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Abstract: 
This article presents axioms for comparative conditional probability relations. The axioms 
presented here are more general than usual. Each comparative relation is a weak partial order on 
pairs of sentences (i.e. each relation is transitive and reflexive) but need not be a complete order 
relation. The axioms for these comparative relations are probabilistically sound for the broad 
class of conditional probability functions known as Popper functions. Furthermore, these axioms 
are probabilistically complete. Arguably, the notion of comparative conditional probability 
provides a foundation for Bayesian confirmation theory. Bayesian confirmation functions are 
overly precise probabilistic representations of the more fundamental logic of comparative 
support. The most important features of evidential support are captured by comparative 
relationships among argument strengths, realized by the comparative support relations and their 
logic. 
 
 
1. Introduction 
 
Underlying the usual numerical conception of probability is a more basic qualitative notion, that 
of comparative probability. This comparative notion is formally expressed by weak (partial) 
order relations among sentences or propositions of the form ‘A ≽ B’, read “A is at least as 
probable as B”. These relations may be employed to represent the comparative confidence 
relations for idealized agents. Interpreted this way, a relation of form ‘A ≽α B’ says that agent α 
is at least as confident that A is true as that B is true. 
 
Each comparative probability relation ≽ that obeys certain reasonable constraints (expressed as 
axioms) can be represented by a corresponding probability function P – i.e. it can be proved that 
A ≽ B holds just when P[A] ≥ P[B] holds, provided the relation ≽ is a complete (rather than 
partial) order. (See B. de Finetti 1937, 1974, and L. J. Savage 1954.) Thus, one possible answer 
to the problem of where a Bayesian agent’s numerical degrees of belief come from is this: the 
agent is comparatively more confident in some claims than in others, and numerical probabilities 
merely provide a computationally convenient way of modeling these comparative confidence 
relations. Furthermore, when the comparative relation ≽ is only a partial order it will instead be 
representable by a set of precise probability functions, each extending ≽ to a complete order – 
where for each representing probability function P: (1) whenever A ≽ B and not B ≽ A, P[A] > 
P[B], and (2) whenever A ≽ B and B ≽ A, P[A] = P[B]. 
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This comparative notion of probability cannot capture some important probabilistic concepts, 
such as the concept of probabilistic dependence and independence. This deficiency may be 
remedied by extending the comparative concept to a notion of comparative conditional 
probability. A comparative conditional probability relation is a weak (partial) order among pairs 
of sentences or propositions of form ‘A|B ≽α C|D’, read “A, given B, is at least as probable as 
C, given D”.1 
 
These relations may be employed to represent idealized agents’ comparative conditional 
confidence relations. Interpreted this way, a relationship of form ‘A|C ≽α C|D’ says that agent α 
is at least as confident that A (is true), given that B, as she is that C, given that D. However, an 
alternative (arguably distinct) conception employs these relations to represent comparative 
argument strengths. Interpreted this way, a relationship of form ‘A|B ≽α C|D’ says that under an 
interpretation α of the inferential import (or inferential meanings) of statements of the language, 
conclusion A is supported by premise B at least as strongly as conclusion C is supported by 
premise D. J. M. Keynes suggested this kind of reading of conditional probabilities in his 
Treatise on Probability (1921). B. O. Koopman (1940) axiomatized this Keynesian conception in 
terms of a logic of comparative conditional probability of the kind developed below. 
 
In this article I will present axioms for comparative conditional probability relations that are 
more general than usual. Each of these relations is a weak partial order on pairs of sentences – 
i.e. each relation will be transitive and reflexive, but need not be a complete order relation. The 
axioms presented here are probabilistically sound for the broad class of conditional probability 
functions known as Popper functions (which will be axiomatized in section 2).2 That is, for each 
Popper function P, the corresponding comparative conditional probability relation ≽ (defined by 
‘A|B ≽ C|D’ whenever P[A | B] ≥ P[C | D]) will satisfy the axioms below for comparative 
conditional probability relations. Furthermore, these axioms are probabilistically complete: a 
representation theorem shows that for each relation ≽ that satisfies these axioms, there is a 
corresponding Popper function P such that, for all sentences A, B, C, D: (i) whenever the 
relationship A|B ≻ C|D holds (i.e. whenever A|B ≽ C|D but not C|D ≽ A|B), the corresponding 
probabilistic relationship P[A | B] > P[C | D] holds; (ii) whenever A|B ≈ B|D holds (i.e. 
whenever A|B ≽ C|D and C|D ≽ A|B), the corresponding probabilistic relationship P[A | B] = 
P[C | D] holds.3 
                                                 
1 Two examples: [the coin comes up heads in this case | the coin is fair and flipped properly in 
this case] is at least as probable as [the die lands six on this toss | the die is fair and tossed 
properly on this toss];  [it will rain here later today | the barometer fell rapidly earlier today] is at 
least as probable as [the Democrats win a senate seat in Arizona next election | there is no major 
change in party politics in the US before the next election].   
2 Koopman’s (1940) axiomatization leaves relationships A|B ≽ C|D undefined whenever B (or 
D) has “0-probability” – i.e. whenever , (E⋅¬E)|(E∨¬E) ≽ B|(E∨¬E). However, Popper 
functions permit P[A | B] to have well-defined values between 0 and 1 even in cases where 
P[B | (E∨¬E)] = 0. The axioms for the comparative relations provided below follow suit by 
permitting ‘A|B ≽ C|D’ to remain defined for all pairs of sentence pairs. 
3 More generally, a comparative relation ≽ may be representable by a set of distinct Popper 
functions that disagree on numerical values, but agree on the orderings among conditional 
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The axiomatic system I’ll present is purely formal. So the comparative conditional probability 
relations the axioms characterize may be interpreted in terms of any of the usual probabilistic 
concepts. For example, one may interpret these relations in terms of some notion of comparative 
conditional chance. On this sort of interpretation a relationship of form ‘A|B ≽α C|D’ may be 
read to say, “for systems in state α, the chance of outcome A among those systems (or states of 
affairs) with attribute B is at least as great as the chance of outcome C among those with 
attribute D.” On this reading the representation theorems will show that the usual numerical 
conditional chance functions provide a convenient way to represent a purely qualitative-
comparative conception of conditional chance relations among states of affairs. 
 
Although the abstractness of the formalism provides generality, the axioms for comparative 
conditional probability relations will be easier to motivate if we give the comparative relations ≽ 
some uniform interpretive reading throughout. So, henceforth I’ll read the each such comparative 
relation as expressing comparisons among arguments with respect to support-strength. Each 
relationship ‘A|B ≽ C|D’ will be read to say, “conclusion A is supported by the conjunction of 
premises B at least as strongly as conclusion C is supported by the conjunction of premises D”. 
Thus, henceforth we will be investigating comparative conditional probability as a logic of 
comparative argument strength, a qualitative logic which may provide a foundation for the 
Bayesian logic of evidential support. Readers interested in other conceptions of probability are 
invited to see how well those conceptions fit the axioms on offer here. 
 
2. Popper Functions 
 
Popper functions are a generalization of the usual classical notion of conditional probability. All 
classical conditional probability functions are (in effect) very restricted kinds of Popper functions 
– i.e. they satisfy the axioms for Popper functions, provided that in cases where classical 
conditional probabilities are left undefined, we define them as equal to 1.4 However, among the 
Popper functions are conditional probability functions that make important use of 
conditionalization on statements that have probability 0. I’ll say more about this below. 
 
Various axiomatizations of the Popper functions are available. Karl Popper’s original motivation 
was to develop a probabilistic logic that does not presuppose (and does not draw on) classical 
deductive logic, and to then show that classical deductive logical entailment arises as a special 

                                                 
probabilities. This provides an entry into theories of imprecise and indeterminate probabilities 
(Koopman, 1940). A detailed account is provided in the article by Fabio Cozman in this volume. 
4 A classical probability function on language L (for sentential or predicate logic) is any function 
p from sentences to real numbers between 0 and 1 that satisfies the following axioms: (1) if |= A, 
then p[A] = 1; (2) if |= ¬(A⋅B), then p[(A∨B)] = p[A ] + p[B]; (3) (definition) when p[B] > 0, 
p[A | B] = p[(A⋅B)] / p[B]. When p[B] = 0, p[A | B] is undefined (or, may be defined to equal 1). 
These axioms suffice. It follows from them that when B |= A, p[B] ≤ p[A] (given B |= A, 
|= ¬(B⋅¬A), so 1 ≥ p[(B∨¬A)] = p[B] + p[¬A] ≥ 0, so 1 − p[¬A] ≥ p[B]; and since |= ¬(A⋅¬A) 
and |= (A∨¬A), 1 = p[(A∨¬A)] = p[A] + p[¬A]; so p[A] = 1 − p[¬A] ≥ p[B]). From this it 
follows that logically equivalent sentence have the same probability. 
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case of a purely probabilistic notion of entailment.5 I’ll bypass this aspect of Popper’s project 
here, and build the logic of the Popper functions atop classical deductive logic.  
 
Popper functions turn out to have another important feature. They provide a significant way to 
generalize the classical notion of conditional probability. I’ll say more about this in a bit. First, 
here is a fairly sparse way to axiomatize the Popper functions. These particular axioms are 
informative because, weak as they are, they provide close analogs of the axioms for comparative 
conditional probability relations introduced later. The following axioms only suppose that 
numerical values are real numbers – the restriction to values between 0 and 1 must be proved. 
 

Sparse Axioms for Popper Functions: Let L be a language having either the syntax of 
sentential logic, or alternatively, the syntax of predicate logic (including identity and 
functions).6 Let ‘|=’ represent the usual logical entailment relation for the logic (either 
sentential logic or predicate logic). Each Popper function is a function P from pairs of 
sentences of L to the real numbers such that for all sentences A, B, and C: 
1.  for some sentences E, F, G, H,  P[E | F] ≠ P[G | H] 
2.  P[A | A] ≥ P[B | C] 
3.  if B |= A, then P[A | C] ≥ P[B | C] 
4.  if C |= B and B |= C, then P[A | B] ≥ P[A | C] 
5.  P[A | B] + P[¬A | B] = P[B | B]  or else P[D | B] = P[B | B] for all D 
6.  P[(A⋅B) | C] = P[A | (B⋅C)] × P[B | C] 

 
This axiomatization is so weak that the usual probabilistic formulae are difficult to derive. It is 
useful for our purposes because of its close connection with the axioms for comparative 
conditional probability relations provided later. Here is an alternative, more usual 
axiomatization of the Popper functions. 
 

Robust Axioms for Popper Functions: Let L be a language having either the syntax of 
sentential logic or predicate logic (including identity and functions), where ‘|=’ represents the 
usual logical entailment relation. Each Popper function is a function P from pairs of 
sentences of L to the real numbers such that for all sentences A, B, and C: 
(1)  if  |= ¬A and  |= B (i.e. A is a contradiction and B is a tautology), then P[A | B] = 0 
(2)  1 ≥ P[A | B] ≥ 0 
(3)  if B |= A, then P[A | B] = 1 
(4)  if C |= B and B |= C, then P[A | B] = P[A | C] 
(5)  if C |= ¬(A⋅B), then either P[(A∨B) | C] = P[A | C] + P[B | C] or P[D | C] = 1 for all D 
(6)  P[(A⋅B) | C] = P[A | (B⋅C)] × P[B | C] 

 
                                                 
5 See the appendix to (Popper, 1959). Hartry Field (1977) shows how to extend Popper’s project 
to probability functions for predicate logic. That is, Field shows how to construct a probabilistic 
semantics for predicate logic that takes the notion of probability assignments (rather than truth-
value assignments) as basic. He proves that this semantics gives rise to a notion of logical 
entailment that is coextensive with the classical notion. 
6 Probabilistic logics are often restricted to a language for sentential logic, but everything here 
carries over to full predicate logic with identity and functions. 
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Clearly, the sparse axioms, 1-6, are derivable from the robust axioms, (1)-(6). The derivation of 
the robust axioms from the sparse axioms requires some effort (see the Appendix). 
 
To understand the relationship between Popper functions and classical conditional probability 
functions, think of it like this. Given an unconditional classical probability function p, 
conditional probability is usually defined as follows: whenever p[B] > 0, p[A | B] = 
p[(A⋅B)]/P[B]; and when p[B] = 0, p[A | B] is left undefined. Let’s make a minor modification to 
this usual approach, and require instead that classical conditional probability functions make 
p[A | B] = 1 by default whenever p[B] = 0. Thus, on this approach conditional probabilities are 
always defined. Specified in this way, each classical conditional probability function is a simple 
kind of Popper function (i.e. it satisfies the axioms for Popper functions). 
 
More generally, a Popper function may consist of a ranked hierarchy of classical probability 
functions, where conditionalization on a probability 0 sentence induces a transition from one 
classical probability function to another classical function at a lower rank. The idea is that 
probability 0 need not mean “absolutely impossible”. Rather, it means something like, “not a 
viable possibility unless (and until) the more plausible alternatives are refuted.” 
 
Here is how that works in more detail. For a given Popper function P, if we hold the condition 
statement B fixed, then the function P[  | B] behaves precisely like a classical probability 
function – it always satisfies the classical axioms. However, when a statement C has 0 
probability on B, P[C | B] = 0, the probability function P[  | (C⋅B)] gotten by now holding the 
conjunction (C⋅B) fixed may remain well-defined, and may behave like an entirely different 
classical probability function. In general, a Popper function consists of a ranked hierarchy of 
classical probability functions, where the transition from a classical probability function at one 
level in the hierarchy (the statement B level) to a new classical probability function at a lower 
level (the statement (C⋅B) level) is induced by conditionalization on a statement (C⋅B) that has 
probability 0 at that higher (statement B) level. Finally, at the bottom level, below all other ranks 
associated with P, is the level of logical contradictions. This level may also include sentences that 
“behave like logical contradictions” – i.e. sentences E such that every sentence has probability 1 
when conditionalized on E: P[A | E] = 1 for all A.  
 
The fact that a Popper function may consist of this kind of ranked hierarchy of classical functions 
is not an additional assumption or stipulation. Rather, it follows from the above axioms (from 1-
6, and also from (1)-(6)) without supplementation. (See Hawthorne, 2013, for a detailed account 
of the ranked structure of Popper functions, including proofs of these claims.)   
 
Here is an illustration of a case where this kind of generalization of classical probability proves 
useful. Suppose that the probability that a randomly selected point will lie within the upper 3/4 of 
a specific spatial region, described by ‘A’, given that it lies somewhere within that whole three-
dimensional region, described by ‘B’, is P[A | B] = 3/4. The probability that this same randomly 
selected point will lie precisely on a specific plane described by ‘C’ where it intersects the B-
region should presumably be 0, so we have 0 = P[C | B] = P[(A⋅C) | B]. However, given that this 
random point does indeed lie within the C-plane within the B-region, the probability that it lies 
within the part of that region described by ‘A’ (which, say, contains half of the plane described 
by ‘C⋅B’) may again be perfectly well-defined: P[A | (C⋅B)] = 1/2. Furthermore, the probability 



6 
 

that this random point will lie on the part of a line segment described by ‘D’ within the C-plane 
should also presumably be 0, so we again have a situation where 0 = P[D | (C⋅B)] = 
P[(A⋅D) | (C⋅B)]. However, given that this random point does indeed lie within the part of the D-
segment within the part of the C-plane within the B-region, the probability that it lies in the A-
region (which, say, contains two-thirds of the D-line-segment within (D⋅(C⋅B))) may again be 
well-defined: P[A | (D⋅(C⋅B))] = 2/3. So, the general idea is that a specific Popper function may 
consist of a ranked hierarchy of classical probability functions, where conditionalizations on 
specific probability 0 statements at one level of the hierarchy can induce a transition to another 
perfectly good classical probability function defined at a lower level of the hierarchy.7 
 
Bayesian confirmation theory employs conditional probability functions to represent the support 
of evidence for hypotheses, and Popper functions may serve in this role. However, the Bayesian 
approach to confirmation owes us an account of what the proposed numerical degrees of support 
come from, and what the probabilistic numbers mean or represent. Subjectivist Bayesians 
attempt to provide this account in terms of betting functions and Dutch book theorems – they 
maintain that confirmation functions are belief-strength functions, and that their numerical values 
represent ideally rational betting quotients, which must satisfy the usual probabilistic rules in 
order to avoid the endorsement of betting packages that would result in sure losses. However, for 
a logical account of confirmation functions (e.g. of the kind endorsed by Keynes), wherein 
confirmation functions represent argument strengths, another kind of answer to the “where do the 
numbers come from, and what do they mean?” question may be offered – an answer via a 
representation theorem. On this approach the idea is that confirmation theory derives from a 
deeper underlying qualitative logic of comparative argument strength. We now proceed to 
specify the rules that govern this deeper logic. We’ll see that Popper functions merely provide a 
convenient way to calculate the comparative support relationships captured by this qualitative 
logic of comparative argument strength; the probabilities add nothing that the qualitative logic 
cannot already capture on its own. 
 
3.  Towards the Logic of Comparative Argument strength: the Proto-Support Relations 
 
A comparative support relation ≽ is a relation among pairs of sentence pairs. It should satisfy 
axioms that provide plausible restrictions on a reasonable conception of the notion of 
comparative argument strength. We will get to the axioms in a moment.  
 
Associated with each relation ≽ are several related relations, defined in terms of it. Here is a list 
of these, their formal definitions, and an appropriate informal reading for each. 
 

A comparative support relation ≽ is a relation of form A|B ≽ C|D, 
read “A is supported by B at least as strongly as C is supported by D”. 

Define four associated relations as follows: 
(1) A|B ≻ C|D  abbreviates  “A|B ≽ C|D and not C|D ≽ A|B”, 

read  “A is supported by B more strongly than C is supported by D”; 

                                                 
7 For a comparison of the Popper functions to other accounts of conditional probability functions, 
see the article by Kenny Easwaran in this volume. 
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(2) A|B ≈ C|D  abbreviates  “A|B ≽ C|D and C|D ≽ A|B”, 
read  “A is supported by B to the same extent that C is supported by D”; 

(3) A|B ≍ C|D  abbreviates  “not A|B ≽ C|D and not C|D ≽ A|B”, 
read  “the support for A by B is indistinctly comparable to that of C by D”; 

(4) B ⇒ A  abbreviates  “A|B ≽ C|C”; 
read  “B supportively entails A”. 

 
The axioms I’ll provide for ≽ turn out to entail that for each such relation, the corresponding 
supportive entailment relations ⇒ satisfies the rules for a well-known kind of non-monotonic 
conditional called a rational consequence relation. Indeed, the rational consequence relations 
turn out to be identical to the supportive entailment relations.8 
 
With these definitions in place we are ready to specify axioms for the comparative support 
relations. Axioms 1-6 closely parallel the corresponding axioms for Popper functions. The 
axioms will only ensure that these comparative relations are partial orders on comparative 
argument strength: they are transitive and reflexive, but need not be complete orders – i.e. some 
argument pairs may fail to be distinctly comparable in strength. 
 
Let L be a language having the syntax of sentential logic or predicate logic (including identity 
and functions). Each proto-support relation ≽ is a binary relation between pairs of sentences that 
satisfies the following axioms: 
 
0. If  A|B ≽ C|D  and  C|D ≽ E|F,  then  A|B ≽ E|F       (transitivity) 
 
1. for some E, F, G, H,  E|F ≻ G|H              (non-triviality) 

[Not all arguments are equally strong; at least one is stronger than at least one other.] 
 
2. A|A ≽ B|C                          (maximality) 

[Self-support is maximal support -- at least as strong as any argument.] 
 
3. If  B |= A,  then  A|C ≽ B|C                 (classical consequent entailment) 

[Whenever B logically entails A, the support for A by C is at least as strong as the support 
for B by C. The reflexivity of ≽ follows, since A |= A. Together with other axioms it yields: 
(i) If (B⋅C) |= A,  then  A|C ≽ B|C; (ii) If B |= A, then A|B ≽ C|D.] 

 
4. If  B |= C and C |= B,  then  A|B ≽ A|C           (classical antecedent equivalence) 

[Logically equivalent statements support all statements equally well.] 
 
5. If  A|B ≽ C|D , then ¬C|D ≽ ¬A|B  or else  B ⇒ D for all D  (negation-symmetry) 

                                                 
8 The ranked structure of the Popper functions (structured as a hierarchy of classical probability 
functions) is just the ranked structure of the rational consequence relations. The comparative 
support relations turn out to share this ranked structure, captured by their associated supportive 
entailment relations. See (Hawthorne, 2013) for a detailed account of the rational consequence 
relations and their ranked structures. 



8 
 

[Whenever A is supported by B at least as strongly as C is supported by D, the falsity of C is 
supported by D at least as strongly as the falsity of A is supported by B; the only exception is 
in cases where premise B behaves like a contradiction, maximally supporting every statement 
D. This captures the essence of the additivity axiom for conditional probability, axiom 5 for 
the Popper functions.]  

 
6.1  If  H1|(A1⋅E1) ≽ H2|(A2⋅E2) and A1|E1 ≽ A2|E2, then (H1⋅A1)|E1 ≽ (H2⋅A2)|E2 
 
6.2  If  H1|(A1⋅E1) ≽ A2|E2 and A1|E1 ≽ H2|(A2⋅E2), then (H1⋅A1)|E1 ≽ (H2⋅A2)|E2 
                                   (6.1-6.2: composition) 
 
6.3  If (H1⋅A1)|E1 ≽ (H2⋅A2)|E2 and A2|E2 ≽ A1|E1, then H1|(A1⋅E1) ≽ H2|(A2⋅E2) or 
    E2 ⇒ ¬A2 
 
6.4  If (H1⋅A1)|E1 ≽ (H2⋅A2)|E2 and A2|E2 ≽ H1|(A1⋅E1), then A1|E1 ≽ H2|(A2⋅E2) or  
    E2 ⇒ ¬A2  
 
6.5  If (H1⋅A1)|E1 ≽ (H2⋅A2)|E2 and H2|(A2⋅E2) ≽ H1|(A1⋅E1), then A1|E1 ≽ A2|E2 or  
    (A2⋅E2) ⇒ ¬H2 
 
6.6  If (H1⋅A1)|E1 ≽ (H2⋅A2)|E2 and H2|(A2⋅E2) ≽ A1|E1, then H1|(A1⋅E1) ≽ A2|E2 or 
    (A2⋅E2) ⇒ ¬H2                        (6.3-6.6: decomposition) 

 
[Axioms 6.1-6.6 capture the comparative content of probabilistic conditionalization, axiom 
6 for the Popper functions. Think of H1 and H2 as hypotheses, A1 and A2 as auxiliary 
hypotheses, and E1 and E2 as evidence statements. For k = 1,2, P[Hk⋅Ak | Ek] = P[Hk | Ak⋅E1] 
× P[Ak | Ek]. So when P[H1 | A1⋅E1] ≥ P[H2 | A2⋅E] and P[A1 | E1] ≥ P[A2 | E2], we must 
have P[H1⋅A1 | E1] ≥ P[H2⋅A2 | E2], expressed by 6.1. When P[H1 | A1⋅E1] ≥ P[A2 | A2] and 
P[A1 | E1] ≥ P[H2 | A2⋅E2], we must have P[H1⋅A1 | E1] ≥ P[H2⋅A2 | E2], expressed by 6.2. 
When P[H1⋅A1 | E1] ≥ P[H2⋅A2 | E2] and P[A2 | E2] ≥ P[A1 | E1], we must have P[H1 | A1⋅E1] 
≥ P[H2 | A2⋅E] unless P[A2 | E2] = 0 (in which case P[A1 | E1] = 0 as well, and so 0 = 
P[H1⋅A1 | E1] = P[H2⋅A2 | E2], and the values of P[H1 | A1⋅E1] and P[H2 | A2⋅E] are not 
determined by the values of P[A1 | E1], P[A2 | E2], P[H1⋅A1 | E1], and P[H2⋅A2 | E2]), 
expressed by 6.3. axioms 6.4-6.6 are related Popper functions in a similar way.]9 

                                                 
9 From 6.3 and 6.1 we derive the following rule: 

6.3* If H1|(A1⋅E1) ≻ H2|(A2⋅E2) and A1|E1 ≽ A2|E2, then (H1⋅A1)|E1 ≻ (H2⋅A2)|E2 or E1 ⇒ ¬A1. 
From 6.4 and 6.2 we derive: 
6.4* If H1|(A1⋅E1) ≻ A2|E2 and A1|E1 ≽ H2|(A2⋅E2), then (H1⋅A1)|E1 ≻ (H2⋅A2)|E2 or E1 ⇒ ¬A1. 
From 6.5 and 6.1 we derive: 
6.5* If H1|(A1⋅E1) ≽ H2|(A2⋅E2) and A1|E1 ≻ A2|E2, then (H1⋅A1)|E1 ≻ (H2⋅A2)|E2 or 

(A1⋅E1) ⇒ ¬H1. 
From 6.6 and 6.2 we derive: 
6.6* If H1|(A1⋅E1) ≽ A2|E2 and A1|E1 ≻ H2|(A2⋅E2), then (H1⋅A1)|E1 ≻ (H2⋅A2)|E2 or 

(A1⋅E1) ⇒ ¬H1. 
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7. If  A|(B⋅C) ≽ E|F  and  A|(B⋅¬C) ≽ E|F , then  A|B ≽ E|F (alternate presumption)* 
[Probabilistically this axiom follows from additivity together with conditionalization – i.e. 
since P[A | B] = P[A | B⋅C] × P[C | B] + P[A | B⋅¬C] × (1 − P[B | C]), if both P[A | B⋅C] ≥ r 
and P[A | B⋅¬C] ≥ r, then P[A | B] ≥ r. Axiom 7 is a qualitative version of this result. It can be 
proved from the other axioms if the relation ≽ is assumed to be a complete order rather than 
merely a partial order relation – i.e. if ≽ takes all argument pairs to be distinctly comparable 
in strength.] 

 
All relations that satisfy these axioms are weak partial orders – i.e. they are transitive and 
reflexive. Transitivity is guaranteed by axiom 0; reflexivity, A|C ≽ A|C, follows from axiom 3. I 
call the relations that satisfy these axioms proto-support relations because the axioms still need a 
bit of strengthening to rule out some relations ≽ that fail to behave properly. I’ll say more about 
that later. 
 
The asterisk on the name of axiom 7 is to indicate that it follows from the other axioms whenever 
the relation ≽ is also complete – i.e. whenever, for all pairs of sentence pairs, the following 
complete comparability rule also holds (or is added as an additional axiom) for relation ≽: 
 
 either A|B ≽ C|D or C|D ≽ A|B   (complete comparability). 
 
Adding the rule for complete comparability would require that all argument pairs are distinctly 
comparable in strength: for all A, B, C, D, A|B ≭ C|D. Any relation ≽ that satisfies the above 
axioms together with complete comparability is a weak order relation rather than merely a weak 
partial order.10  

                                                 
The rules 6.3*-6.6* are a bit weaker than their 6.3-6.6 counterparts. The following additional 
rules are also derivable from 6.1-6.6. Furthermore, 6.3-6.6 are derivable from 6.3*-6.6* 
together with the following rules (with the aid of 6.1 and 6.2). So we could replace 6.3-6.6 with 
6.3*-6.6* together with the following rules:  
6.3** If H1|(A1⋅E1) ≍ H2|(A2⋅E2) and A1|E1 ≽ A2|E2, then (H1·A1)|E1 ≻ (H2·A2)|E2 or 

(H1·A1)|E1 ≍ (H2·A2)|E2 or E1 ⇒ ¬A1. 
6.4** If H1|(A1⋅E1) ≍ A2|E2 and A1|E1 ≽ H2|(A2⋅E2), then  (H1·A1)|E1 ≻ (H2·A2)|E2 or 

(H1·A1)|E1 ≍ (H2·A2)|E2 or E1 ⇒ ¬A1. 
 6.5** If H1|(A1⋅E1) ≽ H2|(A2⋅E2) and A1|E1 ≍ A2|E2, then  (H1·A1)|E1 ≻ (H2·A2)|E2 or 

(H1·A1)|E1 ≍ (H2·A2)|E2 or (A1⋅E1) ⇒ ¬H1. 
6.6** If H1|(A1⋅E1) ≽ A2|E2 and A1|E1 ≍ H2|(A2⋅E2), then  (H1·A1)|E1 ≻ (H2·A2)|E2 or 

(H1·A1)|E1 ≍ (H2·A2)|E2 or (A1⋅E1) ⇒ ¬H1. 
10 Koopman also provides the following rule as an axiom: 

For any integer n > 1, if A1, ..., An, and B1, ..., Bn are collections of sentences such that 
C ⇒/  ¬C,  C ⇒ (A1∨...∨An),  C ⇒ ¬(Ai⋅Aj),  An|C ≽  ... ≽ A2|C ≽ A1|C,  and 
D ⇒/  ¬D,  D ⇒ (B1∨...∨Bn),  D ⇒ ¬(Bi⋅Bj),  Bn|D ≽  ... ≽ B2|D ≽ B1|D, 
then   An|C ≽ B1|D                       (subdivision)* 

This rule may not seem as intuitively compelling as the others, so I forego it here. Later we will 
see that comparative support relations should be extendable to completely comparable relations. 
Subdivision is derivable in the presence of complete comparability. 
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The above axioms for proto-support relations are probabilistically sound in the following sense: 

For each Popper function P, define the corresponding comparative relation to be the relation 
≽ such that, for all sentences A, B, C, D, A|B ≽ C|D holds if and only if  P[A | B] ≥ P[C | D]. 
Then for each Popper function, the corresponding comparative relation can be shown to be a 
proto-support relation – it satisfies the above axioms. 

 
The axioms for the proto-support relations are not probabilistically complete. Some proto-
support relations are not probability-like enough to be representable by a Popper function. 
Below we add additional constraints (additional axioms) that suffice to characterize the “full” 
comparative support relations. These relations will turn out to be probabilistically complete in 
the sense that each such comparative support relation ≽ is representable by a Popper function P. 
 
The proto-support relations are sufficiently strong to provide as theorems some comparative 
forms of Bayes’ theorem. Here is one example. 
 

Bayes’ Theorem 1:  Suppose  B ⇒/  ¬H1.  
 If  E|(H1⋅B) ≻ E|(H2⋅B)  and  H1|B ≽ H2|B, then  H1|(E⋅B) ≻ H2|(E⋅B). 

 
Think of H1 and H2 as hypotheses, B as common background knowledge and auxiliary 
hypotheses, and E as the evidence. This is an analogue of the following version of Bayes’ 
theorem: 
 

Suppose P[H1 | B] > 0. Then  
P[H2 | E⋅B] / P[H1 | E⋅B] = (P[E| H2⋅B] / P[E| H1⋅B]) × (P[H2 | B] / P[H1 | B]), 
so, if  P[E| H1⋅B] > P[E| H2⋅B] and P[H1 | B] ≥ P[H2 | B], then P[H1 | (E⋅B)] > P[H2 | (E⋅B)].  

 
Here is a second form of Bayes’ theorem satisfied by proto-support relations. 
 

Bayes’ Theorem 2:  Suppose  B ⇒/  ¬H1 , B ⇒/  ¬H2 , and B ⇒ ¬(H1⋅H2). 
 If  E|(H1⋅B) ≻ E|(H2⋅B) , then  

  H1|(E⋅B⋅(H1∨H2)) ≻ H1|(B⋅(H1∨H2))  and  H2|(B⋅(H1∨H2)) ≻ H2|(E⋅B⋅(H1∨H2)). 
 
A straightforward probabilistic analogue goes like this:  

 
Suppose P[H1 | B] > 0, P[H2 | B] > 0, and P[H1⋅H2 | B] = 0. If P[E| H1⋅B] > P[E| H2⋅B], then the 
following posterior probabilities when comparing H1 directly to H2:  P[H1 | E⋅B⋅(H1∨H2)]  >  
P[H1 | B⋅(H1∨H2)] and P[H2 | E⋅B⋅(H1∨H2)]  <  P[H2 | B⋅(H1∨H2)].  

 
This is a comparative expression of the relationship, P[H2 | E⋅B] / P[H1 | E⋅B] < 
P[H2 | B] / P[H1 | B], since P[H2 | E⋅B⋅(H1∨H2)] / P[H1 | E⋅B⋅(H1∨H2)] = P[H2 | E⋅B] / P[H1 | E⋅B] 
and P[H2 | B⋅(H1∨H2)] / P[H1 | B⋅(H1∨H2)] = P[H2 | B] / P[H1 | B]. 
 
4.  The Comparative Support Relations and their Probabilistic Representations 
 
Consider the following additional rules. 
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 8. A|B ≽ C|D  or  C|D ≽ A|B    (complete comparability) 
 
 9.  For each integer m ≥ 2 there is an integer n ≥ m such that for n sentences S1, ..., Sn  

and some sentence G: 
(i) G ⇒/  ¬S1 , 
and for all distinct i, j, 
(ii) G ⇒ ¬(Si⋅Sj) and  
(iii) Si|G ≈ Sj|G.     (existence of arbitrarily large equal-partitions) 
 

An equal-partition (given G) is a collection of pair-wise mutually exclusive sentences (the 
sentences Sk) that are “equally likely” (given G). When sentences G and collection of n 
sentences, S1, ..., Sn, satisfy rule 9 for relation ≽, it can be shown that: (i) (G⋅(S1∨...∨Sn)) ⇒/  ¬S1, 
for distinct i, j ≤ n, (ii) (G⋅(S1∨...∨Sn)) ⇒ ¬(Si⋅Sj), (iii) Si|(G⋅(S1∨...∨Sn)) ≈ Sj|(G⋅(S1∨...∨Sn)), 
and (iv) (G⋅(S1∨...∨Sn)) ⇒ (S1∨...∨Sn). Thus, rule 9 guarantees that for arbitrarily large n, ≽ has 
an exclusive and exhaustive equal-partition based on (G⋅(S1∨...∨Sn)). These partitions can be 
used to provide approximate probability values for the strengths of arguments:  

when (S1∨...∨Sk+1)|(G⋅(S1∨...∨Sn)) ≽ A|B ≽ (S1∨...∨Sk)|(G⋅(S1∨...∨Sn)) we effectively get a 
probability-like approximation for the strength of A|B,  (k+1)/n ≥ P[A | B] ≥ k/n.  

For arbitrarily large partitions (for arbitrarily large values of n) these partitions provide arbitrarily 
close probability-like bounds on the strength of each argument. 
 
Rule 9 is not as strong as needed in most cases. Here is a stronger alternative: 
 
 9+. If A|B ≻ C|D , then for some n ≥ 2 there are sentences S1, ..., Sn and a sentence F such that: 

F ⇒/  ¬S1 , and for distinct i, j, F ⇒ ¬(Si⋅Sj) and Si|F ≈ Sj|F, and F ⇒ (S1∨...∨Sn) , and for 
some m of them,  A|B ≻ (S1∨…∨Sm)|F ≻ C|D.  (Archimedean equal-partitions) 

 
Rule 9+ implies 9, but adds to it a kind of “Archimedean condition”: whenever A|B ≻ C|D, there 
must be an equal-partition that, for sufficiently large n, squeezes a “strength comparison” 
between A|B and C|D. This forces these two arguments to exhibit distinct probabilistic values:  

 P[A | B]  >  m/n  >  P[C | D]. 
A comparative support relation that satisfies rules 8 and 9 but that fails to satisfy 9+ must permit 
some argument pairs for which A|B ≻ C|D, but where A|B and C|D infinitesimally close together 
in comparative strength – i.e. no segment of any equal-partition argument can fit between them. 
There are interesting cases where such non-Archimedean support relations are useful. So I’ll 
treat the full range of relations that satisfy rule 9, as well as the better-behaved subclass of 
Archimedean relations, which satisfy the more restrictive rule 9+. 
 
Here is an intuitive example of the kind of partition required by rules 9 and 9+. Let statement F 
(a.k.a. statement G⋅(S1∨...∨Sn)) describe a fair lottery consisting of exactly n tickets. Each of the 
sentences Si says “ticket i will win”. F says via supportive entailment (or via logical entailment, 
which is stronger): 
 

(1) “at least one ticket will win”: so F ⇒ (S1∨…∨Sn); 
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(2) “no two tickets will win”: so F ⇒ ¬(Si⋅Sj), for each distinct pair of claims Si and Sj; 
(3) “each ticket has the same chance of winning” (and where the argument from F provides 

exactly the same support for the claim “ticket i will win” as for the claim “ticket j will 
win”): so Si|F ≈ Sj|F for each distinct pair of claims Si and Sj.  

(4) furthermore, we suppose that F does not supportively entail “ticket 1 won’t win”: that is, 
F ⇒/  ¬S1 (formally this clause is equivalent to F|F ≻ ¬S1|F; it eliminates the possibility 
that F behaves like a contradiction, supportively entailing every statement). 

 
We could require all comparative support relations to satisfy rule 9. This would not be too 
implausible – it would merely require that the language of each relation ≽ have the ability to 
describe such lotteries for arbitrarily large finite numbers of tickets. Presumable our own natural 
language can do that. So this would be a fairly innocuous requirement.11 Nevertheless, we won’t 
require that comparative support relations employ languages this rich. Rather, it will suffice for 
our purposes to suppose that each support relation is (in principle) extendable to a relation that 
includes such lottery descriptions. I’ll say more about extendability in a bit. Before doing so, let’s 
consider rule 8 more closely. 
 
In many cases a pair of arguments may fail to be distinctly comparable in strength; neither is 
distinctly stronger than the other, nor are they determinately equal in strength. Nevertheless, I 
will argue that each legitimate comparative support relation should be syntactically extendable 
to a complete relation, at least in principle. I’ll provide that argument in a moment. Let’s first 
define the relevant notion of extendability. 
 

Definition: A proto-support relation ≽α  is extendable to a proto-support relation ≽β just 
when the language of ≽β contains the language of ≽α (i.e. contains the same syntactic 
expressions, and perhaps additional expressions as well) and the following two conditions 
hold:  

(1) whenever A|B ≻α C|D, then also A|B ≻β C|D;   
(2) whenever A|B ≈α C|D, then also A|B ≈β C|D. 

 
When ≽α is extendable to ≽β, all argument pairs that are distinctly comparable according to ≽α 
must compare in the same way according to ≽β. Each relation ≽α counts as an extension of itself. 
An extension ≽β of ≽α may employ precisely the same language as ≽α, and may merely extend 
≽α by distinctly comparing some arguments that were not distinctly comparable according to ≽α. 
More generally, ≽β may include comparisons that involve new expressions, not already part of 
the syntax of the language for ≽α. Furthermore, the relationship between ≽α and an extension of 
it, ≽β, need only be syntactic. There is no presumption that an extension of a relation must 
maintain the same meanings (the same semantic content) for sentences it shares with the relation 
it extends (although it certainly may do so). 
 
The proto-support relations commonly permit a wide range of argument pairs to remain 
incomparable in strength. But only those relations among them that can be extended to complete 
relations (i.e. which satisfy rule 8) will be counted among the full-fledged comparative support 
                                                 
11 Rule 9 does not presume that any such lotteries exist. It only supposes that we can construct 
arguments describing them and their implications for prospective outcomes. 
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relation. To see that extendability to a relation that satisfies the completeness rule is a plausible 
constraint, let’s consider what a proto-support relation must be like if it cannot possibly be 
extended to a complete relation. 
 
Extendability is a purely syntactic requirement. That is, an extension ≽β of a relation ≽α need not 
take on any of the meanings that one might have associated with the sentences of ≽α. Rather, an 
extension ≽β of ≽α is only required to agree with the definite comparisons – those of form 
A|B ≻α C|D and E|F ≈α G|H already specified by ≽α (while ≽β continues to satisfy axioms 0-7). 
Thus, a proto-support relation ≽α may only fail to be extendable to a complete relation when no 
complete extension of ≽α is consistent with the (purely syntactic) restrictions on orderings 
embodied by axioms 0-7. That is, for ≽α to be unextendable to a complete relation, the definite 
comparisons (of form A|B ≻α C|D and E|F ≈α G|H) already specified by ≽α must, in conjunction 
with axioms 0-7, require that some argument pairs inevitably remain incomparable in strength 
merely to avoid an explicit syntactic contradiction. In other words, any proto-support relation for 
which there cannot possibly be a complete extension must already contain a kind of looming 
syntactic inconsistency, due to the forms of its definite argument strength comparisons. It only 
manages to stave off explicit formal inconsistency by forcing at least some argument pairs to 
remain incomparable in strength.  
 
It makes good sense to declare specific argument pairs incomparable in strength when, given 
their meanings (their semantic content), there seems to be no appropriate basis on which to 
compare them. But let’s disregard any comparative relation that requires argument forms to 
remain incomparable in order to avoid syntactic inconsistency. Thus, we disregard any relation 
that cannot possibly be extended to a complete relation, not even by radically changing the 
meanings of the sentences involved. 
 
We now define the class of comparative support relations as those proto-support relations that 
can be extended to relations that satisfy rules 8 and 9. Those that satisfy rules 8 and 9+ are a 
special subclass of comparative support relations, the arch (for “Archimedean”) comparative 
support relations. 
 

Definition: Classes of Comparative Support Relations: 
1. A completely-extended proto-support relation is any proto-support relation that 

satisfies rules 8 and 9. 
2. A completely-extendable proto-support relation is any proto-support relation that is 

extendable to a completely-extended proto-support relation (i.e. any proto-support 
relation is extendable to a proto-support relation that satisfies rules 8 and 9). 

Define the comparative support relations to be the completely-extendable proto-support 
relations. They include the completely-extended relations as special cases. 

3. An completely-arch-extended proto-support relation is any proto-support relation 
that satisfies rules 8 and 9+. 

4. A completely-arch-extendable proto-support relation is any proto-support relation 
that is extendable to a completely-extended proto-support relation (i.e. any proto-support 
relation is extendable to a proto-support relation that satisfies rules 8 and 9+). 

Define the arch comparative support relations to be the completely-arch-extendable proto-
support relations. They include the completely-arch-extended relations as special cases. 
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When a proto-support relation ≽α is extendable to one that satisfies rule 9 (together with 8) but 
not to one that satisfies 9+, for some argument pairs, although A|B ≻α C|D, the relation requires 
that A|B be only infinitesimally stronger than C|D. That is, the relationships among arguments 
already specified by ≽α must imply that no extension of it, ≽β, can permit an equal-partition 
argument, (S1∨…∨Sm)|F to fit between A|B and C|D (for any n-sized equal-partition, where 
F⇒β ¬(Si⋅Sj), Si|F ≈β Sj|F, F ⇒β (S1∨...∨Sn)). Such non-Archimedean support relations turn out 
to have interesting features, so we won’t entirely by-pass them here.   
 
Each completely-extendable relation is representable by a Popper function – perhaps by more 
than one. A typically completely-extendable relation may be extend to a variety of distinct 
completely-extended relations. Each completely-extended relation is represented by a unique 
Popper function. The nature of this probabilistic representation is perfectly tight for the arch 
relations, and a bit looser for the other relations. Here are the precise details. 
 

Representation Theorem for comparative support relations:  
1. For each completely-arch-extended comparative support relation ≽, there is a unique 

Popper function P such that for all sentence H1, E1, H2, E2 in the language of ≽, 
P[H1 | E1] ≥ P[H2 | E2] if and only if H1|E1 ≽ H2|E2. 

Note 1: given that ≽ is completely-arch-extended, this condition is equivalent to the 
conjunction of the following: 

(1) if P[H1 | E1] > P[H2 | E2], then H1|E1 ≻ H2|E2; 
(2) if P[H1 | E1] = P[H2 | E2], then H1|E1 ≈ H2|E2. 

Note 2: given that ≽ is completely-arch-extended, this condition is also equivalent to 
the conjunction of the following: 

(1) if H1|E1 ≻ H2|E2, then P[H1 | E1] > P[H2 | E2]; 
(2) if H1|E1 ≈ H2|E2, then P[H1 | E1] = P[H2 | E2]. 

2. For each arch comparative support relation ≽ (which, by definition, must be a 
completely-arch-extendable proto-support relation), there is a (not necessarily unique) 
Popper function P such that for all sentence H1, E1, H2, E2 in the language of ≽,  

if not H1|E1 ≍ H2|E2, then P[H1 | E1] ≥ P[H2 | E2] if and only if H1|E1 ≽ H2|E2. 
Note 1: this condition is equivalent to the conjunction of the following: 

(1) if P[H1 | E1] > P[H2 | E2], then H1|E1 ≻ H2|E2 or H1|E1 ≍ H2|E2; 
(2) if P[H1 | E1] = P[H2 | E2], then H1|E1 ≈ H2|E2 or H1|E1 ≍ H2|E2. 

Note 2: this condition is also equivalent to the conjunction of the: 
(1) if H1|E1 ≻ H2|E2, then P[H1 | E1] > P[H2 | E2]; 
(2) if H1|E1 ≈ H2|E2, then P[H1 | E1] = P[H2 | E2]. 

3. For each completely-extended comparative support relation ≽, there is a unique Popper 
function P such that for all sentence H1, E1, H2, E2 in the language of ≽, 

if P[H1 | E1] > P[H2 | E2], then H1|E1 ≻ H2|E2. 
Note: given the completeness of ≽, this condition is equivalent to the conjunction of 

the following conditions: 
(1) if H1|E1 ≻ H2|E2, then P[H1 | E1] ≥ P[H2 | E2]; 
(2) if H1|E1 ≈ H2|E2, then P[H1 | E1] = P[H2 | E2]. 
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4. For each comparative support relation ≽ (which, by definition, must be a completely-
extendable proto-support relation), there is a (not necessarily unique) Popper function P 
such that for all sentence H1, E1, H2, E2 in the language of ≽,  

if P[H1 | E1] > P[H2 | E2], then H1|E1 ≻ H2|E2 or H1|E1 ≍ H2|E2. 
Note: this condition is equivalent to the following pair of conditions: 

(1) if H1|E1 ≻ H2|E2, then P[H1 | E1] ≥ P[H2 | E2]; 
(2) if H1|E1 ≈ H2|E2, then P[H1 | E1] = P[H2 | E2]. 

 
The representation theorem shows that each completely-arch-extended relation is virtually 
identical to its uniquely representing Popper function. Whenever the representing Popper 
function P for complete-arch relation ≽ assigns P[A | B] = r for a rational number r = m/n, the 
relation ≽  acts like the representing probability function via a rule 9+ style satisfying partition 
for which A|B ≈ (S1∨...∨Sm)|(G⋅(S1∨...∨Sn)).12 When the representing function for ≽ assigns 
P[A | B] = r for an irrational number r, the relation ≽ supplies a sequence of increasingly large 
rule 9+ style partitions (for ever larger n), which supply a sequence of relationships 
(S1∨...∨Sm+1)|(G⋅(S1∨...∨Sn)) ≽ A|B ≽ (S1∨...∨Sm)|(G⋅(S1∨...∨Sn)), where the values of m/n and 
(m+1)/n converge to r as n increases. Associated with each completely-arch-extendable relation 
is the set of Popper functions that represent its various complete-arch extensions.13 
 
More generally, each completely-extended relation (arch or not) is at least nearly identical to its 
uniquely representing Popper function. A completely-extended relation ≽ that fails to be 
completely-arch-extended may exhibit a slight “looseness in fit” of the following kind: its 
representing Popper function P may assign P[A | B] = P[C | D] in cases where although 
A|B ≻ C|D and where no equal-partition can be fitted between A|B and C|D (i.e. they are 
infinitesimally close together).  
 
Associated with each completely-extendable relation is the collection of Popper functions that 
represent its various complete extensions. Each Popper function in the representing collection for 
≽ accurately preserves the precise orderings (≻ and ≈) among the argument pairs it compares  – 
except for infinitesimally close argument pairs, which are always represented as equal.14 
 
5.  Conclusion 
 
Bayesian approaches to confirmation theory represent evidential support for hypotheses in terms 
of conditional probability functions, which assign precise numerical values to each argument 
                                                 
12 I.e., for which (S1∨...∨Sm)|(G⋅(S1∨...∨Sn)) ≽ A|B ≽ (S1∨...∨Sm)|(G⋅(S1∨...∨Sn)). 
13 This is the essence of how the representation theorem is proved. The version of the proof 
provided by Koopman (1940) is easily adapted to the representation of completely-extended 
comparative support relations by Popper functions – clause 3 of the above theorem. The 
remaining clauses this theorem follow easily from clause 3. 
14 Classical probability functions are, in effect, just the one-level Popper functions, those where 
P[A | B] = 1 for all A whenever P[B | C∨¬C] = 0. The comparative support relations that are 
represented by strictly classical probability functions are just those that satisfy the following 
additional rule (which provides an additional restriction on the proto-support relations): 

If ¬B|(C∨¬C) ≽ D|D, then A|B ≽ D|D for all A  (i.e. if (C∨¬C) ⇒ ¬B, then B ⇒ A). 



16 
 

A|B. In most cases these probability assignments are overly precise. For, in most real scientific 
contexts the strengths of plausibility arguments for various alternative hypotheses, as represented 
by prior probability assignments, are fairly indefinite in strength, and so not properly rendered by 
the kinds of precise numbers that conditional probability functions assign. Indeed, most 
plausibility arguments for hypotheses are better rendered in terms of their strength compared 
with arguments for alternative hypotheses, rather than in terms of precise probability values. 
Thus, Bayesian prior probabilities are best represented by ranges of numerical values that capture 
the imprecision in comparative assessments of the extent to which plausibility considerations 
support one hypothesis over another.  
 
Furthermore, in many cases this problem of over-precision also plagues the assignment of 
Bayesian likelihoods for evidence claims on various hypotheses (which represent what 
hypotheses say about the evidence). In realistic cases these will often have rather vague values. 
Indeed, on Bayesian accounts, the import of evidence via likelihoods is completely captured by 
ratios of likelihoods, which represent how much more likely the evidence is according to one 
hypothesis than according to an alternative. In many realistic cases these likelihood comparisons 
will also be somewhat vague or imprecise – best represented by ranges of values.15 
 
This situation places the Bayesian approach to confirmation theory in an embarrassing 
predicament. The Bayesian approach first proposes a probabilistic logic that assigns overly 
precise numerical values to all arguments A|B, and then backs off from this over-precision by 
acknowledging that in many realistic applications the proper representation of evidential support 
should employ whole collections of precise probability functions that cover ranges of reasonable 
values for the prior probabilities of hypotheses, and also ranges for likelihoods in many cases. 
 
The qualitative logic of comparative support described here offers a rationale for this kind of 
Bayesian approach to confirmation, including the introduction of classes of confirmation 
functions to represent ranges of values. The overly precise probabilistic confirmation functions 
are mere representational stand-ins for a deeper qualitative logic of comparative argument 
strength, captured by the comparative support relations. Each representing probability function 

                                                 
15 Example: Precisely how likely is the observed fit between Africa and South America if the 
Continental Drift hypothesis is true? The value of this likelihood is presumably rather vague. To 
assess how the evidence supports the Drift Hypothesis, HD, over the alternative Contractionist 
Hypothesis (that the continents have remained in place since the early molten Earth cooled and 
contracted), HC, we need only assess how much more likely the evidence is according to Drift as 
compared to Contraction, P[E | HD⋅B] / P[E | HC⋅B] (where B consists of relevant background 
and auxiliaries). Even this likelihood comparison will be somewhat imprecise, best represented 
by some range of numbers that capture the vagueness of the comparison. For confirmational 
purposes the approximate size of P[E | HD⋅B] / P[E | HC⋅B] (very large, or extremely small) is all 
that matters. The resulting Bayesian assessment compares posterior probabilities on the basis of 
comparisons of prior plausibility, P[HD | B] / P[HC | B] (where B contains plausibility 
considerations) together with evidential likelihood ratios:  
 P[HD | E⋅B] / P[HC | E⋅B] = (P[E | HD⋅B] / P[E | HC⋅B]) × (P[HD | B] / P[HC | B]).  
Each of these ratios may best be represented by a range of values, characterized by the collection 
of probability functions that provide values within the appropriate ranges. 
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reiterates the qualitative comparisons of argument strength endorsed by the comparative support 
relation it represents. Furthermore, the underlying qualitative logic can directly express the 
incomparability in strength among argument pairs that is common among real arguments. 
Although each representing probability function for a given relation ≽ fills-in with precise 
comparisons among all argument pairs, the whole collection of representing probability functions 
for ≽ captures the incomparability in terms of the available range of ways in which comparisons 
could, in principle, be filled-in, given the definite comparisons provided by ≽.16 

 
Thus, a probabilistic Bayesian confirmation theory employs overly precise probabilistic 
representations because they are computationally easier to work with than the comparative 
support relations they represent. Nevertheless, the features of evidential support that we really 
care about are captured by the comparative relationships among argument strengths, realized by 
the comparative support relations and their logic. The probabilistic representation of this logic 
merely provides a felicitous way to represent the deeper qualitative logic of comparative support. 
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Appendix:  
From the Sparse Axioms 1-6 for Popper functions, we derive the Robust Axioms (1)–(6), as 
follows.  
Notice that (6) is identical to 6, and (4) follows easily from 4; so we only need derive (1)-(3) and 
(5). We derive useful intermediate results along the way. 
(3*) if B |= A and A |= B, then P[A | C] = P[B | C]: directly from 3.  
(3’) if B |= A, then P[A | B] = P[C | C]: suppose B |= A; in 3 replace ‘C’ with ‘B’ to get P[A | B] 

≥ P[B | B]; use 2 twice to get P[C | C] ≥ P[A | B] ≥ P[B | B] ≥ P[C | C].  
(2*) P[C | C] = 1: from ax. 1, for some A and B, P[A | B] ≠ 0; from (3*) and 6, P[A | B] = 

P[A⋅A | B] = P[A | A⋅B] × P[A | B], so P[A | A⋅B] = 1; since A⋅B |= A, from (3’) we have 1 = 
P[A | A⋅B] = P[C | C]. 

(3) if B |= A, then P[A | B] = 1: by (3’) and (2*).  
(2’) 1 ≥ P[A | B]: from (2*) and 2.  
(2#) P[A | B] ≥ 0: if P[A | C] < 0, then P[A | C] ≠ 1 = P[C | C], so 5 yields P[¬A |C] = P[C | C] − 

P[A | C] = 1 − P[A |C] > 1 contradicting (2’).  
(2) 1 ≥ P[A | B] ≥ 0: by (2’) and (2#).  
(5*) P[A | C] + P[¬A | C] = 1 or else P[D | C] = 1 for all D: by 5 and (2*). 
(1) if |= ¬A and |= B, then P[A | B] = 0: suppose |= ¬A and |= B; from (5*) and (3), P[A | B] = 1 

− P[¬A | B] = 1 − 1 = 0 (done) unless P[D | B] = 1 for all D; but “P[D | B] = 1 for all D” 
when |= B contradicts axiom 1, since it would have P[E | F] = 1 for all E and F, as follows: 1 
= P[E⋅F | B] = P[E | F⋅B] × P[F | B] = P[E | F⋅B] × 1 = P[E | F] (by 6 and (4), since B⋅F is 
logically equivalent to F when |= B). 

(5) if C |= ¬(A⋅B), then either P[(A∨B) | C] = P[A | C] + P[B | C] or P[D | C] = 1 for all D: 
Suppose C |= ¬(A⋅B) but not “P[D | C] = 1 for all D”. 
First we derive the following useful intermediate results:  
P[A⋅B | C] = 0, P[B⋅¬B | C] = 0, P[A⋅¬A | C] = 0, P[¬B | A⋅C] = 1, and P[¬A | B⋅C] = 1: 

Since C |= ¬(A⋅B), by (3) and (5*), P[¬(A⋅B) | C] = 1 = P[(A⋅B) | C] + P[¬(A⋅B) | C], so 
P[A⋅B | C] = 0. Since C |= (B∨¬B), by (3) and (5*), P[(B∨¬B) | C] = 1 = P[(B∨¬B) | C] 
+ P[¬(B∨¬B) | C], so 0 = P[¬(B∨¬B) | C] = P[B⋅¬B | C], by (3*). Similarly, 
P[A⋅¬A | C] = 0. Also, from C |= ¬(A⋅B) we have both (A⋅C) |= ¬B and (B⋅C) |= ¬A, so 
from (3) P[¬B | A⋅C] = 1 and P[¬A | B⋅C] = 1. 

Now we consider three cases, showing in each we get P[(A∨B) | C] = P[A | C] + P[B | C]. 
Case 1: Suppose P[B | ¬B⋅C] = 1: 0 = P[B⋅¬B | C] = P[B | ¬B⋅C] × P[¬B | C] = P[¬B | C], 

so P[¬B |C] = 0, so P[B | C] = 1, by 6 and (5*). Since ¬(A∨B) |= ¬B, 0 = P[¬B | C] ≥ 
P[¬(A∨B) | C] ≥ 0 by 3 and (2), so P[¬(A∨B) | C] = 0, then by (5*), P[(A∨B) | C] = 1 − 
P[¬(A∨B) | C] = 1 = P[B | C]; thus, P[A∨B | C] = P[B | C]. Also, 1 = P[¬B | A⋅C], so 
from ¬B⋅A |= ¬B, 3 and 6, 0 = P[¬B | C] ≥ P[¬B⋅A | C] = P[¬B | A⋅C] × P[A | C] = 
P[A | C], so P[A | C] = 0. Thus P[(A∨B) | C] = P[A | C] + P[B | C]. 

Case 2: Suppose P[A | ¬A⋅C] = 1: Then (as in Case 1) P[(A∨B) | C] = P[A | C] + P[B | C]. 
Case 3: Suppose P[B | (¬B⋅C)] < 1 and P[A | (¬A⋅C)] < 1. Then by repeated instances of 

(5*), (3*) and 6: 1 − P[(A∨B) | C] = P[¬(A∨B) | C] = P[¬A⋅¬B | C] = P[¬A | ¬B⋅C] × 
P[¬B | C] = (1 − P[A | ¬B⋅C]) × P[¬B | C] = P[¬B | C] − P[A⋅¬B | C] = P[¬B | C] − 
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P[¬B⋅A | C] = P[¬B | C] − P[¬B| A⋅C] × P[A | C] = P[¬B | C] − (1 − P[B | A⋅C]) × 
P[A | C] = P[¬B | C] − P[A | C] + P[B⋅A | C] = 1 − P[B | C] − P[A | C] + 0; so 1 − 
P[(A∨B) | C] = 1 − P[B | C] − P[A | C]; thus, P[(A∨B) | C] = P[B | C] + P[A | C]. 

 


