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Abstract 

Naive deductivist accounts of confirmation have the undesirable consequence that if E 

confirms H, then E also confirms the conjunction H·X, for any X − even if X is completely 

irrelevant to E and H. Bayesian accounts of confirmation may appear to have the same 

problem. In a recent article in this journal Fitelson (2002) argued that existing Bayesian 

attempts to resolve of this problem are inadequate in several important respects. Fitelson then 

proposes a new-and-improved Bayesian account that overcomes the problem of irrelevant 

conjunction, and does so in a more general setting than past attempts. We will show how to 

simplify and improve upon Fitelson’s solution.
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1. Introduction.  We will begin by recalling the problem of irrelevant conjunction. Then we 

describe Fitelson’s (2002) solution. And finally we show how to improve on it. 

 The problem of irrelevant conjunction was originally raised as a problem for hypothetico-

deductive (H-D) accounts of confirmation. On H-D accounts, E confirms H relative to 

background K when H·K deductively entails E (i.e., if H·K √E). This leads to the following 

result: 

(1) If E H-D-confirms H relative to K, then E H-D-confirms H·X relative to K, for any X. 

The problem with (1) is that when E confirms H, any other hypothesis X compatible with H 

gets a free confirmational ride. Merely tack X onto H, and E confirms them together, 

regardless of the fact that X may be utterly irrelevant to E in the presence of H. 

 Bayesian confirmation may seem to have an advantage over the H-D account regarding 

irrelevant conjunctions. For, the Bayesian account does not generally have the property 

expressed in (1). On a Bayesian account, “E confirms H relative to K” just means that 

“Pr(H | E·K) > Pr(H | K)” for an appropriate Bayesian probability function Pr. And in lots of 

cases evidence E may confirm H in this probabilistic way without confirming some 

conjunction H·X – i.e. without also making Pr(H·X | E·K) > Pr(H·X | K). So, Bayesianism is 

generally immune to the original problem of irrelevant conjunction. 

 However, Bayesian confirmation still seems to suffer from this problem in the case of 

deductive evidence. That is, Bayesian confirmation and H-D confirmation both satisfy the 

following special case of (1) whenever E is less than certain on K – i.e. when Pr(E | K ) < 1: 
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(1’) If H·K √ E, then E confirms H·X relative to K, for any X consistent with H·K. 

That is, when H·K √ E we have, for any X, Pr(E | H·X·K ) = 1. So, provided X is logically 

consistent with H·K and is probabilistically consistent with it as well (i.e. Pr(H·X·K) > 0), we 

have Pr(H·X | E·K) = Pr(E | H·X·K ) · Pr(H·X | K) / Pr(E | K ) > Pr(H·X | K). So, Bayesians 

must concede that the problem persists for evidence that is deductively entailed by H·K. 

 Bayesians do have some wiggle room, however. They can concede (1’), but argue that in 

the context of deductive evidence, H simpliciter will always be better confirmed than H·X. 

One way to attempt to legitimate this claim is to point out that it follows from the axioms of 

probability that Pr(H | E·K) ≥ Pr(H·X | E·K), and that when H·K √ E (and Pr(H·X·K) > 0), 

equality only holds in the special case where Pr(X | H·K) = 1 (since Pr(H·X | E·K) = 

Pr(X | H·E·K) Pr(H | E·K) = Pr(X | H·K) Pr(H | E·K)). So, in the deductive case H is always 

made at least as probable as H·X by E (relative to K), and in the interesting cases (where 

Pr(X | H·K) ≠ 1), it’s made more probable. 

 This solution turns on reading the “E confirms H1 more than H2” relation as “H1 is more 

probable given E than is H2 given E.” But that is not generally a good way to understand 

“confirms more.” For, given this reading, in more general cases it will often happen that “E 

confirms H2 more than H1 relative to K (because Pr(H2 | E·K) > Pr(H1 | E·K)), while E 

actually lowers the probability of H2 (Pr(H2 | E·K) < Pr(H2 | K)) and raises the probability of 

H1 (Pr(H1 | E·K) > Pr(H1 | K)). So, the brute comparison of the relative sizes of posterior 

probabilities is an intuitively unappealing way to cash out the “confirms more” relation. 
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Thus, the proposed solution to irrelevant conjunction depends on a flawed account of 

“confirms more.” 

 So, is there a better way to cash out “confirms more” that gives the desired solution to 

irrelevant conjunction? Several accounts of “E confirms H given K” have been proposed in 

the literature that provide measures of how much E incrementally increases the probability of 

H, given K − increases it over the probability of H prior to the evidence. The most common 

are the ratio measure, the difference measure, and the likelihood ratio measure: 

 ratio measure:  r(H, E | K) = Pr(H | E·K) / Pr(H | K) = Pr(E | H·K) / Pr(E | K); 

 difference measure:  d(H, E | K) = Pr(H | E·K) − Pr(H | K); 

 likelihood-ratio measure:  l(H, E | K) = Pr(E | H·K) / Pr(E | ∼H·K). 

It should be clear how these measures might be applied to the problem of irrelevant 

conjunction. The ratio measure would have it that E confirms H2 better than H1 (relative to 

K) just when the ratio r(H2, E | K) is larger than the ratio r(H1, E | K). The difference measure 

says that E confirms H2 better than H1 (relative to K) just when the difference d(H2, E | K) is 

larger than the difference d(H1, E | K). And likelihood-ratio measure says that E confirms H2 

better than H1 (relative to K) just when l(H2, E | K) is larger than l(H1, E | K). Thus, a 

Bayesian solution to the problem of irrelevant conjunction might be obtained if it can be 

shown that c(H, E | K) is larger than c(H·X, E | K) where c is some appropriate measure of 

incremental confirmation such as r, d, or l. 

 It is now well known that when each of these measures is applied to the same issue or 
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problem in Bayesian treatments of confirmation, they may provide divergent results. Indeed, 

Fitelson (1999, 2001) has extensively analyzed this issue, and finds strong grounds to prefer l 

over other measures. Be that as it may, what we want to know is whether the irrelevant 

conjunction problem has a Bayesian solution based on any, or all of these measures. The 

Fitelson paper under discussion provides an answer to this query. Indeed, Fitelson’s answer 

goes beyond the call. For, Fitelson holds, a proper Bayesian solution to the problem of 

irrelevant conjunction should be directly extendable to the case of non-deductive evidence as 

well. And Fitelson’s analysis indeed applies to non-deductive cases. 

 

2. Fitelson’s Original Solution.  Fitelson suggests that a proper Bayesian analysis of the 

problem of irrelevant conjunction should start by saying what, in a Bayesian framework, it 

means for X to be irrelevant to the confirmation of H by E, given K. He suggests that this 

should mean that X is irrelevant to H, E, and logical combinations of H and E, where 

irrelevance is to be understood in the usual Bayesian sense of probabilistic independence. 

Formally, the proposal is this: 

Definition. Confirmational Irrelevance:  A is confirmationally irrelevant to B relative to K 

just when A and B are probabilistically independent, given K − i.e., when Pr(A·B | K) = 

Pr(A | K) · Pr(B | K). 

Fitelson then proves two theorems that bear on the problem of irrelevant conjunction for both 

the deductive and for non-deductive evidence. The first theorem shows that the apparent 
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problem persists even in non-deductive cases − that if E confirms H, but X is 

confirmationally irrelevant to H, E, and H·E, then on each of the measures r, d, and l, E also 

confirms (i.e. incrementally raises the probability of) H·X. 

Theorem 1. If E confirms H, and X is confirmationally irrelevant to H, E, and H·E (relative 

to background K), then E also confirms H·X (relative to K). 

Fitelson’s second theorem then comes to the rescue of the Bayesian account by showing that 

if E confirms H, but X is confirmationally irrelevant to H, E, and H·E, then on measures d 

and l (but not on r) E incrementally raises the probability of H more than it does H·X. 

Theorem 2. If E confirms H, and X is confirmationally irrelevant to H, E, and H·E (relative 

to background K) and Pr(X | K) ≠ 1, then c(H , E | K) > c(H·X , E | K), where c may be 

either the difference measure d or the likelihood-ratio measure l of degree of 

confirmation (but, c may not be the ratio measure r, since in cases of irrelevant 

conjunction we will have r(H , E | K) = r(H·X , E | K)). 

This result seems quite satisfactory, but for one thing. The antecedents of these theorems 

appear to be a little too strong, and perhaps less intuitively compelling than we might like. 

 

3. An Improvement on the Solution.  In the deductive case the intuition about the 

irrelevance of X flows from the idea that a hypothesis is tested by what it says about the 

evidence. Adding X to H (given K) says nothing more about E than H (given K) already says. 

So, intuitively, E should confirm H·X (given K) no more than it confirms H alone (given K). 
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Indeed, intuitively E should perhaps confirm H·X less than H alone (given K). A natural 

Bayesian extension of this idea about X adding nothing to what H says about E (given K) is 

this: 

Natural Conjunctive Irrelevance Criterion: X is an irrelevant conjunct to H given K with 

respect to evidence E just in case Pr(E | H·X·K) = Pr(E | H·K) − i.e. just when E is 

independent of X given H together with K. 

This criterion involves an intuition about probabilistic independence that is central to 

Fitelson’s previous theorems, but draws on much more intuitively direct version of the idea 

that X is an irrelevant conjunct. This describes one sense in which the antecedents in 

Fitelson’s theorems seem overly strong. 

 The antecedents of the theorems are also too strong in a more literal sense as well. For it 

turns out that: 

(i) If “X is confirmationally irrelevant to H, E, and H·E” in the sense employed in the 

theorems, then “X is an irrelevant conjunct to H given K with respect to evidence E” in 

the sense of the Natural Conjunctive Irrelevance Criterion just defined. And the Natural 

Conjunctive Irrelevance Criterion is strictly weaker than supposing X to be 

confirmationally irrelevant to H, E, and H·E.  

Furthermore: 

(ii) The Natural Conjunctive Irrelevance Criterion suffices, in place of Fitelson’s original 

irrelevance conditions, to establish the consequents of the theorems. 
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 To see that claim (i) holds, notice that Fitelson’s original independence conditions imply 

that Pr(E | H·X·K)·Pr(H | K)·Pr(X | K) = Pr(E | H·X·K)·Pr(H·X | K) = Pr(H·X·E | K) = 

Pr(H·E | K)·Pr(X | K) = Pr(E | H·K)·Pr(H | K)·Pr(X | K); so Pr(E | H·X·K) = Pr(E | H·K). But 

Fitelson’s original condition is not equivalent to the revised condition, since we can easily 

have cases where Pr(E | H·X·K) = Pr(E | H·K) while Pr(X | H·K) ≠ Pr(X | K) (i.e. Pr(H·X | K) ≠ 

Pr(X | K)·Pr(H | K)). Consider, for example, cases where X is a kind of evidence statement E* 

(e.g. “the second toss will be heads”) and hypothesis H is relevant to E* (e.g. H says “the 

coin is fair” and Pr(E* | H·K) ≠ P(E* | K)), and where E (e.g. “the first toss is heads”) is 

independent of E* given H·K. 

 To verify claim (ii), first observe that the following revised version of Theorem 1 holds: 

Revised Theorem 1. If E confirms H relative to K and Pr(E | H·X·K) = Pr(E | H·K), then E 

also confirms H·X relative to K, where the notion of confirmation is given by either the 

ratio measure r or the difference measure d or the likelihood-ratio measure l. 

This is a simplified version of the Bayesian “bad news” theorem. In the case of the ratio 

measure r it says that if Pr(E | H·X·K) = Pr(E | H·K) and r(H, E | K) > 1 (i.e. H is confirmed by 

E given K on measure r), then r(H·X, E | K) > 1 (i.e. H·X is confirmed by E given K on 

measure r). For the difference measure d the revised theorem says that if Pr(E | H·X·K) = 

Pr(E | H·K) and d(H, E | K) > 0 (i.e. H is confirmed by E given K on measure d), then 

d(H·X, E | K) > 0 (i.e. H·X is confirmed by E given K on measure d). In the case of the 

likelihood-ratio measure l the revised theorem says that if Pr(E | H·X·K) = Pr(E | H·K) and 
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l(H, E | K) > 1 (i.e. H is confirmed by E given K on measure l), then l(H·X, E | K) > 1 (i.e. 

H·X is confirmed by E given K on measure l). 

 In spite of the bad news from Revised Theorem 1, the corresponding revised version of 

Theorem 2 shows that even on the weaker, more intuitive notion of irrelevance, two of the 

three Bayesian measures of incremental confirmation say that a hypotheses are always better 

confirmed than their conjunctions with an irrelevant alternatives. 

Revised Theorem 2. If E confirms H relative to K and Pr(E | X·H·K) = Pr(E | H·K) and 

Pr(X | H·K) ≠ 1, then c(H , E | K) > c(H·X , E | K), where c may be either the difference 

measure d or the likelihood-ratio measure l of degree of incremental confirmation. But, c 

may not be the ratio measure r, since for r, when E confirms H relative to K and 

Pr(E | X·H·K) = Pr(E | H·K), we have that r(H , E | K) = r(H·X , E | K). 

 This revision of Fitelson’s original Bayesian resolution of the irrelevant conjunction 

problem significantly strengthens that result. Like Fitelson’s earlier version, this resolution is 

not restricted to the special case of deductive evidence. However, this version has the 

advantage of employing a notion of an irrelevant conjunct that is precisely analogous to that 

in the original deductive evidence case. It subsumes the deductive irrelevant conjunction 

issue as a special case in a natural way. And, like Fitelson’s original approach, this solution is 

more robust, more measure-insensitive, than other suggested resolutions of the problem. 
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Appendix: Proofs of Theorems 

Proof of Revised Theorem 1: 

Suppose that Pr(E | X·H·K) = Pr(E | H·K) in each case, 1, 2, and 3, below. 

1. For ratio measure r: If r(H, E | K) > 1 (i.e. H is confirmed by E given K on measure r), then 

1 < r(H, E | K) = Pr(H | E·K) / Pr(H | K) = Pr(E | H·K) / Pr(E | K) = Pr(E | H·X·K) / Pr(E | K) = 

r(H·X, E | K) (i.e. H·X is confirmed by E given K on measure r).  

2. For the difference measure d: Suppose d(H, E | K) > 0 (i.e. H is confirmed by E given K on 

measure d). Then 0 < d(H, E | K) = Pr(H | E·K) − Pr(H | K), so 1 < Pr(H | E·K) / Pr(H | K) = 

Pr(E | H·K) / Pr(E | K) = Pr(E | H·X·K) / Pr(E | K) = Pr(H·X | E·K) / Pr(H | K), so 

0 < Pr(H·X | E·K) − Pr(H·X | K) (i.e. H·X is confirmed by E given K on measure d). 

3. For the likelihood-ratio measure l: Suppose l(H, E | K) > 1 (i.e. H is confirmed by E given 

K on measure l). Then 1 < l(H, E | K) = Pr(E | H·K) / Pr(E | ∼H·K); so Pr(E | ∼H·K) < 

Pr(E | H·K). This implies 1 < Pr(E | H·K) / Pr(E | K) {because Pr(E | H·K)·(1−Pr(∼H | K)) + 

Pr(E | ∼H·K)·Pr(∼H | K) = Pr(E | K), so 0 > (−Pr(E | H·K) + Pr(E | ∼H·K))·Pr(∼H | K) = 

Pr(E | K) − Pr(E | H·K)}. Then, 1 < Pr(E | H·X·K) / Pr(E | K) = Pr(H·X | E·K) / Pr(H·X | K). So 

we have Pr(H·X | K) < Pr(H·X | E·K), which implies Pr(∼(H·X) | K) > Pr(∼(H·X) | E·K). These 

two inequalities together yield Pr(H·X | K) / Pr(∼(H·X) | K) < Pr(H·X | E·K) / Pr(∼(H·X) | E·K) 

= [Pr(E | H·X·K) / Pr(E | ∼(H·X)·K)]·[ Pr(H·X | K) / Pr(∼(H·X) | K)]. Thus 

1 < Pr(E | H·X·K) / Pr(E | ∼(H·X)·K) (i.e. H·X is confirmed by E given K on measure l). 
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Proof of Revised Theorem 2: 

Suppose that Pr(E | X·H·K) = Pr(E | H·K) and Pr(X | H·K) ≠ 1 in each case, 1, 2, and 3, below. 

1. For the c = r case: r(H, E | K) = Pr(H | E·K) / Pr(H | K) = Pr(E | H·K) / Pr(E | K) = 

Pr(E | H·X·K) / Pr(E | K) = r(H·X, E | K). 

2. For the c = d case: Suppose E confirms H relative to K. Then d(H , E | K) > 0 – i.e. 

Pr(H | E·K) − Pr(H | K) > 0. Then Pr(H·X | E·K) = Pr(E | H·X·K) Pr(H·X | K) / Pr(E | K) = 

[Pr(E | H·K) / Pr(E | K)] · Pr(H·X | K) = [Pr(H | E·K) / Pr(H | K)] · Pr(H·X | K). 

So, d(H·X , E | K) = Pr(H·X | E·K) − Pr(H·X | K) = Pr(H·X | K) · [[Pr(H | E·K) / Pr(H | K)] − 1] 

  = [Pr(H·X | K) / Pr(H | K)] · d(H , E | K) = Pr(X | H·K) · d(H , E | K)   

   <  d(H , E | K), (unless Pr(X | H·K) = 1, in which case they’re equal). 

3. For the c = l case: Suppose E confirms H relative to K. Then l(H , E | K) > 1 – i.e. 

Pr(E | H·K) / Pr(E | ~H·K) > 1. Notice that Pr(E | ~X·H·K) = Pr(E | H·K) (since Pr(X | H·K) ≠1 

and Pr(E | X·H·K) = Pr(E | H·K)). Also notice that Pr(~H | ~(X·H)·K) < 1 (otherwise 0 = 

Pr(H | ~(X·H)·K), so  0 = Pr(H·~(X·H) | K) =  Pr(H·~X | K) =  Pr(~X | H·K) · Pr(H | K), so 

Pr(X | H·K) = 1− Pr(~X | H·K) = 1, which contradicts our assumption that Pr(X | H·K) < 1). 

Now Pr(E | ~(X·H)·K) =  

   Pr(E | H·~(X·H)·K) · Pr(H | ~(X·H)·K) + Pr(E | ~H·~(X·H)·K) · Pr(~H | ~(X·H)·K) 

    =    Pr(E | H·K) · Pr(H | ~(X·H)·K)  +  Pr(E | ~H·K) · Pr(~H | ~(X·H)·K). 

So, Pr(E | ~(X·H)·K) / Pr(E | (X·H)·K)  =  Pr(H | ~(X·H)·K) + 

Pr(~H | ~(X·H)·K) · [Pr(E | ~H·K) / Pr(E | H·K)]  >  Pr(E | ~H·K) / Pr(E | H·K).
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