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1. Introduction

Bayesians assess the inductive support for theoretical hypotheses on the basis of
two sorts of factors, one fairly objective, the other highly subjective. The objective
factor consists of the likelihoods or direct inference probabilities that theoretical hy-
potheses specify for evidential events. This is the means by which evidence affects in-
ductive support. The subjective factor consists of the prior probabilities assigned to
the various competing hypotheses. For a Bayesian agent the prior probability of a hy-
pothesis represents how plausible the agent considers the hypothesis to be before the
impact of evidence is considered, and Bayesian agents may radically differ in their
initial plausibility assessments. Bayes’ formula combines likelihoods with an agent’s
prior probabilities to produce the agent’s posterior probability for each hypothesis.
Posterior probabilities represent how plausible an agent considers the hypothesis to
be after the evidence is taken into account. Thus, to the extent that the values of sub-
jective prior probabilities continue to affect the values of posterior probabilities as ev-
idence accumulates, Bayesian agents will continue to differ regarding how plausible
they consider theoretical hypotheses to be. If Bayesian induction is to yield either an
objective assessment or intersubjective agreement among agents regarding the induc-
tive support for hypotheses, then the evidence must somehow produce a convergence
to agreement among the posterior probabilities of different Bayesian agents in spite of
their initial disagreements about the plausibilities of the hypotheses. Hence, advocates
of Bayesian induction have investigated the circumstances under which evidence
might “wash out” the effects of subjective priors and bring agents into agreement on
posterior probabilities. Bayesian convergence theorems establish conditions under
which accumulating evidence can induce agents to converge to agreement.

In this paper I will describe some important features of Bayesian convergence, in-
cluding some features that have not been widely recognized by Bayesian logicians. |
will discuss three sorts of Bayesian convergence results. The first shows how the ob-
jectivity of simple inductions, which assess the likelihoods of individual events, de-
pends on the objectivity of posterior probabilities of general theoretical hypotheses.
This sort of convergence result shows the pivotal role of theoretical hypotheses in
systematizing simple inductive inferences in a manner that bolsters their objectivity.
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The second convergence result reveals that (except in very special circumstances) evi-
dence can induce Bayesian probability functions to converge to agreement on the pos-
terior probabilities for theoretical hypotheses only if the convergence is to 0 (refuta-
tion) or 1 (confirmation). The third result establishes general conditions under which
the evidence will very probably compel posterior probabilities of theoretical hypothe-
ses to converge to 0 or 1.

2. Simple Induction

Simple induction is a form of inference in which an agent infers the probability
that some particular outcome e will result from some initial state of affairs ¢ on the
basis of some sequence of evidential events. Simple inductions are inferences about
specific “occurrent events” rather than general hypotheses or theories. Let
‘(c1cy ... cy)’ represent a conjunction of descriptions of the initial states, initial condi-
tions, or experimental arrangements for a series of past observations, and let their re-
spective outcomes form the conjunction ‘(e ep-....ey) . I will use ‘c™” to abbreviate
the conjunction ‘(c|-cy-...-cy)’ of descriptions of n initial states, and ‘e’ to abbreviate
the conjunction of the n descriptions of respective outcomes. Agents may also employ
some relatively uncontroversial background knowledge b as a premise in simple in-
ductive inferences. Background knowledge (including auxiliary hypotheses) repre-
sented by ‘b’ will typically include relatively uncontroversial claims about how pieces
of familiar instrumentation work and about methods and conditions under which vari-
ous kinds of observable phenomena may be reliably detected or measured.

The evidence for a simple induction may be a sequence of events that are very
similar to the event whose probability is to be inferred—as when we infer the proba-
bility that the next toss of a particular bent coin will come up heads from a sequence
of outcomes of previous tosses of the same coin. In such cases simple induction is
typically called induction by enumeration. But, under the term simple induction 1
mean to include a much broader class of inferences than those that merely employ
enumerations of similar cases. In general the evidence for simple inductions may be a
very diverse collection of previous events. The evidence might include descriptions of
how other objects of various shapes have tumbled, and how they have bounced on
different surfaces. Indeed, the simple inductive evidence for an event could include all
of the evidence that one might normally employ in the confirmation of the kinds of
theoretical hypotheses that would be relevant to the individual event in question.

Let o and f§ be two Bayesian agents whose respective probability functions are Py,
and Pg. For any sentences A and B, P,[A | B] represents o’s conditional probability
for A given B, her assessment of how probable (how plausible, how likely to be true)
A would be if B were true (and similarly for PB[A | B]). For r a real number between
Oand 1, ‘Pylelc-cMeM-b] =1’ represents the simple inductive probability of e on
(c-celb) for agent a. Le. if the premises in the conjunction *(c.c™el'b)’ represent
o’s total relevant evidence regarding e, then o’s rational degree of confidence in e,
the plausibility of e for o, should be r.

Even when agents possess the same total evidence, they may strongly disagree on the
simple inductive probability of an outcome e of condition c—i.e. the probability values r
and s for the simple inductive inferences Pglelc:c-e'b] = r and Pglelc-cMel'b] = s may
differ greatly. How might agents be induced to come to agreemen?about the probablhty
of e as the evidence accumulates? If the evidence could bring the agents to concur on the
truth of some general theoretical hypothesis that states deterministic or stochastic laws
governing situations like c, then they would come to agree on how likely e is. Each agent
would invoke the theoretical hypothesis, together with ¢ and b, and arrive at the same
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conclusion about the likelihood that e is true. Indeed, one of the primary reasons that
agents seek to confirm a theoretical hypothesis is so that it may be used as a kind of ob-
jective inference ticket that syszematizes simple inductions. The role of theoretical hy-
potheses in the systematization of simple inductions is central to the scientific enterprize.
We will see precisely how inductive systematization works in a Bayesian context after
first exploring the relationship between theoretical hypotheses and descriptions of indi-
vidual events from a Bayesian perspective.

3. Theoretical Hypotheses and Likelihoods

Let H = {hy, ho, ...} be a class of competing theoretical hypotheses that bear on
whether event e will result from condition c. H may contain an infinite number of al-
ternatives, and two Bayesian agents « and f§ may disagree widely on how plausible
they are. But suppose that ¢ and J are like-minded enough that they consider only the
theoretical hypotheses in H to have some non-zero degree of initial plausibility. Thus,
for each agent the sum of prior probabilities of hypotheses in His 1 (i.e. Zj Pa[hjlb] =
1=2; Pﬁ[h~|b]). And since the hypotheses in H are alternatives, any distinct pair of

them,Jhi an hj, should be incompatible (i.e. Pa[hi'hjlb] =0, and similarly for B).

The hypotheses in H may be deterministic or statistical, and they may be extreme-
ly broad theories or their scope may be quite narrow. But whatever their scope,
Bayesians typically suppose that the principal epistemic role of theoretical hypotheses
is to underwrite relatively objective probabilities for individual events. Taken together
with initial conditions ¢ and background knowledge b, each theoretical hypothesis h;
should provide a fairly unambiguous indication of the probability that e will occur Gf
h; is true). This is one of the main reasons that we construct theoretical hypotheses in
the first place. Bayesians usually call these probabilities /ikelihoods or direct infer-
ence probabilities. Likelihoods take the form Py[elc-h;b] =1, and Bayesian agents are
supposed to generally agree on their values.

Logicist Bayesians usually call likelihoods direct inference probabilities. Logicists
think of likelihoods as objective, logical relationships, as an extension of the logical
entailment relation to a form of probabilistic entailment that can logically link stochas-
tic object-language sentences (e.g. about propensities) to descriptions of individual
chance events. By contrast, Personalist Bayesians do not think of likelihoods as logi-
cally determinate, but they also usually consider likelihoods to have a “more objec-
tive” status than other probabilities. Personalists often maintain that relative to theoret-
ical hypotheses there will usually be a high degree of intersubjective agreement among
Bayesian agents on the likelihoods of events. Indeed, the main rational for using
Bayes’ Theorem to calculate posterior probabilities of theoretical hypotheses is that
the likelihoods are generally considered by Bayesians to be more objective, or more
subject to intersubjective agreement than the posterior probabilities they are used to
calculate. Henceforth 1 will suppose that agents agree on likelihoods for events relative
to hypotheses in H. As a result we may drop the subscripts ‘e’ and ‘B’ from likeli-
hoods, and for each hypothesis h; we write Py[elchj-b] = Pﬁ[elc-hi-b] = P[elc-hy bl

There is another important facet to the kind of objectivity that theoretical hypothe-
ses should afford likelihoods of events. Consider the probability of event e relative to
both (c'h;b) and to the previous evidence (ch-eM )—i.e. consider P fel(c-hy-b)-(c™-e™)].
When {(c*h;b) furnishes a direct inference probability Plelc-h;b] =, the old evidence
(cM-eM) should become irrelevant to the probability of e (relative to (c-h;'b)). The idea
is that the old evidence plays it’s role through the inductive support it provides for h;.
But given that h; (together with (c-b)) is true, the old evidence should be screened off
from influence on the probability of e. Thus, we may reasonably suppose that the fol-
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lowing independence condition holds for each Bayesian agent oi: Pglel(c-hjb)-(c-eM)]
= P[elc-hj-b]. If a hypothesis failed to screen off predicted events from previous evi-
dence in this way, then each time an agent appealed to the hypothesis to predict an
event she would have to employ a vast collection of previous observational and ex-
perimental data as initial conditions. This would largely undermine one of the chief
reasons for formulating theoretical hypotheses in the first place. Imagine what it
would be like if to compute a future location for a planet we not only had to appeal to
a gravitational theory and a few observations of the planets’ past locations, but also
had to employ in the computation all of the data from the experiments and observa-
tions that went to confirm the theory of gravitation.

Finally, another plausible independence condition will be used in the next section.
The initial condition statement c that combines with a hypothesis to determine the
likelihood of an outcome should not by itself function as evidence for or against the
hypothesis. It should only become relevant to the support of a hypothesis when it is
conjoined with its associated outcome e. That is, although adding (c-e) to any previ-
ous evidence might count as additional evidence for h;, when the outcome e is still in
question, c should not by itself be relevant to the posterior probability of h;. Thus, for
each agent o we should have P lhjlc-ch-ef-b] = Py [h;lch-eMb]. (Equivalently, relative
to (c™-e™b), the initial condition ¢ should be no more likely to have occurred if h; is
true than if it is false, i.e. Pa[cthj-(c™e™b)] = Pafcl—h;-(cMelb)].)

We are now ready to see how agents may be induced to come to agreement about
the probability of an event e as the evidence accumulates. The main idea is simple. If
the accumulating evidence comes to strongly support the same hypothesis in H for all
agents, then that hypothesis may be used as a premise that generates a likelihood for e
on which all agents agree. Thus, inductive confirmation of hypotheses can system-
atize simple inductive inferences. In the next section I will spell out the details of this
strategy from a Bayesian perspective.

4. Bayesian Convergence for Simple Inductions
Under the conditions described in the previous section the convergence to agree-
ment of simple inductions for Bayesian agents reduces to their convergence to agree-

ment on the posterior probabilities of the theoretical hypotheses in H. To see this no-
tice that for any Bayesian agent o

(I)  Pglelc-cMen-b]

e Pa[el(ohj'b)'(c“'c“)] X P(x[hjlc-c“‘e“-b]
E} P[elc-hj'b] X Pa[hjlc”'emb].

It

The first line of this equality is a theorem of probability theory (since H is a set of
mutually incompatible hypotheses to which Bayesian agents assign probabilities that
sum to 1). The second line follows directly from the first line and the two indepen-
dence conditions described in the previous section.

Equation (I) exhibits the connection between simple inductions, likelihoods, and
Bayesian theory confirmation. It suggests two different sorts of convergence for simple
inductions. The first is the kind that comes from highly confirming a hypothesis in H. If
the posterior probability that o assigns hypothesis h; approaches 1 as the evidence in-
creases (i.e. if Pg[hilct-elb] —> 1, as n increases), then the simple induction probabili-
ties for a will approach the likelihoods that h; specifies (i.e. Pyfelc? et b} —>
Plelc-h;'b]). Call the convergence to 1 of agent &’s posterior probabilities for a hypothe-
sis (ané the convergence to 0 of its alternatives) Type | Hypothesis Convergence for .
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Call the convergence of o’s simple inductive probabilities to the likelihoods specified
by a hypothesis Type I Simple Inductive Convergence for a.. Then the first convergence
result that flows from equation (I) says that, for each Bayesian agent:

Type 1 Hypothesis Convergence implies Type I Simple Inductive Convergence.

Equation (T) also suggests a second sort of Bayesian convergence, a variety of conver-
gence to agreement among agents. Call the convergence to agreement of agents o and B
on their posterior probabilities for all hypotheses in H Type 2 Hypothesis Convergence for
o and B (ie. for each hj, | Pa[hj|c“~e“~b] -P [hjlc“‘e“'b] | —> 0). Call the convergence to
agreement by o and f3 on the probabilities f%r simple inductions Type 2 Simple Inductive
Convergence for o and B (i.e. | Py[elch-el-b] - Pglelc™el-b] | —> 0). Then the second sort
of convergence result that flows from equation (I) is that, for each pair of agents:

Type 2 Hypothesis Convergence implies Type 2 Simple Inductive Convergence.

Each of the two types of simple inductive convergence lends a kind of objectivity to
simple Bayesian inductions. Each shows how the Bayesian evaluation of hypotheses
leads to a systematization of simple inductions by reducing the convergence problem
for simple inductions to a convergence problem for theoretical hypotheses. Indeed, in-
ductive systematization turns out to be even more regimented than one might have ex-
pected. For, somewhat surprisingly:

Type 2 Hypothesis Convergence implies Type I Hypothesis Convergence.

That is, if evidence can bring a pair of Bayesian agents who possess even moderately
diverse prior probabilities for theoretical hypotheses (in a sense to be made precise in
the next section) into agreement about posterior probabilities, then they must come to
agree that the posterior probability of one particular hypothesis, h;, approaches 1 (and
posteriors of its competitors approach 0).

In the next section I will explain the connection between the two types of hypothesis
convergence in more detail. Its implications for the nature of simple induction are strik-
ing. If evidence induces agreement among Bayesian agents on the probability of an event
(Type 2 Stmple inductive Convergence) by causing the agents to converge to agreement on
the posterior probabilities of hypotheses (Type 2 Hypothesis Convergence), then it may do
so only by raising the posterior probability of one hypothesis towards 1 for each Bayesian
agent (Type 1 Hypothesis Convergence), thus forcing the simple inductions of all agents
towards agreement with the (direct inference) likelihoods specified by that hypothesis
(Type 1 Simple Induction Convergence).

5. Likelihood Ratios and Bayesian Convergence for Theories
Bayesian induction regarding theoretical hypotheses essentially depends on likeli-
hood ratios. Likelihood ratios are ratios of direct inference probabilities for compet-
ing hypotheses and will be abbreviated by ‘LR[ej/i]’, where by definition:
LReMj/i] = PleMc™h;b] / PleMic™h;-b].

Likelihood ratios measure how many times more (or less) likely the evidence would
be according to one hypothesis as compared to another.

The central role of likelihood ratios in Bayesian induction becomes apparent when
we consider the ratio of posterior probabilities for a pair of hypotheses. The ratio of
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their posterior probabilities equals the product of their likelihood ratio with the ratio
of their prior probabilities:

an Pa[hjle“~cn~b] [ Pylhjle®-c?b] = LR[eMj/i] x (Pa[hjlb] / Pylhjib]).

This equality is a theorem of probability theory (provided that the probability of
the initial conditions is the same relative to each hypotheses— i.e.Pg[c?lh;b] =
PglcMh;-b]). For simplicity I will assume that this proviso holds; a much weaker as-
sumption would suffice, see (Hawthorne, forthcoming), but would complicate the ex-
position unnecessarily.

The relationship between ratios of posterior probabilities and likelihood ratios ex-
pressed by equation (II) is really all there is to Bayesian induction for theoretical hy-
potheses. The absolute probability of a hypothesis comes directly from the sum of
these ratios. To see this, first consider the odds, Q, against a hypothesis h; relative to
evidence, defined as follows:

()  Qgu[—hjlecib] = Py[—hileMch-b] / Pylhilen-clb]
= 34 Polhjlen-clb] / P [hylen-chb].

The odds against a hypotheses is the sum of the relative plausibilities for its competi-
tors, the sum of instances of equation (II). Equations (II) and (III), then, imply the fol-
lowing relationship between the odds against a hypothesis and likelihood ratios:

(V) Qql—hjletchb] = T LRIeMj/] x (Polhjib] / Polhlb]).

The probability of a hypothesis on evidence is related to the odds against the hypothe-
sis by the following formula:

) Pylhjlef-c-b] = 1/(1 + Qy[=hjle™c™b]).

Taken together, equations (IV) and (V) express a form of Bayes’s theorem in terms
of the odds against a hypothesis; this formulation makes the role of the likelihood ra-
tios more perspicuous than the more usual form of the theorem, which is:

VD) Py flhjlef-ctb] = PleMc™hjb] x Pglhjlb] /Zj P[e“!c“'hj~b] X Pg[hjlb].

If h; comes to make the evidence negligibly likely in comparison to some alternative,
hj—i.e. if LR[ei/j] converges to O—then the inverse likelihood ratio, LR[elj/i], blows
up to infinity, and the odds against h; blow up with it, by equation (IV). Hence, by equa-
tion (V), the probability of h; goes to 0. On the other hand, if every alternative to by
makes the evidence negligibly likely in comparison to hy—i.e. if for every altematlve h s
LR[eMj/i] converges to O—then by equation (IV) the odds against h; converge to 0.
When this happens, equation (V) says that the probability of h; converges to 1.

Now, suppose the accumulating evidence does not drive the probability of h; to ei-
ther 0 or 1. Then for some alternative hypothesis h;, the likelihood ratios LR[efj/i]
will neither blow up nor converge to 0. If these likelihood ratios do not go to ex-
tremes, then equation (II) implies that the ratio of posterior probabilities of h; to h;
will remain under the influence of their prior probabilities. Thus, if the prior probabil-
ities of agents o and B diverge radically for h; and h;, then so must their posterior
probabilities. Indeed, if the likelihood of evidence rélative to h; agrees with the likeli-
hood relative to h;, then LR[e"j/i] = 1, and the evidence yields no change in the ratio
of their posterior probabilities from the ratio of their priors. So, when the evidence
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fails to take the likelihood ratios to extremes, the initial plausibility assessments will
continue to significantly affect the posterior probabilities of hypotheses.

In light of the central role played by likelihood ratios in Bayesian induction the
following theorem should not be too surprising. See (Hawthorne, forthcoming) for
details and a proof.

Theorem. Non-Zero Convergence is Convergence to One.
Let h; be some hypothesis in H, and suppose that the following conditions are
satisfied:

i) for agent « there is a number r such that, for all n, P[hjleM-c?b]-=r1 > 0;

ii) there is another agent [ who’s probability function Pﬁ modestly differs with
P, on the prior plausibilities for hypotheses in the sense that there is some
fraction q between 0 and 1 such that, for every hj in H other than h;,
Pglhilb] < g x Py lhilb];

B g

iii) limy| Pa[hilen-c“bj] - PB[hiIe"-c“'b] I=0.

Then, for every h; in H other than h;, lim, LR[e"j/i] = 0; and lim; Py[hjle™-c™b] = 1.

A modest difference between two agents o and [ (as expressed in condition (i1)) simply
means that for all alternatives to a hypothesis h; in H, agent B’s prior probabilities for
the alternatives are at least slightly below (e.g. less than 99.99% of) the respective prior
probabilities that o assigns them. The only hypothesis to which 3 assigns a higher prior
probability than & is h;. The theorem implies that if a community of Bayesian agents is
diverse enough to contain even one pair of agents who modestly differ on a hypothesis
hj (which doesn’t acquire an arbitrarily low posterior probability), then these two agents
can converge to agreement about the posterior probabilities of hypotheses only if the
whole community comes to agree that the evidence increasing confirms h; and increas-
ing refutes its competitors (since, for all alternatives h;, lim,, LR[eDj/i] = O for every
agent). (Alternatively, if h; acquires an arbitrarily low posterior probability for some
agent o, then for some h;, LR[eNlj/i} must get arbitrarily large, by equations (V) and
(IV); so h; acquires an arlbitrarily low posterior probability for all agents.)

It takes just one modestly differing pair of agents in the community for the theorem
to apply. There are, of course, special classes of probability functions, representing
highly restricted communities of Bayesian agents, for which convergence short of 0
and 1 may occur. Suppose, for example, that all agents in a community agree on the
prior probabilities for most hypotheses, but disagree on priors of a few. If all of the hy-
potheses on which they initially disagree become increasingly refuted by the evidence,
then everyone in the community will converge on common values other than O or 1 for
posterior probabilities of the unrefuted hypotheses. However, if the community con-
tains even one agent who’s probability function modestly differs from another’s (on a
hypothesis who’s posterior remains above some r > 0), then convergence to agreement
implies that every hypothesis converges to 0 or 1 for all agents in the community.

Finally, notice that evidence can only distinguish between hypotheses in H that
disagree on the likelihoods of at least some possible events. The influence of the prior
probabilities of empirically equivalent hypotheses cannot be washed out unless each
is refuted relative to some other empirically distinct hypothesis. If empirically equiva-
lent alternatives to the true hypothesis are among the alternatives in H, then at best the
evidence can refute their empirically distinct competitors, and bring the disjunction of
the true hypothesis with its empirical equivalents in H to converge to 1. The relative
sizes of posterior probabilities of the true hypothesis and its empirical equivalents re-
mains equal to the relative sizes of their priors (by equation (II)).
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6. The Likelihood of Obtaining Refuting Evidence

Thus far I have argued that Bayesian convergence ultimately reduces to the con-
vergence of posterior probabilities of theoretical hypotheses to either O or 1.
Equations (IV) and (V) together show that a hypothesis h; can become highly refuted
only if at least one alternative h; makes the evidence much more likely than does h;,
so that LR[e;j/i] blows up. And hj may in turn become refuted relative to some other
hypothesis. If, however, h; is to becomc highly confirmed, it can only do so only by
driving LR[eplj/i] to O for all alternative hypotheses h in H. Thus, the crucial questlon
becomes: Is there any reason to think that accumulatmg evidence will cause empiri-
cally distinct alternatives of the true hypothesis to become increasingly refuted rela-
tive to the true hypothesis via likelihood ratios? I will briefly describe a third kind of
Bayesian convergence theorem that establishes that if two hypotheses are empirically
distinct, then a sufficiently long sequence of evidence can almost certainly do the job.

L.J. Savage’s Bayesian convergence theorem (1972, 46-50) is just such a result. It
says that if the accumulating evidence consists of a sequence of independent, identical-
ly distributed events (i.e. if the evidence is drawn from repetitions of the same kind of
observation or experiment, like repeated tosses of the same coin), then false alternative
hypotheses will almost certainly become highly refuted, and the true hypothesis (or its
disjunction with empirically equivalent competitors) will become highly confirmed.

Hesse (1975) and Earman (1992) argue convincingly that Savage’s theorem pre-
supposes conditions on the evidence that are unrealistic for most real cases of scientif-
ic theory testing. In particular, Savage’s assumption that the evidence is a sequence of
independent, identically distributed events is generally not satisfied. Hesse and
Earman also point out that Savage’s theorem puts no bounds on the rate at which con-
vergence takes place; for all we know a billion observations would not be enough to
bring about any noticeable degree of convergence.

There is a generalized version of Savage’s theorem, (in Hawthorne, forthcoming) that
avoids the main objections raised by Hesse and Earman. In this version of the theorem the
evidence need not consist of identically distributed events, nor is it required to consist of
independent events (although the independence of evidential events relative to a theory is
a perfectly reasonable assumption in scientific contexts). This version also provides
bounds on the rate of Bayesian convergence that explicitly depend on a quantitative infor-
mation-theoretic measure of the quality of the evidence. I do not have space to go deeply
into the details of the theorem, but I will briefly describe its main features.

Suppose that h; is a true hypothesis in H (although, of course, the agents are un-
aware of its truth) and let h; be one of its empirically distinct competitors. Also sup-
pose that the background cfalms b are true and that a sequence of initial states or ob-
servational conditions c? holds. Let E™ be the set of all possible outcome sequences
that might result from c™. That is, each member of E? is a conjunction eP that describes
a possible sequence of outcomes that may result from the conditions described by ¢B.

Hypothesis h; will assign a higher likelihood to some of the outcome sequences
described in ER than does the competitor h;, and it will assign a lower likelihood to
others. This is just what it means for h; and h to be empirically distinct. Consider the
following subset of possible outcome sequences in E": Sf(m) = {e" le" € EMand
LR[eMj/i] < 1/2m}. Each outcome sequence in the set S“g is one for which the like-
lihood according to h; is a factor of more than 21 (e.g. 2*Y*) times larger than the
likelihood hy specifies for it.
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Let ‘V[ST(m)]’ denote the disjunction of all of the possible outcome sequences in
SB(m). ‘V{S(m)]” asserts that, for the first n observations ¢, one of the outcome se-
quences will occur that makes the likelihood ratio LR[e™j/i] less than 1/2™M. If
‘VIST(m)]’ is true for some very large value of m (e.g. m = 100), then, an e does
occur that makes LR[efj/i] extremely small (e.g. less that 1/210(5). Generally this will
make h; highly unlikely on the evidence (relative to h;).

How likely is it that “V[S™(m)]’ is true? The true hypotheses h; answers this ques-
tion with the following direct inference probability:

P V[SR(m)] | cMhy-b] = 1 - (1/n) x VOINi/jli] / BOIM[ifjli] - (m/n))2.

This probability will converge to 1 as n increases, provided only that hj differs
from h; (at least slightly) about the likelihoods of some possible outcome Sequences.
(The terms EQIM[i/jli] and VOIM[i/jli] are information-theoretic measures of the extent
of disagreement between h; and h; about the likelihoods of the various possible out-
comes. They are, respectively, a measure of the mean and variance of the expected
values of log(LR[eMi/j]) in the set EN. If hy differs even slightly from h; regarding the
likelihoods of some possible outcome sequences in ER, for increasing values of n,
then the ratios (VOIN[i/jli] / EQIM{i/jli]2) will be bounded above. It follows immedi-
ately that for any chosen value of m, P[ V[S™(m)] | ch;-b] goes to 1 as the amount of
evidence, n, increases. See (Hawthorne, forthcoming) for details.

Thus, if h; is true, then for each empirically distinct alternative hypothesis h;, the
likelihood ratio LR[elj/i] will almost surely go to 0. We saw earlier that this kind of
convergence brings with it a more general convergence, the convergence of simple in-
ductive inferences to the values of direct inference probabilities. Therefore, if Bayesian
agents discover a true hypothesis and test empirically distinct competitors against it in a
contest of likelihood ratios, they will almost surely come to agree on the inductive sup-
port for theories and on the simple inductive probabilities of individual events.

Notes

11 wish to thank Chris Swoyer for numerous valuable comments and suggestions.
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