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1. Why were you initially drawn to probability theory and/or statistics? 
 
As an undergraduate at the University of Kansas I was initially a math and physics major. In my 
sophomore year I took a Philosophy of Science course from Don Marquis. The two books for the course 
were Ernest Nagel’s The Structure of Science and Wesley Salmon’s The Foundations of Scientific 
Inference. I was immediately enthralled by the Bayesian-frequentist approach to confirmation theory 
presented by Salmon. At the same time I was taking an advanced course in symbolic logic. And it seemed 
to me that inductive logic, including confirmation, should be formalizable as well. Salmon made it clear 
that the Carnapian approach didn’t work. But I thought that some sort of Bayesian approach looked like 
the most promising way to go. I then took Philosophy of Mathematics and more Philosophy of Science 
with Richard Cole, and a course on logical theory with Art Skidmore. I ended up dropping the physics 
major (loved the theory, hated the lab work), and majored in math and philosophy instead. 
 I then went to the University of Minnesota to do graduate work in philosophy. I spent most of my time 
there studying philosophy of science. The Minnesota Center for Philosophy of Science was thriving, and 
an exciting place to be – always lots of top philosophers coming through and giving talks. The Center 
held weekly seminars (not for credit) that focused on a different topic each semester (the Mind-Body 
problem, the nature of laws, confirmation theory, etc.). Early on Herbert Feigl still attended many of the 
meetings, and always had interesting and provocative things to say. I studied logic and philosophy of 
science, including Bayesian approaches to the epistemology of the sciences, with Tony Anderson, John 
Earman, Bill Hanson, Geoff Hellman, Grover Maxwell, and Paul Meehl. All of these guys were on my 
dissertation committee, although Grover Maxwell died quite a while before I completed the dissertation. 
My dissertation advisor was Bill Hanson, who is a magnificent logician. I wrote my dissertation on 
Bayesian confirmation. It was an attempt to logicize confirmation as much as possible. I think that Carnap 
is right about the likelihoods (often) being logical, subject to a treatment in terms of logical form, but that 
prior probabilities cannot depend on logical form alone. The dissertation was an attempt to work this out. 
The main idea is to formalize the logic of direct inference likelihoods in a Bayesian context (on an object 
language rich enough to represent any scientific theory), and then employ Bayesian convergence as a way 
of dealing with the prior probabilities, by washing them out.  
With regard to the formalization of direct inference, I was heavily influenced by a series of articles in the 
Journal of Philosophy by Kyburg and Levi, with a follow-up by Seidenfeld. I wanted to construct, within 
a Bayesian context, a logic for likelihoods from statistical hypotheses to instances based on logical form 
alone – i.e. to construct a logic like Kyburg’s, but that works for Bayesian likelihoods. I approached this 
by starting with the Popper functions extended to full first-order logic, as developed by Hartry Field. I 



 

 

supplemented the object language with ZF set theory, so that it’s rich enough to represent any scientific 
theory, and added a way to express contingent chance claims. The idea then was to add enough 
restrictions to these Popper-Field confirmation functions that they would all agree on the direct inference 
likelihoods from theories containing chance claims to conjunctions of their instances, even in cases where 
those chance claims are embedded in very rich, very complex scientific theories . The difficulty in doing 
this properly is that in a Bayesian context direct inferences are easily defeated when the chance statements 
on which they are based are accompanied by other statements; and trying to spell out exactly when the 
direct inference is defeated, and when not, in terms of logical structure alone turns out to be really 
complicated. (Those familiar with Kyburg’s successive non-Bayesian attempts to do this sort of thing 
know what I mean about how hard it is to get this kind of thing right. Levi has proposed a way to do this 
in a Bayesian context, but I’m not convinced that his proposal works in full generality in terms of logical 
structure alone.) Anyway, my attempt at carrying this project out in the dissertation was not entirely 
successful, but I learned a lot from working on it. I’ve since done additional work on this on and off, and 
believe I’ve found a better approach, but I’m not yet satisfied with it, so haven’t published on it. In any 
case, I had much better luck with the part on Bayesian convergence. I’ve refined that since, and have 
published on it. 
It took me a number of years to complete the dissertation. The project was way too ambitious for a 
dissertation, but I wouldn’t be dissuaded from trying. (I really owe a lot to Bill Hanson for his 
unwavering support , which permitted me to pursue my project to its end.)  
While continuing to work on the dissertation, I got a job at the Honeywell Systems Research Center, 
which is located in Minneapolis. Jan Wald (who has a philosophy Ph.D.) was putting together an artificial 
intelligence group there, and hired me because of my training in formal logic. At Honeywell I had the 
opportunity to experiment with various AI techniques, including Bayesian networks. We worked on 
diagnostic, decision support, and data fusion systems, among others. My work on these applications 
reinforced my respect for Bayesian approaches to uncertain inference. I ended up working at Honeywell 
for about nine years. I left in 1989 to take a job as a faculty member in philosophy at the University of 
Oklahoma, where I’ve been ever since. 
 

2. What is distinctive about your work in the foundations of probability or its 
applications? 
 
I consider myself an “objectivist Bayesian” with regard to inductive inference and confirmation theory. 
I’ve got nothing against subjective degree-of-belief functions. They play an important role in decision 
theory. But I think that Bayesian confirmation functions have to be distinct from Bayesian belief-strength 
functions. There should, of course, be a connection between degree-of-confirmation and degree-of-belief. 
For, presumably the whole point of evaluating the degree-of-confirmation for a hypothesis is to use that to 
influence how strongly the agent should legitimately come to believe that the hypothesis is true. The 
easiest way to get that connection would be to have the confirmation function itself just be the belief 
function. But, it turns out, that won’t work. 
One of the central points of Bayesian confirmation is to bring objective likelihoods to bear in the 
evaluation of hypotheses and theories – to evaluate hypotheses based on what they “say” the evidence 
will be like, which is what the likelihoods represent. The reason that confirmation functions have to be 
distinct from belief functions is that an agent’s belief-function likelihoods cannot easily maintain the 
objective values that confirmation function likelihoods are supposed to have. That’s the lesson we should 
learn from Glymour’s problem of old evidence. And, indeed, this problem turns out to be much worse for 
the objectivity of likelihoods than is generally recognized. An agent’s belief function likelihoods have to 
represent the probability of the evidence when the hypothesis is added to everything else the agent already 



 

 

holds. But generally other (partial) beliefs the agent holds must end up interfering with the objective 
values that the likelihoods are supposed to have for confirmational purposes. For instance, when the 
hypothesis is statistical and the agent has any additional information (even an opinion or hunch) that 
involves how the particular evidential outcome at issue might turn out, it can be shown that this 
information (or hunch) has to interfere with the objective value that the (belief function) likelihood is 
supposed to have. 
For example, suppose ‘E’ is some bit of evidence (e.g. the coin lands heads on the next toss) statistically 
implied to degree r (e.g. 1/2) by a hypothesis H (e.g. the coin is fair, and is tossed in the usual unbiased 
way on the next toss), so that the confirmational likelihood is P[E | H] = r (e.g, for r = 1/2). Let F be any 
statement at all, say some statement that is intuitively not relevant in any way to how likely E should be 
on H (e.g. let F say “Jim will be pleased with the outcome for that next toss”). Now suppose an agent 
becomes certain that ‘either E, or else not E but F’ (either the coin lands heads on the next toss, or it 
doesn’t land heads but Jim will be pleased with the outcome for the next toss). Let B represent the agent’s 
belief function before she becomes convinced that ‘either E, or else not E but F’. Presumably her belief 
function likelihood may possess the objective likelihood value for E on H: B[E | H] = P[E | H]. (If not, 
then my point that her belief function disagrees with the objective likelihood has already been granted 
right up front.). It will turn out that on our analysis, below, the degree of the agent’s belief that F holds 
conditional on ~E&H will be a relevant factor; so let her degree of belief in that regard have any value s 
at all other than 1 (i.e., B[F | ~E&H] = s < 1 – i.e., B[F&~E&H] = s × B[~E&H] < B[~E&H] – e.g. let s = 
1/2). Now the agent learns in a completely convincing way (e.g. I seriously tell her so, and she believes 
me completely) that ‘either E, or else not E but F’, and she updates to a new belief function in the usual 
Bayesian way: for all statements S, Bnew[S] = B[S |  E∨(~E&F)]. But that has to screw up the objectivity 
of her belief function likelihood for E on H, because:  
 
    Bnew[E&H] 
 Bnew[E | H]  =  -------------- 
    Bnew[H] 
 
    B[E&H | E∨(~E&F)] 
   =  -------------------------- 
    B[H | E∨(~E&F)] 
 
    B[E&H&(E∨(~E&F))] 
   =  -----------------------------  
    B[H&(E∨(~E&F))] 
 
    B[E&H] 
   =  --------------------------------  
    (B[H&E] + B[H&~E&F]) 
 
    B[E | H] 
   =  --------------------------------------------  
    (B[E | H] + B[F | ~E&H] B[~E | H])  
 
   =  1/(1 + [(1−r)/r] s) 
 

which cannot possibly be the objective value for the likelihood, r.  (I.e., r = 1/(1 + [(1−r)/r] s) if and only 
if either s=1 or r=1 – e.g. if r=1/2 and s=1/2, then Bnew[E | H] = 2/3 ≠ r.) It turns out that a similar analysis 



 

 

applies whenever the agent’s belief strength for E, B[E], is altered in any way. The alteration need not 
make Bnew[E] = 1 (as in the traditional problem of old evidence), and need not be due to becoming certain 
of a disjunction involving E (as in the example just given). 
The point is that even the most trivial bit of “information” that involves E can completely undermine the 
objectivity of the direct inference likelihoods for Bayesian belief functions. And any real agent will very 
often possess some such trivial “information”. Thus, if confirmation-function likelihoods are supposed to 
have objective (or intersubjectively agreed) values, then an agent’s belief function likelihoods cannot 
generally be those employed by confirmation functions. So confirmation functions must be distinct from 
belief functions. To reiterate, confirmation-function likelihoods are supposed to represent what 
hypotheses “say” about the evidence, not what the agent would believe if the hypothesis were added to 
everything else she holds. So, a full Bayesian account of confirmation and belief will require confirmation 
functions that are distinct from belief functions, and some account of how the degrees-of-confirmation are 
supposed to be employed to inform an agent’s degrees-of-belief.  
It’s also worth noting that on the sort of account I’m pushing, where we take confirmation functions to 
express a logic of confirmation, rather than as expressing belief-strengths of ideal agents, there is no 
“logical omniscience problem” for confirmation functions. The agent who employs confirmation 
functions to evaluate hypotheses is supposed to use them to inform her beliefs, but only to the extent that 
she is cognizant of the logical relationships involved, much as she might use logical entailments she 
knows about to inform her beliefs.. 
So, for confirmation functions the likelihoods represent the empirical import of scientific hypotheses and 
theories – what hypotheses “say” about what the evidential part of the world is like. These should be 
highly objective, or intersubjectively agreed to by the appropriate scientific community. To the extent that 
likelihoods aren’t objective in this way, to that extent the hypothesis makes no empirically testable 
scientific claim. The objective likelihoods are supposed to represent the testable empirical import of 
scientific claims. 
In a Bayesian confirmation theory the posterior probabilities represent the net confirmational plausibility 
of hypotheses after the evidence is taken into account. But posterior probabilities depend not only on 
likelihoods, but also on values for prior probabilities. Prior probabilities represent how plausible 
hypotheses are taken to be on the basis of non-evidential considerations. Such considerations need not be 
wholly a priori. They may well include both conceptual and broadly empirical considerations not 
captured by the likelihoods. However, because such plausibility assessments tend to vary among agents, 
critics often brand them as merely subjective, and take their role in the evaluation of hypotheses to be 
highly problematic. Bayesian confirmation theorists should counter that such assessments often do play 
an important role in the sciences, especially when there is insufficient evidence to distinguish among 
some of the alternatives. And, it should be pointed out, the epithet “merely subjective” is unwarranted. 
Such plausibility assessments are often backed by extensive arguments that may draw on forceful 
conceptual and empirical (but non-evidential) considerations (that go beyond the likelihoods). This seems 
to be the primary epistemic role of the thought experiment. 
Consider, for example, the kinds of plausibility considerations brought to bear in assessing the various 
interpretations of quantum theory. Many of these considerations go to the heart of conceptual issues that 
were central to the development of the theory in the first place, and were originally introduced by those 
scientists who’ve made the greatest contributions to the theory's development, in their attempts to get a 
conceptual hold on the theory and its implications. Such arguments seem to play a legitimate role in the 
assessment of the relative plausibility of alternative views, especially when “distinguishing evidence” has 
yet to be found, or is far from definitive. We may often have good reasons besides the evidence to 
strongly reject some logically possible alternatives as just too implausible, or at least as much less 
plausible than some better conceived candidates. In fact, in evaluating hypotheses, we always do bring 
such considerations to bear, at least implicitly. For, given any hypothesis, logicians can always cook up 
numerous alternatives that agree with it on all the evidence thus far. Any reasonable scientist will reject 



 

 

most of these inventions immediately, because they look ad hoc, contrived, or “just foolish”. Such 
reasons for rejection appeal to neither purely logical characteristics of these hypotheses, nor to evidential 
considerations. All such reasons ultimately rest on plausibility assessments (at least implicitly) that are 
not part of the evidence itself (as represented by the likelihoods). 
 
Although scientists often bring plausibility arguments to bear in assessing their views, such arguments are 
seldom decisive, though they may bring the scientific community into widely shared agreement with 
regard to the implausibility of some “logically possible” alternatives. It is arguably a virtue of Bayesian 
confirmation theory that it provides a place for such assessments to figure into the net evaluation of 
hypotheses. Prior probabilities remain “subjective” in the sense that agents may continue to disagree on 
the relative merits of plausibility arguments – and so disagree on the prior plausibilities of various 
hypotheses. But assessments of priors are far from being mere subjective whims. Moreover, it can be 
shown that when sufficient empirical evidence becomes available, much of the disagreement due to such 
plausibility assessments may be “washed out” or overridden by the evidence. 
 
When hypotheses are empirically (evidentially) distinct, the influence of the prior probabilities can be 
effectively “washed out” (unless they are set extremely close to 0 or 1). There is an especially striking 
Bayesian convergence result that establishes this. The result I have in mind is not subject to the usual 
criticisms of Bayesian convergence results. This result doesn’t depend on prior probabilities at all – only 
on ratios of likelihoods. (So it’s a result that even a non-Bayesian likelihoodist should love.) I call it the 
“Likelihood Ratio Convergence Theorem”. It shows that for empirically distinct hypotheses, if a decent 
body of experiments or observations is conducted, it is highly likely that the resulting stream of evidential 
outcomes will be such as to drive the ratio of the likelihood for a false competitor as compared to the 
likelihood for the true hypothesis to approach zero. This result doesn’t suppose that the evidence is 
“identically distributed” – so it applies to almost any pair of empirically distinct hypotheses. It’s a “weak 
law of large numbers” type result that gives explicit lower bounds on the rate of convergence – there’s no 
need to wait for the infinite long run. It is a “convergence to truth” result (not “merely convergence to 
agreement”). It permits the non-evidential prior probabilities to be reassessed and changed at will – e.g., 
as new conceptual and “broadly empirical” considerations are introduced. And it doesn’t depend on 
countable additivity (though I personally have no problem with countable additivity, where appropriate). 
It follows from this result about likelihood ratios that the posterior probabilities of false hypotheses (when 
compared to a true hypothesis) will be driven ever closer to zero. As this happens, the posterior 
probability of the true hypothesis (or its disjunction with empirically equivalent rivals) approaches 1. The 
Likelihood Ratio Convergence Theorem itself depends only on the workings of the likelihoods -- they do 
all the heavy lifting in “washing out “ priors, and bringing about the convergence of posterior 
probabilities. 
 

3. How do you conceive of the relationship between probability theory and/or 
statistics and other disciplines? 
 
Probability plays an essential role in most of the sciences. It provides the logic of hypothesis confirmation 
(usually via likelihoods – priors and posteriors are often not made explicit). Quantum theory is essentially 
probabilistic. There I take the relevant notion to be that of “objective chance”, or “propensity”, or “causal 
probability”. In higher level sciences probability plays an important role in modeling phenomena. There 
the models again tend to draw on something like the notion of “objective chance”, or “propensity”, or 
“causal probability”, although these notions are (to a large extent) employed by the models as a way of 
abstracting away form an unmanageable multitude of specifics and details. In the social sciences the 
notion of subjective or personal probability is quite useful for modeling the preferences and actions of 
agents. 



 

 

 

4. What do you consider the most neglected topics and/or contributions in 
probability theory and/or statistics? 
  
Bayesian convergence results – i.e. results on the washing out of prior probabilities – have gotten a bum 
rap. In particular, the Likelihood Ratio Convergence Theorem overcomes all of the usual objections to 
Bayesian convergence results. But it has gotten almost no attention. One still inevitably hears the same 
old obsolete objections to Bayesian convergence repeated.  
 

5. What do you consider the most important open problems in probability 
theory and/or statistics and what are the prospects for progress? 
 
I think we need a better foundation for decision theory. One sort of improvement would be to disentangle 
preference from belief and confidence. That is, traditional accounts, like those of Savage and Jeffrey, set 
down axioms for preference relations, and then via representation theorems show that the notion of 
preference can be represented in terms of probabilities and utilities, such that expected utilities recover the 
preference relations. Some of the axioms these accounts draw on don’t look very plausible as constraints 
on “preference”. That may be due to the fact that the “preference axioms” have to be strong enough to 
implicitly encode comparative confidence relations as well (which in turn give rise to probabilistic belief 
strengths via the representation theorems). Thus, the notion of belief or confidence only arises 
“pragmatically”, in the representation of preferences via probabilities (i.e. degrees of confidence) together 
with utilities. Comparative confidence is not a basic notion within the theory of preference.  
Philosophically this approach was originally motivated by the idea that “belief and confidence” have to be 
operationalized in terms of their role in preference and choice behavior. These days most of us are no 
longer so squeamish about attributing real mental/cognitive states like belief and confidence to agents. 
Radical behaviorism has gone by the way. So it makes good sense to axiomatize comparative confidence 
on its own. And, in fact, we already know how to do that in an intuitively plausible way. The idea, then, is 
to add to the comparative confidence axioms a set of really plausible axioms for preference, and then 
prove an appropriate representation result for that account of confidence and preference that shows how 
they are captured by probabilities and utilities. Jim Joyce’s approach in his book on Causal Decision 
Theory is an important move in this direction. But I think that better axioms, that disentangle preference 
from confidence more clearly, should be available. And perhaps such a reworking, if done right, would 
generalize decision theory so as to handle various paradoxical cases – e.g., cases where the expected 
utility is infinite, as in the old St. Petersburg game, or is not well-defined, as in the Pasadena game 
introduced by Nover and Hájek.  
I also think that that something might be learned from working out the details of a Bayesian account of 
direct inference likelihoods in terms of the logical form of the statements involved. Practitioners would no 
more employ such a logic than do mathematician employ formal deductive logic to prove mathematical 
theorems. But formal deductive logic provides a “standard of rigor” for the mathematician in the sense 
that any mathematical “proof” of a theorem that could not in principle be reconstructed in formal logic is 
not “really a proof” after all. A proper account of direct inference likelihoods should provide a similar 
standard for inference from complex statistical theories to collections of their instances. In the deductive 
case, having such a standard has taught us important things about the nature of logic and mathematics. 
Perhaps such a standard for direct inference likelihoods would tell us important new things about the 
nature of statistical inferences (e.g., about the nature and role of the notion of “randomness” needed to 
warrant at least some such inferences). 


