαdε[Di · Ej ] = 0 – contradiction! So, Qαdε[Di · Ej ] =
Qαεd [Di · Ej ] = 0.

(Case 2): Suppose Di and Ej are Qαdε-compatible. Qαdε[Di · Ej ] > 0. Then Di
is Qαdε-possible – i.e. Qαdε[Di ] > 0. So, from the main supposition (i.e. clause (2)),
NL[Qαd, e, Ej ] = (NL[Qαε, d,Di ]/NL[Qα, d,Di ]) · NL[Qα, ε,Ej ]. So, Qαdε[Di ·
Ej ] = Qα[Di · Ej ] · NL[Qα, d,Di ] · NL[Qαd, e, Ej ] = Qα [Di · Ej ] · NL[Qε, e,Ej ] ·
NL[Qαε, d,Di ] = Qαεd [Di · Ej ].
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Thus, in both casesQαdε[Di · Ej ] = Qαεd [Di · Ej ]. So, for this particular sequence
αdε with suitable dε on Q, Qαdε[Di · Ej ] = Qαεd [Di · Ej ] for all Di and Ej from d’s
and ε’s bases. Therefore,Qαdε[S] = Qαεd [S] for all sentences S (by the Bases Reduction
Lemma). And this applies for αdε with suitable dε.

Now, for a given αdε with suitable dε, let β be any sequence of additional states. Since
Qαdε is precisely the same probability function P asQαεd (i.e. they assign the same values
to all sentences), updating P to Pβ produces, for all sentences S, Qαdεβ[S] = Pβ [S] =
Qαεdβ [S].

NOTES

1 See Jeffrey (1987, 1988), and Jeffrey and Hendrickson (1989).
2 E.g., see Diaconis and Zabell (1982), Garber (1980), and Doring (1999).
3 I.e.,Q[Ej ·Ek] = 0 for j �= k, and

∑
i Q[Ei ] = 1. A basis may be finite or countably

infinite. If relative to the agent’s belief function Q, {Ei} is a basis for e, then we take it to
remain a partition for each of her updated belief functions, Qe ,Qef , etc.

4 I assume that for eachQ and state e affecting basis {Ei}, ifQ[Ei ] = 0, thenQe[Ei ] =
0 too; a new experience cannot turn a previously (probabilistically) impossible claim into
a (probabilistic) possibility. Also, when Q[Ej ] = 0 it is convenient to have Q[S | Ej ]
remain defined; define it equal to 1.

5 Rigidity across updates is not required by the axioms of probability; and in some kinds
of contexts it may appropriately fail (see, e.g., Levi, 1967). However, in many important
contexts where new less-than-certain evidence is acquired, rigidity holds – e.g., in auto-
mated Bayesian networks the conditional probabilities of hypotheses on evidence claims
remain rigid. For our purposes the agent’s series of belief functions need not be perpetually
related by rigidity. We are simply studying what happens when rigidity persists through
some specific sequence of updates. That is, our starting function Q might well have come
from a previous function through some other process. And after a sequence of Jeffrey
updates, Qa,Qab, . . . ,Qab...g , the very next update of the agent’s belief function might
well employ some other process to produce a new function R (fromQab...g).

6 Qef [S] = ∑
j Qe[S | Fj ]·Qef [Fj ] = ∑

{j :Qe[Fj ]>0}Qe[S·Fj ]·(Qef [Fj ]/Qe[Fj ])
= ∑

{j :Qe[Fj ]>0}
∑
i Q[S · Fj | Ei ] · Qe[Ei ] · (Qef [Fj ]/Qe[Fj ]) = ∑

{j :Qe[Fj ]>0}∑
{i:Q[Ei ]>0}Q[S · Fj · Ei ] · (Qe[Ei ]/Q[Ei ]) · (Qef [Fj ]/Qe[Fj ]).
7 Since, where ε is some sequence e . . . fg on a common basis {Ei}, ifQa...cd [Ei ] > 0,

then (Qa...cdε[Ei ]/Qa...cd [Ei ]) = (Qa...cde[Ei ]/Qa...cd [Ei ]) · · · · · (Qa...cde...f [Ei ]/
Qa...cde...[Ei ]) · (Qa...cd.e...fg[Ei ]/Qa...cd.e...f [Ei ]).

8 The term ‘Normed-Likelihood’ comes from the observation that if e were a sentence,
then Qβe[Ej ] could be represented as a conditional probability. Bayes’ theorem would
then yieldQβe[Ej ] = Qβ [Ej | e] = (Qβ [e | Ej ]/Qβ [e])·Qβ [Ej ]. So NL[Qβ, e, Ej ] =
Qβe[Ej ]/Qβ [Ej ] = Qβ [e | Ej ]/Qβ [e]. That is NL[Qβ, e, Ej ] effectively plays the role
of the likelihood of e given Ei (for Qβ ) divided by a normalization factor Qβ [e].

9 Empirical if you want an approximate model of human agents; pragmatic if you want
to build a usable, logically sound automated reasoning system; epistemological (or logical)
if you are constructing a normative theory of belief updating.
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10 Those who have supported this approach include Jeffrey (1965, 1975), Diaconis and
Zabell (1982), Garber (1980), and Doring (1999). Almost everyone seems to consider it to
be an essential part of Jeffrey updating. But even its defenders seem somewhat unhappy
with it.

11 To see how this works consider how a belief function Qβ is updated on states e
and f . Applying Amnestic Updating down to β in the Basic Sequential Update Formula
we getQβef [S] = ∑

{j :Qβe[Fj ]>0}
∑

{k:Qβ [Ek ]>0}Qβ [S ·Ek ·Fj ] · (Qβe[Ek]/Qβ [Ek]) ·
(Qβf [Fj ]/Qβe[Fj ]), whereQβe[Fj ] itself decomposes intoQβe[Fj ] = ∑

{k:Qβ [Ek ]>0}
Qβ [Ek · Fj ] · (Qβe[Ek]/Qβ [Ek]). Thus, Qβef [S] = ∑

{j :Qβe[Fj ]>0}
∑

{k:Qβ [Ek ]>0}
Qβ [S ·Ek ·Fj ]·(Qβe[Ek]/Qβ [Ek])·(Qβf [Fj ]/

∑
{k:Qβ [Ek ]>0}Qβ [Ek ·Fj ]·(Qβe[Ek]/

Qβ [Ek])). The occurrence of the factor
∑

{k:Qβ [Ek ]>0}Qβ [Ek ·Fj ] ·(Qβe[Ek]/Qβ [Ek])
in the denominator of the second ratio term (with no analogous factor in the first ratio term)
carries the order effect from the fact that state e came before state f . If this decomposition
is continued for states in sequence β, the result is a formula in which these denominator
terms themselves have expanded denominator terms, and so on. Ultimately this expansion
results in a formula that involves only Q and the update probabilities Qa, . . . ,Qe,Qf
applied to their own bases. The effect of update order is then carried in the structure of this
formula.

12 Theorem 3.2 in (Diaconis and Zabell, 1982).
13 Order-independence may occur only when Qβ [Fj ] = Qβe[Fj ] = ∑

i Qβ [Ei | Fj ] ·
Qβ [Fj ] · (Qβe[Ei ]/Qβ [Ei ]); i.e. only when

∑
i Qβ [Ei | Fj ] · (Qβe[Ei ]/Qβ [Ei ]) = 1.

And (similarly) only when
∑
j Qβ [Fj | Ei ] · (Qβf [Fj ]/Qβ [Fj ]) = 1 as well.

14 If the belief strengths for the test outcomes remain at Qf [∼F ] = .9 and Qe[E] = .9
but the likelihoods are more extreme, then we get a more extreme difference in updating
due to order. E.g., if it happens that the likelihoods are Q[E | C] = Q[F | C] = Q[∼E |
∼C] = Q[∼F | ∼E] = .99, thenQfe[C] = .83 andQef [C] = .17.

15 Diaconis and Zabell (1982) prove results that indicate how ubiquitous the order effect
will be. Doring (1999) and Lange (2000) discuss its implausibility.

16 Qα[Ei | d · ε] ÷Qα[Ei | d] = (Qα[d | Ei · ε] ·Qα[ε | Ei ] ·Qα[Ei ]/Qα[d · ε])÷
(Qα[d | Ei ]·Qα [Ei ]/Qα[d]) = (Qα[d | Ei ·ε]/Qα[d | Ei ])·Qα[ε | Ei ]·(Qα[d]/Qα[d ·
ε]) = (Qα[d | Ei · ε]/Qα[d | Ei ]) · (Qα[Ei | ε]/Qα[Ei ]) · (Qα[d] ·Qα[ε]/Qα[d · ε]).

17 For our purposes the independence of d from ε given Ei is stronger than necessary. It
would suffice for ε to multiply Qα[d | Ei ] by the same constant s > 0 for every sentence
of {Ei} – i.e. Qα[d | Ei · ε] = s · Qα[d | Ei ]. Then we would have NL[Qαd, ε,Ei ] =
NL[Qα, ε,Ei ] · (Qα[d] ·Qα[ε]/Qα[d · ε]) · s.

18 It updated Qα[Ei ] toQαd [Ei ] = ∑
Qα[Ei ·Dk] · (Qαd [Dk]/Qα[Dk]).

19 Wagner (2002, note 7) raises a similar point.
20 In his most recent work Jeffrey favors updating based on Likelihood-Ratio factors

as well. He thinks of them as ratios of new to old odds and calls them ‘Bayes factors’,
following Good (1950). See (Jeffrey, 1992, pp. 7–9) and (Jeffrey and Hendrickson, 1989,
pp. 16–17). The present treatment extends Field’s approach from binary bases of form
{E,∼E} to countable bases. Also, Field and Jeffrey make no distinction between basis
homogeneous and heterogeneous sequences of states. In effect they take Extended Rigidity
to apply to all states, regardless of whether they share a common basis. Later I will explain
why one should not assume that Extended Rigidity applies within basis homogeneous
sequences.
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21 To derive this formula, start with the Basic Sequential Update Formula. Notice that
each term of form Qa...ef [Fj ]/Qa...e[Fj ] (for each state f and its basis sentence Fi )
equals a formula of form LR[Qa...e, f, Fj , F ] · (Qa...e[F ]/Qa...ef [Fi ]) (for some F from
f ’s basis). Substituting such equivalent terms for each term in the Basic Sequential Update
Formula yields a formula of form Qa...efg[S] = K · ∑

{i:Qa...ef [Gi ]>0} . . .
∑

{k:Q[Ak]>0}
Q[S · Ak · · · · · Gi ] · LR[Q, a, Ak,A] · · · · · LR[Qa...ef , g,Gi ,G], where K is a
product of form (Q[A]/Qa[A]) · · · · · (Qa...ef [G]/Qa...efg[G]). Notice this implies
1 = Qa...ef [tautology] = K · ∑

{i:Qa...ef [Gi ]>0} . . .
∑

{k:Q[Ak]>0}Q[Ak · · · · · Gi ] ·
LR[Q, a, Ak,A]· · · · ·LR[Qa...ef , g,Gi,G], giving a formula forK . Thus,Qa...efg[S] =∑

{i:Qa...ef [Gi ]>0} . . .
∑

{k:Q[Ak]>0}Q[S ·Ak · · · · ·Gi ]·LR[Q, a, Ak,A]· · · · ·LR[Qa...ef ,
g,Gi ,G]÷∑

{i:Qa...ef [Gi ]>0} . . .
∑

{k:Q[Ak]>0}Q[Ak · · · · ·Gi ] ·LR[Q, a, Ak, A] · · · · ·
LR[Qa...ef , g,Gi ,G]. Now just apply the Likelihood-Ratio Version of Extended Rigidity
to the terms of this formula.

22 This result is basically equivalent to Wagner’s (2002) Theorem 3.1, which extends
Field’s (1978) commutivity result. But Field and Wagner don’t single out basis homo-
geneous sequences of states for special treatment. In effect they assume that Extended
Rigidity applies to all states, regardless of whether they share a basis. But that assumption
is too strong. It leads the Garber’s (1980) objection, as we will see.

23 Jeffrey and Hendrickson (1989) employ a somewhat similar example of how Likelihood-
Ratio factors inform a cancer diagnosis. However, their example employs two update
factors affecting a common basis: {cancer, no cancer}. The present example differs in
an important respect. It involves update factors that affect two distinct, lower level bases
that are relevant to the higher-level cancer diagnosis partition.

24 E.g., the cancer diagnosis example employs separate bases for x-ray and sputum cy-
tology results.

25 Since in that case we would have LR[Qαε, e, Ej ,Ek] = Qα[e | Ej ·ε]/Qα[e | Ek ·ε]
= Qα[e | Ej ]/Qα[e | Ek] = LR[Qα, e, Ej , Ek].

26 The notion of suitability need only be relativized to Q if some other belief function
under consideration, R, may disagree with Q about whether two states share a common
basis.

27 Wagner’s (2002) Theorem 4.1 provides a necessary condition for commutivity that is
closely related to this result.

28 Thanks to Chris Swoyer and Adam Morton for many helpful comments.
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