JAMES HAWTHORNE

ON THE LOGIC OF NONMONOTONIC CONDITIONALS AND
CONDITIONAL PROBABILITIES!

ABSTRACT. I will describe the logics of a range of conditionals that behave like con-
ditional probabilities at various levels of probabilistic support. Families of these condi-
tionals will be characterized in terms of the rules that their members obey. I will show
that for each conditional, —, in a given family, there is a probabilistic support level r
and a conditional probability function P such that, for all sentences C and B, ‘C — B’
holds just in case P[B | C] 2 r. Thus, each conditional in a given family behaves like
conditional probability above some specific support level.

INTRODUCTION

Those who investigate the logics of indicative and subjunctive condi-
tionals often recognize an acute similarity between logics for these con-
ditionals and the logic of conditional probabilities.? In this paper I will
investigate the logics of a class of conditionals that behave precisely
like conditional probability functions. For each type of conditional that
I will investigate, a conditional assertion behaves like the part of a con-
ditional probability function above some specific level of support. That
is, for each conditional, —, there is probabilistic support level ~ and a
conditional probability function P such that, for all sentences C' and B,
‘C — B’ holds just in case P[B | C| > r. For some of the condi-
tionals under study (those corresponding to a fairly high value for ) an
assertion ‘if C, then B’ means, roughly, ‘C supports B’ or ‘if C, then
B is highly plausible’. But, I will explicate the logics of a broad range
of probability-like conditionals: conditionals for which ‘C' =+ B’ means
‘if C, then almost certainly B’ (corresponding to a probability close to
1), conditionals for which ‘C — B’ means ‘if C, then just possibly B’
(corresponding to a probability just barely above 0), and conditionals that
correspond to the range of support levels in between. All of these condi-
tionals are nonmonotonic — i.e. when ‘if C, then B’ holds, the addition of
new information, D, to the antecedent of the conditional may undermine
it, so that ‘if D and C, then B’ may not hold. Nonmonotonic conditionals
can play an important role in defeasible reasoning, and have been studied
by both philosophers and researchers in Artificial Intelligence.’
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In Section 1 I will describe a simple model of defeasible reason-
ing that illustrates the roles played by conditional probability functions
and nonmonotonic conditionals in uncertain inference. This discussion is
intended to motivate the formal treatment of conditionals in subsequent
sections. In Section 2 I will explicate the Popper Functions, a generaliza-
tion of conditional probability functions. Subsequent sections will show
that there is an intimate relationship between Popper Functions and non-
monotonic conditionals. Section 3 establishes the relationship between
Popper Functions and a family of conditionals that Lehmann and Magi-
dor (1992) call the Rational Consequence relations. We will see that the
Rational relations behave like the probability 1 parts of the Popper Func-
tions. In Section 4 I will characterize the families of conditionals that
behave like conditional probabilities at levels below 1.

1. THE ROLE OF NONMONOTONIC CONDITIONALS IN DEFEASIBLE REASONING
SYSTEMS

Most of the inferences we commonly make are defeasible. The addition
of new information can undermine the support for conclusions that were
quite plausible relative to previous information. One way to formalize
defeasible reasoning is to employ a formal logic for nonmonotonic con-
ditionals, a logic in which conditional statements represent the support
(or lack of support) for a hypothesis by available information.

A conditional, —, is said to be monotonic just in case whenever
‘C = B’ holds, ‘D&C — B’ must also hold (for every sentence
D) regardless of the content of the new information expressed by D.
For monotonic conditionals the addition of more information to the
antecedent cannot undermine the support that the antecedent affords the
consequent. All conditionals that arise in classical deductive logics are
monotonic. Among the monotonic conditionals that occur in the object
languages of these logics are the material conditional and all of the
various strict conditionals represented in intensional logics. The met-
alinguistic logical consequence relation and its variants (e.g. the logical
consequence relations for intuitionistic and relevance logics) may also
be regarded as monotonic conditionals.

When a conditional, —, is nonmonotonic, the antecedent of a con-
ditional assertion only tentatively supports the consequent, supports it
ceteris paribus. New information may defeat the support for a conse-
quent — i.e., although ‘C' — B’ holds, ‘D&C' — B’ may not hold, and
even ‘D&C — —B’ may hold. The logic of nonmonotonic conditionals
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is very similar to the logic of conditional probability. Indeed, nonmono-
tonic conditionals and conditional probabilities play very similar roles in
defeasible reasoning.

Consider the role of conditional probability in the reasoning of a
Bayesian agent. Suppose P is a probability function that represents an
(ideally rational) agent’s belief function regarding some domain. The
conditional probability ‘P[B | C] = r’ represents the degree of confi-
dence that the agent should have in the truth of B when C represents
all of her present information (or, all that is relevant to B). Similar-
ly, ‘P[B | D&C] = s’ represents the degree of confidence that the
agent should have in B if C&D becomes the total evidence available
to her. Conditional probability functions are nonmonotonic in that the
probability value for P[B | C| may differ radically from the value for
P[B | D&C]; even when the former probability is nearly 1, the latter
may be much lower, perhaps near 0. For additional information E, the
value of P[B | E&D&C] may again differ widely from the value of
P[B | D&CY. This kind of nonmonotonicity leads to defeasibility in the
agent’s beliefs. For, if at first the agent only knows that C, later learns
that D, and still later comes to know E, her degree of confidence in B
will vary radically.

Conditional probability functions for Bayesian agents are usually treat-
ed as meta-linguistic, semantic relationships between object-languages
sentences. The logic an agent utilizes in making uncertain inferences
largely reduces to the application of the axioms of probability theory to
deduce the conditional probabilities of some sentences from others. The
axioms play the role of semantic rules that constrain probability func-
tions, much as the semantic rules for sentential deductive logics constrain
possible truth-value assignments. And just as one may use the semantic
rules of sentential deductive logic to compute the truth-values of some
sentences from truth-values of other sentences, one may use the axioms
of probability theory to compute probabilities of some sentences from the
probabilities of other sentences. Thus, the axioms of probability theory
play two related roles in probabilistic logic. They represent a sound (and
complete) collection of rules through which some probabilistic assertions
may be derived from others; and they supply constraints that any total
probability function must satisfy if it is to yield a consistent assignment
of probabilities to sentences. Although this is all quite obvious where
probability is concerned, I have taken the trouble to make it explicit
because nonmonotonic conditionals are often treated differently, as part
of the object-language. But, the nonmonotonic conditionals I will expli-
cate are best understood as meta-linguistic semantic relationships, rather
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like conditional probabilities. And the “axioms” and “inference rules”
for these conditionals are best understood as semantic rules.

In many common reasoning contexts precise values for conditional
probabilities are ill defined or unavailable. In such contexts an agent
may make qualitative inferential leaps of confidence as new information
becomes available. Rather than infer a probability or degree of belief
for a hypothesis, the agent will simply infer that a hypothesis is to be
“accepted” or “not accepted” on the present evidence, where “accep-
tance” is defeasible. Nonmonotonic conditionals provide a way to model
belief revision of this kind. The agent’s “personal support relation” is
represented as a nonmonotonic conditional, —. The total evidence C
supports the acceptance of B if the conditional assertion ‘C' — B’ holds
for the agent’s support relation; when ‘C' — B’ does not hold, i.e. when
‘C 4 B’, the evidence does not support the acceptance of B. In effect,
a nonmonotonic conditional provides a trivalent support function for the
agents beliefs. If C is the total relevant evidence, the agent will “accept
B” (when ‘C — B’ holds), “accept -B” (when ‘C — —B’ holds), or
remain agnostic toward B (when C /A B and C /4 —-B).

A nonmonotonic conditional represents how evidence should affect an
(ideally rational) agent’s beliefs. For a given conditional, all of the fol-
lowing conditional assertions can hold simultaneously: C — B, D&C —
-B, E&D&C 4 B and E&D&C + -B, F&E&D&C — B. So, just
as an agent’s conditional probability function models the rise and fall
of her degrees of belief as new evidence accumulates, an agent’s non-
monotonic conditional models the logic of qualitative belief change. The
logics of the nonmonotonic conditionals I will investigate are intended
to accommodate qualitative defeasible reasoning in the same way that
the logic of conditional probabilities accommodates such reasoning when
probability values are available. I will treat these conditionals as metalin-
guistic relations between sentences that satisfy certain axioms, just like
conditional probabilities. The role that these conditionals are to play in
defeasible reasoning is precisely analogous to the role played by condi-
tional probabilities. Just as the logic of an agent’s probabilistic inferences
is captured by the axioms of probability theory, the logic of the uncer-
tain inferences warranted by an agent’s nonmonotonic conditional will be
captured by axioms for the conditional, axioms which permit the deriva-
tion of some conditional assertions from other conditional assertions that
the agent maintains. The axioms for nonmonotonic conditionals will play
the same kind of dual role played by the axioms for probabilities. They
are metalinguistic (semantic) rules that function as a sound (and com-
plete) collection of rules through which some conditional assertions may



NONMONOTONIC CONDITIONALS AND CONDITIONAL PROBABILITIES 189

be derived from others; and they supply constraints that any nonmono-
tonic conditional must satisfy if it is to yield a consistent assignment of
defeasible support for sentences.

As I said earlier, I will explicate a range of different types of non-
monotonic conditionals in this paper, conditionals for which ‘C — B’
means ‘if C, then almost certainly B’, conditionals for which ‘C — B’
means ‘if C, then just possibly B’, and conditionals that correspond to
the range of support levels in between. The various types of condition-
als will have a number of axioms (i.e. semantic rules) in common, but
their axioms will diverge as appropriate for the different support levels
to which they correspond. For some of these conditionals ‘C — B’, and
‘C - A’ and ‘C' 4 B&A’ may all hold, and may even be consistent
with ‘C = —(B&A)’. Some of these conditionals will accommodate
the lottery “paradox” —ie. E — —-H,, E — —H,,...,E — —H,, are
consistent with £ — H{V H, vV ---V H,. That is, for each person b, ‘b
won’t win’ is supported by E, but ‘one of these people will win’ is also
supported by E. For some other conditionals, which correspond roughly
to ‘if C, then it is just possible that B’, the evidence C' may even support
each of a long list of pairwise logically inconsistent sentences.

2. CONDITIONAL-PROBABILISTIC LOGIC

In this section I will explicate a logic for conditional probability func-
tions. Throughout the remainder of the paper conditional probability and
its logic will serve as a standard to which the various types of nonmono-
tonic conditionals and their logics will be compared. Throughout this
paper I will restrict attention to an object language L for sentential log-
ic. The language of sentential logic suffices to capture the most salient
features of probabilistic logic, and it will also suffice for the explica-
tion of the most salient features of nonmonotonic logics. L may contain
a finite or a countably infinite set of sentence letters, and contains all
sentences constructable from them in the usual way with the logical con-
nectives ‘=’ and ‘&’ and parentheses; expressions of form ‘(4 V B)’,
‘(A D B)’, and ‘(A = B)’ abbreviate ‘~(~A&-B)’, ‘~(A&~B)’, and
‘(-(A&—-B)&—~(B&—A))’, respectively (and I will often drop paren-
theses when no ambiguity threatens). ‘Sy’ denotes the set of sentences
of L. Capital letters ‘A’, ‘B’, ‘C", etc. with or without subscripts are
metalinguistic variables representing sentences of the object language.
It will sometimes be convenient to employ some standard tautology or
contradiction, so I will let ‘T” and ‘F’ abbreviate the two sentences of
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form ‘-~(A&—-A)’ and ‘(A&—A)’, respectively, with the first sentence
letter of L in place of the ‘A’.

The logical consequence relation is usually defined in terms of the
set of possible truth-value assignments to sentences in Sr. The set of
possible truth-value assignments may be defined as follows:

DEFINITION 1. v € TVA iff v C Si such that, for all A and B in S
(where ‘v[C] just abbreviates ‘C € v’)

(1) v[-A] if and only if not v[A]
(2) v[(A&B)] if and only if v[A] and v[B].

A is logically true, ie. ‘= A’, iff for all v € TVA, v[A};
A is a logical consequence of B, ie. ‘B |= A’, iff for every v in
TVA, if v[B], then v[A].

Classical probability is usually defined in a way that depends on a pre-
defined notion of logical truth, and so ultimately depends on TVA. The
set of classical probability functions may be specified as follows.

DEFINITION 2. P € CLASSPROB iff P is a function from St into
[0, 1] such that, for all A, B in S:

(1) if | A, then P[A] =1
(2) if = ~(A&B), then P[A v B] = P[A] + P[B).

The conditional probability of A given B, P[A | B|, is defined as
follows:

P|A | B] = P[A&B] + P|B] if P[B] #0;
P[A|B]=1, if P[B]=0.

CLASSPROB is the usual set of classical probability functions on
sentences. The definition of conditional probability slightly extends the
usual definition, which leaves P[A | B] undefined if P[B] = 0.

Conditional probability is not a primitive part of the classical defini-
tion of probability, but is defined in terms of the unconditional notion. In
1938 Karl Popper proposed an axiom system for conditional probability
that takes conditional probabilities as primitive (see the New appendices
of (Popper 1968)). Popper’s idea was to develop a logic for condition-
al probabilities that is autonomous from deductive logic. The following
definition of the Popper Functions is equivalent to Poppers axiomatiza-
tions.
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DEFINITION 3. P €¢ POPPERFN iff P is a function from Sp x SL
into [0, 1] such that:

(1) for some D and E in S, P[D | E] # 1;
and for all A, B, C in S|,

(2) P[A] A =1

(3) P[A | C&B] = P[A | B&C]

(4) P[B&A | C] = P[A&B | C]

(5) P[A|B|+P[-A|B]=1lor P[C|B]=1

(6) P[A&B | C] = P[A | B&C] x P[B | C).

The unconditional probability of A may then be defined as P[A | T].
Notice that the rules for POPPERFN do not presuppose the substi-
tutivity of logically equivalent sentences, nor do they make any other use
of TVA and its notion of logical consequence. Conditional probability
functions are primitive in the same sense that truth-value assignments are
primitive for TVA. Indeed, this way of defining the Popper Functions
shows them to be a generalization of truth-value semantics. For, one may
define a probabilistic notion of logical consequence, =, as follows.

DEFINITION 4. B = A iff for all P € POPPERFN, P[A | B]=1.

That is, one may define a notion of logical consequence purely in terms
of the Popper Functions. This relation turns out to be equivalent to the
classical notion of logical consequence.

THEOREM 1. B = A ifand only if B = A.

Proof. The direction from left to right is obvious since clearly there
is a Popper Function that only assigns P[{A | B] = 1 where B = A.
The other direction takes work. Popper effectively proved the result by
showing that, for each conditional probability function that satisfies his
version of the rules, the laws of Boolean algebra hold for the sentences
in 5. Field (1977) gives a different kind of proof, and he also extends
the theorem to a language for predicate logic with quantifiers. See also
(Harper 1975), (Leblanc 1979, 1983), and (van Fraassen 1981) for formal
treatment of the Popper Functions. a

The Popper Functions are really a fairly mild extension of the classical
probability functions. They may be more easily compared to classical
probability when they are defined in a more classical fashion.

DEFINITION 5. P € CONDPRORB iff P is a function from Sp x S,
into [0, 1] such that:
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(1) for some F and G in S, P[G | E] # 1,
and for all A, B, C, D and Sy,
(2) if = C = B, then P[A| B] = P[A| (]
(3) if C |= A, then P[A|C] =1
(4) if C = ~(A&B), then either
P[AVB|C|l=P[A|C]+P[B|Clor P[D|C]=1
(5) P[A&B | C] = P[A| B&C] x P[B | C].

THEOREM 2. POPPERFN = CONDPROB.
Proof. With help from Theorem 1 just show that each set of rules is
derivable from the other. a

The rules of CONDPROB are the obvious extensions of the rules of
CLASSPROB to a logic in which conditional probability is primitive.
Clearly, all of the conditional probability functions defined in terms of
CLASSPROB are members of CONDPROB. But notice that rule
5 permits CONDPROB to have members in which P[A&B | C] =
P[B | C] = 0 and yet P[A | B&C)] is positive and less than 1. The
members of CONDPROB behave like classical probabilities except
that conditionalization on a sentence with probability 0 may provide a
non-classical transition to a probability space at a lower level. The way
that this works will be described precisely in Section 3.

The definition of conditional probability functions in terms of the rules
of POPPERFN has interesting implications. The usual definition of
conditional probability suggests that probabilistic logic presupposes a
logic based on truth-values to define the notion of logical truth that it
employs. But the rules of POPPERFN define conditional probability
functions as primitive semantic operations, independent of any prede-
fined notion of logical truth, much as the rules of TVA define truth-
value assignments as primitive semantic predicates. Thus, the logic of
probabilistic support need not presuppose a logic of truth-values.*

3. THE LOGIC OF NEAR CERTAINTY

In this section I will investigate the relationship between the Popper
Functions and a class of conditionals called Rational Consequence rela-
tions by Lehmann and Magidor (1992). These conditionals turn out to
be the probability 1 parts of Popper Functions. Intuitively a conditional
assertion ‘B — A’ for a Rational Consequence relation says that among
the possible states of affairs in which B is true, A is almost certainly
true. Only under very exceptional circumstances will the support afford-
ed A by B be undermined, i.e. if ‘B — A’ holds, then ‘C&B — A
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can fail to hold only if ‘B — —C” holds. Thus, when an agent employs
a Rational Consequence relation for defeasible reasoning, the near cer-
tainly that B affords A (when B is the total relevant evidence) cannot
be undermined by additional information C' unless C' was presumed to
be almost certainly false on the basis of B alone.

In the first subsection of the present section I will define a set of con-
ditionals directly in terms of the Popper Functions. Then I will define
another set of conditionals in terms of qualitative rules that are analogs
of the quantitative rules for Popper Functions. In the second subsection
I will define the set of Rational Consequence relations in (roughly) the
usual way, and show that all three definitions specify the same set of
conditionals. Each definition reveals a different facet of Rational Conse-
quence relations.

3.1. Conditional Probability 1 and the ER Conditionals

Consider the set of conditionals that behave like the probability 1 parts
of conditional probability functions, i.e. the set of conditionals defined
as follows:

DEFINITION 6. — € POPPERFN]1] iff for some
P ¢ POPPERFN, — = {(B,A) | P[A| B]=1}.

Each conditional, —, in POPPERFN]1] is obtained by selecting a
probability function P from POPPERFN and writing ‘B — A’ just
when P[A | B] =1 (and writing ‘B /4 A’ otherwise). Can we specify
rules (or axioms) directly in terms of conditionals that capture precisely
the conditionals in POPPERFN/1]? One way to get rules is to read
them off of the rules for conditional probabilities, although this method
will not necessarily generate enough rules to capture POPPERFN(1]
completely. The next definition does just that. It employs qualitative
versions of rules from POPPERFN (Definition 3) to define a set,
ER, of nonmonotonic Entailment Relations.

DEFINITION 7. — € ER iff — C S. x SL such that, for all A, B, C
in Sp, — satisfies the following rules:

(1) for some D and E in S, E A D
2)A—- A
(3) if C&B — A, then B&C — A
4.1) if C — B&A, then C — A&B
4.2) if C = —(B&A), then C — —~(A&B)
5.1)if B— ——A,then B— A
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(52)if B— Aand B — —A, then B - C
(6.1 C — B and C&B — A iff C —+ B&A
(6.2) C — —B or C&B — -A iff C — —(B&A).

Rules for nonmonotonic conditionals are commonly represented in the
literature as deduction rules, but I think they should be understood as
semantic rules, akin to the rules for probability functions. However, in
this paper I will often write the semantic rules for conditionals in a form
to look like deduction rules in order to facilitate comparison with the
deduction rule notation employed elsewhere in the literature. Rules 2—
6 together with a reasonable substitute for rule 1 take the following
form:

C&B —+ A
(1) TAF @) A— A (3) B&C — A
C — B&A C — —~(B&A)
(41) C — A&B (42) C - —~(A&B)
B —» A B— A B—-A
G g5z 62 ESC
(6.1) C—->B,C&B = A C —» B&A
’ C — B&A C—B
C —» B&A
C&B — A
(6.2) C —-B C&B — -A

C > ~(B&4) C — ~(B&A)

C /4 —B, C&B 4 -A
C /4 —(B&A)

The rules for ER come directly from the correspondingly numbered
rules for POPPERFN by taking the values of the probabilities to
be 1 (or, O in some cases). The rules of ER do not presuppose that
logically equivalent sentences may be substituted. They are completely
autonomous with regard to T'VA and its logical consequence relation.
Indeed, ER has its own notion of logical consequence.

DEFINITION 8. B => A (A is an ER-logical consequence of B) iff
for all - € ER, B — A.

The ER notion of logical consequence is equivalent to the classical
notion.



NONMONOTONIC CONDITIONALS AND CONDITIONAL PROBABILITIES 195

THEOREM 3. B => A if and only if B |= A.

Proof. It’s easy to check that |= is a member of ER - it satisfies the
rules. So, if B => A, then B |= A. The proof in the other direction
takes more work. Suppose B #> A. Then for some — € ER, B 4 A.
For this — one can derive that B&—A /4 A. The remainder of the
proof is like a Henkin proof. Order all of the sentences of S; . If for the
first sentence, C, B&—~A — C or B&-A — —C, move on to the next
sentence. Otherwise, (B&—A)&C 4 A. It can then be shown that there
is a conditional —’ such that for all sentences D, (B&—A) —’ D just in
case (B&—-A)&C — D. Now continue the construction using —’. The

set v of all sentences D such that for some conditional —”---" in the
construction, B&—A —”---’ D, is a truth-value assignment that makes
(B&—A) true. O

Many of the rules of ER are close relatives of more familiar rules
for Rational Consequence relations presented in Lehmann and Magidor
(1992). Indeed, ER will turn out to be the set of Rational Consequence
relations, and in turn they are just the probability 1 parts of the Pop-
per Functions. The rules of ER define nonmonotonic conditionals as
primitive semantic relations on sentences in precisely the way that the
rules of TVA define the truth-value assignments as primitive semantic
predicates. Thus, like the logic of probabilistic support rendered by the
Popper Functions, the logic of defeasible support need not essentially
depend on the theory of truth. In the next subsection I will characterize
the Rational Consequence relations in a more usual way. The rules in
that characterization are related to the rules of ER in the same way that
the rules of CONDPROB are related to those of POPPERFN.

3.2. The Rational Consequence Relations

I will first define a basic set of conditionals that I call O. All of the
conditionals investigated in this paper will satisfy the rules of O.

DEFINITION 9. — € O iff — C S x SL such that, for all A, B, C in
S, — satisfies the following rules:

IMHTAF (Nondegeneracy)
2)if EB=Cand B— A, thenC — A (Left Logical
Equivalence)
3)if C—>Band B> A, thenC — A (Right Weakening)
4HA-A (Reflexivity)

(5)if C&B — A and C&—-B — A, then C - A (Weak Or)
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6) if C - B&A, then C&B — A (Very Cautious
Monotonicity)

(7) if B— A, then B —» B&A (Weak And)

8)if C —» —=C and B — A, then B — ~C&A (Conjunctive
Certainty).

In deduction rule form rules 1-8 are as follows:
EB=C, B> A

() T AF (2) C— A
C—-B, BEA
(3) C—- A () A— A
(5) C&B — A, C&-B — A () C — B&A
C— A C&B — A
B— A C—-C, B> A

(7) B —» B&A (8) B — -C&A

The conditionals in Q are probabilistically sound. That is, any con-
ditional that behaves like the probability-greater-than-r part of a condi-
tional probability function must obey the rules of O. More precisely, if
we pick a number r between 0 and 1 and read each conditional assertion
of form ‘X — Y’ as P[Y | X| > r, then each of rules 1-8 are theorems
about these conditionals. Rule 5, for example, is probabilistically sound
because, for any r between 0 and 1 and any P in POPPERFN, if
P[A | C&B] > r and P[A | ~C&B] > r, then P[A | B] > r. Not
all probabilistically sound rules are derivable from the rules of O. In
Section 4 they will be supplemented with another sound rule.

Emest Adams (1966, 1975) was first to work out a precise logical
connection between nonmonotonic conditionals and conditional probabil-
ities. The connection Adams discovered between nonmonotonic condi-
tionals and conditional probabilities involves classical conditional prob-
abilities, not the Popper Functions. He recognized that when classical
conditional probabilities are very nearly 1 they exhibit the logic of non-
monotonicity that indicative conditionals should have. Adams character-
izes the connection between the logic of conditionals and probabilities
through the notion of p-entailment, as follows:

DEFINITION 10. {(By — A1), ..., (Bn = Ayn)} p-entails (B — A) iff
for each £ > O there is a § > 0 such that for each P in CLASSPROB,
if P[A; | B;] >1— 6 foreachs (0 <i<n),then P[A|B]>1-e¢.
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Adams developed a set of inference rules for deriving conditional asser-
tions from sets of conditional assertions and showed his rules to pro-
vide a sound and complete characterization of p-entailment for finite
languages. (See (Pearl 1988) for a nice treatment of Adams’ system.)
Kraus, Lehmann, and Magidor (1990) call the conditionals that satisfy
Adams’ inference rules the Preferential Consequence relations. Adams’
rules are equivalent to the rules of O together with rule 9 in the following
definition. I will call the set of conditionals that satisfy these rules P.

DEFINITION 11. — € P iff — satisfies the rules of O and the following
rule, for all A, B, C in S.:
(9)if C = B and C — A, then C — B&A: ie.

C—B, C—oA
C — B&A
Rules 7 and 8 of O are derivable from rules 1-6 together with rule 9.

However, rule 9 is not derivable from O’s rules, so P is a proper subset
of O. P may employ the following rules rather than 5 and 6:

(And)

BA C—A
Bvosa

C—-A C—B , o
C&B = A (Cautious Monotonicity)

Both of these rules are derivable from rules 1-6 and 9. (Or), (Cautious
Monotonicity), and (And) are not probabilistically sound rules in the
sense specified above, but they are sound for probabilities of 1 for Popper
Functions. E.g., the rule (And) is sound for probabilities of 1 because,
for all P in POPPERFN, if P[A| C] =1 and P[B | C] = 1, then
P[A&B | C] =1.

Kraus, Lehmann and Magidor (1990) have developed a possible worlds
semantics for the conditionals in P. Lehmann and Magidor (1992) extend
this semantics to a more restricted set of conditionals that they call the
Rational Consequence relations. Rational relations are defined by adding
a stronger monotonicity rule to the rules of P. The set of Rational Con-
sequence relations, R, may be defined as follows:

DEFINITION 12. — € R iff — satisfies the rules of P and the following
rule, for all A, B, C in S:
(10) if C —» A and C » —B, then C&B — A: i.e.
C—A C+H-B
C&B — A

(Rational Monotonicity)
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It is routine to derive each rule of ER from those of R; and the converse
is straightforward with the aid of Theorem 3. So, R and ER are the same
sets of conditionals.

THEOREM 4. R = ER.

Given the similarity between rules of ER and those of POPPERFN
the next theorem is not surprising.

THEOREM 5. R = POPPERFN[1].

Proof. The hard part of this theorem is essentially proved by Lehmann
and Magidor in an appendix to (1992). They show that for each —+ in R
there is a probability function P on the non-standard real numbers (i.e. the
reals with infinitesimals) such that B — A if and only if P[A&B]~+ P[B]
is infinitesimally close to 1. Define a conditional probability function as
follows: P[A | B| = the nearest real number to P[A&B]+ P[B] (i.e. the
reals associated with its Dedekind cut), or 1 when P[B] = 0. These func-
tions satisfy the rules for POPPERFN. Thus, R C POPPERFN]1].
And clearly the rules of R are satisfied by all probability 1 parts of the
Popper Functions, so POPPERFN(1] C R. o

Thus, the probability 1 parts of Popper Functions are the Rational Conse-
quence relations. And, like the Popper Functions, the Rational relations
can be characterized in a way that does not rely on a predefined notion
of logical consequence. In the next subsection I will briefly characterize
some central features of the logics of the Preferential and Rational rela-
tions by describing the restricted versions of monotonicity, transitivity,
and contraposition that they satisfy.

3.3. Some Characteristic Rules of O, P, and R

Monotonic conditionals such as the classical logical consequence rela-
tion exhibit three properties that fail for nonmonotonic conditionals —
monotonicity, transitivity, and contraposition, respectively:

C— A C—->B, B> A C&B — A
C&B — A C— A C&-A—-B
The conditionals in O, P, and R only satisfy weakened versions of these

properties.

Regarding monotonicity, O has only rule 6 of Definition 9 (Very Cau-
tious Monotonicity). Conditionals in P satisfy the first of the following
two rules. Conditionals in R satisfy both of these rules.

C—>A C—>B
C&B — A

(Cautious Monotonicity)
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C— A, CA-B

C&B S A (Rational Monotonicity)

The conditionals in O generally satisfy only extremely weak versions
of transitivity, the rules 2 and 3 of O. Conditionals in P satisfy two
moderately stronger transitivity rules, the first two of the following trio.
Conditionals in R also satisfy the third, somewhat stronger rule.

C—->B,C&B — A C—-B,B3A B->C
C— A C— A
C—B, B> A BA-C
C— A

Only an extremely weak version of contraposition holds among all
conditionals in O, while the weak versions of contraposition for P and
R follow a pattern that may begin to look familiar. Contraposition rules
for members of O, P, and R, respectively are these:

C&B — A, CE=-A C&B — A, C — A
C&—-A— -B C&-A — —-B

C&B — A, CAH A
C&-A— —-B

A few additional observation are in order before moving on. All of
the conditionals studied in this paper satisfy the rules of O, so the above
rules for members of O will apply throughout. It is also worth noting that
for any — in O, ‘C — —C” holds just in case ‘C' = F’ holds, so when a
sentence C satisfies ‘C — —~C” we will call C inconsistent in —. If C'is
inconsistent in —, C' will be irrelevant to other conditional assertions in
the sense expressed in rule 8 of O’s definition and the following derived
rules:

C—»>-C, B> A BE-C,C—-C, BVC - A
B&-C — A B—- A

AE=-C, C—-C, B—AVC
B—- A

The next two rules are also derivable in O. The first is equivalent to
(Weak Or) given the other rules:

E-(C&D), C -+ A, D— B B— A
CvD— AVB CVB—-BD>A
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3.4. Orderings and Rankings

Every Conditional in R imposes a ranking on sentences that completely
characterizes the conditional. A sentence of lower rank is a much more
weighty possibility than any sentence ranked above it, in a sense to
be made more precise in this subsection. Kraus, Lehmann and Magidor
(1990), and L.ehmann and Magidor (1992) have thoroughly investigated
the orderings and rankings imposed by conditionals in P and R. How-
ever, they did not investigate O. The orderings on sentences imposed by
conditionals in O will be important to the treatment of the conditionals
in Section 4, so I will treat these orderings in some detail here.

DEFINITION 13. For each conditional, —, in O define a relation > on
sentences in Si as follows:

A> Biff AA F,and forall D, C in Sy, if DV A — C, then
DV A— -B&C —-ie. iff A A F,and for all C, D in Si, the following
rule holds for —:

DVA->C
DV A— -B&C

Also define: A ~ B iff not A > B and not B > A;

A>Biff A>» Bor A= B.

On a possible worlds reading of conditionals the conditional assertion
‘A — (" says that among the worlds in which A is true, the subset of
worlds in which C is true is weighty enough for C' to be provisionally
accepted. Then, ‘A >> B’ says that among any set of possible worlds
that contains all of the worlds in which A holds, the subset of worlds
in which B holds is so insignificant that support for any proposition C
depends only on the weight of C' worlds in which B is false.

If — is in O, its ordering relation >> is asymmetric and transitive,
i.e. is a strict partial ordering.

THEOREM 6. For each — € O its relation > is asymmetric and tran-
sitive and = is symmetric and reflexive.
The following relationship also hold:

A=~ B if and only if A>>B and B> A;

A > B if and only if A>>B and not B> A;

exactly one of A> B, B> A, or A~ B must hold;
A> B or B3> A, i.e. > is connected.
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Also, T > F; if A> B, then AVC>»BVC and AV C > B; if
B = A, then A>B.

Proof. Clearly > is asymmetric. For if A >> B > A, then it follows
from AV B — AV B, that AV B — -A&-B&(AV B), so we have
AV B — F. But then AV B — A&F, so A — F, which contradicts
A > B. To see that > is transitive, suppose that A > B > C, and
suppose that for some D and E, DV A — E. Then DV A - ~-B&FE,
so (DV AV B)&—-B — E, so by a derived rule for O, (DV AV B) —
—B D E. Then, since A > B, (DV AV B) - -B&(—B D E). Thus,
DVAVB — -B&E. Since B>» C,DVAVB = -C&-B&E. It
follows that DV AV B — (DV AV B)&~C&-B&E, so DV AV
B — (D V A)&~C&E by (Right Weakening). Then by (Very Cautious
Monotonicity) and (Left Logical Equivalence) we have DVA — —-C&E.
This derivation holds for arbitrary D and E. Thus, A > C. The other
properties stated in the theorem can be easily derived. O

All it would take for > to become a weak order (i.e. transitive and
connected order) is for = to be transitive. But ~ may not be transitive
for some members of O.

Kraus, Lehmann and Magidor in (1990) and Lehmann and Magidor in
(1992) describe strict partial orders on sentences induced by conditionals
in P. The strict partial orders, >, described above are essentially the
orderings they investigate. The additional rule (And) that P imposes on
— provides a simpler characterization of these ordering for members of
P, as the next theorem shows.

THEOREM 7. For - €P: A> B iff AAFand AVB — -B.
Proof. For any — in O, if A>> B, then A /4 F; and from AV B —
AV B, we have AVB — ~B&(AV B), so AVB — —B. The proof of the
other direction needs (And). Suppose AV B — =B and A 4 F. Then in
O it follows that for any sentence D, DV AV B — —B (from (Weak Or)
since (DV AV B)&(AV B) — =B and (DV AV B)&—(AV B) = -B).
Then (DV AV B) — (DVAVB)&-B,so (DVAVB) — (DVA)&-B,
so (DV AV B)&(D Vv A) — —B, then DV A — —B. This holds for
every sentence D. Now suppose DV A — E for some D and E. Then
from (And) we have DV A — —=B&F. Thus, A > B. O

Thus, if a conditional — is in P, then the strict partial order that —
already imposes on sentences due to its membership in O is completely
determined by the conditional assertions of form ‘AV B — —B’ that
hold. Conditionals in R belong to P, and so share this property. But, in
addition, for members of R the relations = turns out to be transitive, and
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this suffices to make > a weak order (transitive and connected) which
ranks the sentences of Sy.

THEOREM 8. For — € R, > is a weak order (i.e. transitive and
connected).

Proof. We need only show that =~ is transitive; then, connectedness
follows easily. Suppose that A ~ B ~ C and not A ~ C. Then C > A
or A > C. We need only consider C >> A (the other case is similar).
Since — is in R C P. Theorem 6 yields AV BV C > A; Theorem 7
implies AV BV C — —A. Now, if AV BV (C — -~A&-B, then
AVBVC — (BVC)&-A&-B,so (AVBV(C)&(BVC)— -B, and
we have BV C — - B which by Theorem 7 violates B = C. So instead
we must have AV BV C 4 —A&-B. Then, AV BV C 4 —(AV B).
This together with AV BV C — —A and (Rational Monotonicity) yields
(AVBVC)&(AV B) - —A;s0 AVB — -A Then, B >» A
(Theorem 7), which contradicts A =~ B. Thus, = is transitive. O

The weak order that a conditional in R imposes on sentences ranks all
sentences in Sy..

DEFINITION 14. For each — € R define the rank function for — as
follows:

rank[A] = 1 iff T =~ A;

rank[A] =i + 1 iff A /A F, rank[A]£¢, and for all B,
rank[B] <i or B — F or A>B.

rank[A] = oo iff A — F.

Notice that rank order runs in the opposite direction of the weak ordering
that generates it — i.e. the weightier possibilities have the lower rank. The-
orem 5 showed that each probability function in POPPERFN “con-
tains” a conditional in R. So conditional probability functions impose
precisely the same sort of ranking on sentences as conditionals in R. (i.e.
define ‘A > B’ as ‘P[F | A] < l,and forall D, C, if P[C | DVA] =1,
then P[-B&C | D Vv A] = 1’; and replace occurrences of ‘B — A’ in
theorems of this subsection with ‘P[A | B] = 1”). The theorem follow-
ing the next definition will show the fundamental role played by rank
for conditionals in R and for Popper Functions.

DEFINITION 15. For a finite language, L a state description of L is any
conjunction of literals (i.e. sentence letters of L and their negations) that
contain each sentence letter of L or its negation (but not both). Let SD
be the set of all state descriptions of L. For any countable language, L



NONMONOTONIC CONDITIONALS AND CONDITIONAL PROBABILITIES 203

(possibly infinite) and any finite set of sentences {4, ...,C} of L, define
SD{A,...,C} as the set of state descriptions for the finite language
consisting of the sentence letters occurring in the sentences of the set

{A,...,C}.

THEOREM 9. For — € R, B — A iff either B — F, or for all C €
SD{A, B} such that rank[C] = rank[B], if C |= B, then C |= A.

Proof. (1) Suppose the right-hand side of the theorem is satisfied. If
B — F, then B — A. So, suppose B A F. It will suffice to prove
the theorem for sentences B and A that are disjunctions of members of
SD{ A, B} (since they will be logically equivalent to sentences in this
form). Let {B),...,Bp} and {A;,..., A,} be the subsets of SD{A4, B}
that are disjuncts of B and not of A, and disjuncts of A but not of B,
respectively. Let {C},...,Ck} be members of SD{A, B} shared by 4
and B. Then, B — A justincase B,V---VB,VCV:--VC, = C1V---V
Ck (since B — A iff B — B&A). Notice that {C|, ..., C} is not empty
unless B — F. Let B > C; for just the C; such that i > h; and let B >>
B; for just the j > g. Then ByV---VB,VC,V---VCy = CV---VCy
holds just in case BV ---VBgVC V:--VCi = (C1 V-V Ch). So,
B — A iff By V---VBgV01V~-~VCh - (4 V---VCh), where
all the state descriptions involved on the right of the ‘iff’ are the same
rank as B. Now, since we are assuming that the right-hand side of the
theorem holds, {B, ..., By} must be empty. Therefore, B — A holds,
since clearly C; V ---V Cp — (C; V --- V C}) holds.

(2) For the other direction, suppose B — A. Let D € SD{A, B} be
such that D = B and not D |= A. Then, since D is a state description,
D = -A. So, A |= -D. Then B — -~D&A, thus B — —D. But
= B=(BV D), so BV D — —D. Therefore, by Theorem 7, B > D
or B> F, a

Theorem 9 applies to both finite and countably infinite languages. But
consider for a moment languages with only a finite set of sentence let-
ters. This will provide a simpler picture of the theorem’s implications.
Imagine a truth table for finite language L with each sentence letter rep-
resented across the top. Each line of the truth table makes exactly one
state description of L true. Each sentence of L may be thought of as
representing the set of truth table lines that make it true. We can gen-
erate conditionals in R by putting rankings on truth table lines in the
following way. Label some or all of the lines of the truth table with a
‘1’ (for rank 1). For the uniabeled lines that remain (if any), label some
(or all) with ‘2°, or else label all remaining lines with ‘co’. Continue in
this way until each line is either labeled with some number or with ‘o0’.
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Define the rank of logical contradictions to be co, too. Define the rank
of any sentence in Si as that of the lowest numbered line that makes it
true. This ranked truth table yields a relation — in R, as follows: define
B — A to hold just in case either B is of rank oo, or else every truth
table line that has the same rank as B and makes B true also makes A
true. It is easy to check that — is a member of R (it satisfies the rules
of R). Theorem 9 also implies the converse, that every conditional in R
can be generated in this way.

We may generate conditional probability functions in POPPERFN
from ranked truth tables as follows. Label every truth table line within
the same rank (except for rank co) with a second number between O
and 1, its probability, so that the sum of these numbers adds to 1 when
summed for that rank; and label lines of rank oo with “probability” 0.
Define P[A | B] = “the sum of the probabilities of truth table lines that
have the same rank as B and make A&B true, divided by the sum of
the probabilities of the rank B lines that make B true.” It is easy to
check that all such functions P are Popper Functions, and all Popper
Functions reduce to such ranked truth tables. Thus, Popper Functions
are basically just a nested hierarchy of classical probability functions on
ranked interpretations of a formal language.

4. THE LOGICS OF LEVELS OF PROBABILISTIC SUPPORT

The precise relationship between the conditionals in R and the Popper
Functions was given by Theorem 5, R = POPPERFN(I]. A natural
extension of the definition of POPPERFN]1] to conditionals corre-
sponding to probabilistic support at a level less than 1 might plausibly
go like this:

— € POPPERFN|p| iff for some P € POPPERFN,
— = {(B,4) | P[A]| B] > p}.

This definition turns out not to be the most useful way to construct classes
of conditionals from Popper Functions. Identical sets of qualitative rules
will hold for conditionals corresponding to a range of values of support
level p. So, a slightly more general extension of POPPERFN(1] will
provide the most natural way to classify the conditionals that correspond
to various support levels.

DEFINITION 16. For 0 < p < ¢ < 1, = € POPPERFN|p, ¢| iff
there is a P € POPPERFN such that for each rank ¢ of P there is a
real number r;, p < 1; < ¢, such that
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— = {(B, 4) | rankp[B] = oo,
or rankp|{B] =i and P[A | B} > r;}.
Also, define POPPERFN]1, 1] = POPPERFN(1].

Clearly the conditionals in POPPERFN]0, 1] satisfy the rules of O. In
the next subsection I will identify an additional rule that all members of
POPPERFN]0, 1] satisfy. Then I will develop additional qualitative
rules that are sound for classes of conditionals that correspond to narrow-
er intervals of support levels, rules for the conditionals in POPPERFN
[1/(n+1),1/n] and in POPPERFN[(n — 1)/n,n/(n + 1)], for each
n > 2. In subsequent subsections I will show how to supplement the
qualitative rules to yield a complete characterization of the support level
conditionals for each such interval.

4.1. The System Q and the Level Specific Rules

For each Popper Function P, if P[A | C] > r, then either P[A | B&C] >
r or P[A | ~B&C)| > r. This suggests a probabilistically sound rule that
is not derivable from the rules for O. The rule and its associated set
of conditionals (the Quasi-Probabilistic consequence relations, Q) are
specified in the next definition.

DEFINITION 17. - € Q iff — € O, and for all A, B, C in S, —
satisfies the following rule:
(A1) if C — A, then C&B — Aor C&—B — A: ie,,

C&B /4 A, C&-B 4 A
ChA

(Negation Rationality)

The rule (Negation Rationality) is a derived rule of R. All of Q’s rules
are rules of R, but (Negation Rationality) is weaker than (Rational
Monotonicity), so R C Q. How is Q related to the conditionals in
POPPERFN/p, ¢q]? The next definition and theorem begin to provide
an answer to this question.

DEFINITION 18. Define Q[0, 1] = Q, and Q[1, 1] = R. For all integers
n > 2, define the following sets of conditionals as those in Q that satisfy
the specified rule:

Q[l/(n + 1), 1]: C—By, C—B,, ..., C‘*Brg—_l_;_‘%':ﬂ(Bi&Bj) (for each i#j)
Q[(n _ 1)/”, 1] C—--B,;, C—-B,, .., g::gn, ClE=(B1VB,V:--VBy)
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Q[0,n/(n+1)]:

C4A-By, CAH-By, ..., CABn, Cl=—(Bi&B;) (for each i#j, i,j=1,...,n+1)

C—)“Bn.H
Q[O, l/n] CABy, CAB,, .., Céiygnl, C|=(Bl\/Bz\/~~\/Bn)

Qlp,q] = Q[p, 1] N Q0,4g], for 0 < p < ¢ < 1, with p and ¢ in the
set

{..,1/(n+1), U/n,...,1/3,1/2,2/3,...,(n — 1)/n,
n/(n+1),...}U{0,1}.

Of particular interest are Q[(n — 1)/n,n/(n + 1)] = Q[(n — 1)/n,1] N
Q[0,n/n+1] and Q[1/(n+1),1/n] = Q[1/n+1,1]NQ[0, 1/n]. Such
intervals partition Q into the most homogeneous classes of conditionals
consistent with the rules of Definition 18. For p and ¢ in any of the
fractional units specified in the definition, the rules for Q[p, ¢} are just
the rules for Q together with the rule for Q[0, ] and the rule for Q[p, 1].
Henceforth in expression of form ‘Q|p, g|” and ‘POPPERFN|p, q|’, p
and g are assumed either to both equal 1 ortobe inthe set {...,1/n,...,
1/3,1/2,2/3,...,(n—1)/n,...} U{0,1}, with p < ¢. The rationale for
Definition 18 and the fractional units it employs is given by the next
theorem.

THEOREM 10. POPPERFN[p,q] C Qlp,q], for p and q as specified
above.

Proof. The proof of this theorem explains the origin of the rules
in Definition 18. The proof depends only on obvious characteristics of
probability functions. First, the probabilistic soundness of the rules of Q
guarantees that POPPERFN]0, 1] C Q[0, 1]. Also, we already know
that POPPERFN]1, 1] = POPPERFN][1] = R = Q]l, 1]. Regard-
ing Q[1/(n+1), 1], consider the following theorem for Popper Functions:
if C |= ~(B;&B;) (for i # j), then P[By | C]+ -+ P[Bypy1 | C] < 1
or P[-C | C] = 1. So not all P[B; | C] > r > 1/(n + 1) unless
P[-C | C] = 1. Thus, any member of POPPERFN|[1/(n + 1),1]
must satisfy the Q[1/(n + 1), 1] rule. Similar observations connect lev-
els of support for Popper Functions to the other rules in Definition 18.
Q[(’I’L - 1)/n, 1]: if C |= (Bl VByV:--V Bn) and P["'Bz l C] >
r > (n — 1)/n, then P[B; | C] < 1/n (unless P[-C | C] = 1), so
1=P[BVB,V---VB, | C]< P[B||C]+---+ P[Bn | C] < 1 unless
P[-C | C] = 1. Q[0,n/(n + 1)]: if C = ~(Bi&B;) for By, ..., Bat1,
and if P[-B; | C] <r < n/(n+1),then1 > P[B; | C]+- -+ P[Bp41 |
Cl>m+1)x(1/(n+1))=1.Q[0,1/n}:if C |= (BiVByV---V By),
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and P[B; | C] <7 < 1/n, then 1 = P[B|VB,V---V B, | C] < P[B, |
Cl+---+P[B,|Cl<n/n=1. O

Theorem 10 shows that the rules of Definition 18 are sound for the condi-
tionals defined by POPPERFN p, q]. However, there are conditionals
in Q[p, ¢ that cannot be extended into members of POPPERFN]p, g].
The way in which rules for conditional probabilities assign numbers to
sentences imposes important ordering relations on sentences that some
conditionals in Q[p, ¢] do not heed. In the next subsection I will specify
rules that, when satisfied by a conditional in Q, suffice to guarantee that
it exhibits the salient ordering relations. In the two subsections after the
next I will show how to extend these primitive orderings to characterize
just those conditionals Q[p, ¢ that belong to POPPERFN|p, q].

4.2. Orderings Imposed by Some Conditionals in Q

Think of the sentences of language L as representing possibilities, sets of
possible states of affairs or possible worlds. Intuitively some possibili-
ties are more weighty or more likely than others. Only those conditionals
in Q that systematically reflect the degree to which some possibilities
are (treated by the conditional as) more weighty than others will behave
precisely like probabilities. It will prove useful to explicate the weighti-
ness attributed to sentences by a conditional in terms of sets of mutually
exclusive sentences called partitions.

DEFINITION 19. A finite set U of two or more consistent, mutually
exclusive sentences (i.e. consistent sentences that are pairwise inconsis-
tent) in Sy will be called a partial partition of Sp. The members of U
are the partial partition’s elements. If U is also exhaustive (i.e. if the
disjunction of elements of U is logically true), then U is a (complete)
partition of S_. Sentence B of Sy will be called representable in par-
tial partition U just in case either |= B or |= —B or, for some subset
{Cl,...,Cr} of U, =B = (CyV---VCy). If B is representable by
the set of n elements {C|,...,Cyp} of U, define #;[B| = n; if | —B,
define #y7[B] = 0; if = B, define #;7[B] = the number of elements of U.

The rules in the next definition specify a “weightiness ordering” associ-
ated with conditionals in Q. This “ordering” is not necessarily transitive
for conditionals in Q, but should be so for probabilities.

DEFINITION 20. For each conditional — in Q and each partial partition
U of S, define a relation >/ on sentences representable in U as follows:
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A >y B iff for all C, D representable in U such that C = D and
E ~(A&D)&~(B&D), the following 3 rules hold:

(1) DVA—->C 2) DvB—-sCVB
DvB—=C DVA—->CVA

(3) DVBVA—-CVB
DVBVA—SCVA

The relations >y; and ~p; for a given — are defined as follows:

A >y Biff A>py B and not B >y A;
A~y Biff A>y B and B >y A.

Roughly ‘A >y B’ says that “A is at least as weighty as B” for the
conditional in Q associated with >y;. Notice that if all conditional asser-
tions in rules 1-3 were replaced with conditional probabilities at a level
of support r, then these rules would require that A is at least as probable
as B.

In general there is no reason to expect a relation >y associated with
an arbitrary conditional in Q to be either transitive or connected. But
if a conditional in Q is to be truly probability-like, then an at-least-
as-weighty-as relation, >y, associated with it will have to be a weak
order (i.e. a transitive and connected ordering). For, every probabili-
ty function imposes this kind of ordering on sentences in conformity
with their probabilistic weights, an ordering that satisfies the rules for
a qualitative probability relation (for treatments of qualitative probabil-
ity see (Savage 1954), (Krantz, Luce, Suppes, Tversky 1971), (Suppes,
Krantz, Luce, Tversky 1989), and (Narens 1985)). I won’t delve into the
theory of qualitative probability here. Rather, I will take a more direct
approach to the specification of conditionals in Q[p, g that the belong
to POPPERFN|p, ¢|.

A conditional in Q behaves like conditional probability on those parts
of its language that are representable by a partial partition that is uniform
enough, a partial partition in which all pairs of elements are ~y equiv-
alent. This idea is made precise by the next definition and the following
two theorems.

DEFINITION 21. A partial partition U is uniform enough for — iff for
each pair of its elements A, B, A ~y B.
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Notice that for a partial partition to be uniform enough its elements need
only satisfy the rules in Definition 20 relative to sentences representable
in the partition. The elements of a uniform enough partial partition need
only behave as though they are “equally weighty” relative to the sen-
tences representable in the partition. They need not be “equally weighty”
relative to a broader class of sentences or a finer partition of the language.
On those parts of the language where there is a uniform enough partial
partition for a conditional in Q, the conditional behaves like a conditional
probability function at a support level.

THEOREM 11. Let — be in Q, and let U be a uniform enough partial
partition for —. For all sentences A, B, C, D in S_ representable in U,
if B— A and D +# C, then #y|A&B] + #y(B] > #y[C&D] + #y|[D].

Proof. First notice that for any conditional, —, in O that has a partial
partition U, the number of elements of U that occur as disjuncts in (the
representation in U of) the antecedent of a conditional assertion, and
the number of those elements that occur in (the representation in U of)
the consequent completely determines whether the conditional assertion
holds. That is, from the definition of >, together with the fact that each
element of U bears ~g; to every other it follows from rules of O that
for some distinct elements {Ei,...,E,} of Uand m < n, E;V---V
E,—> E\V---V E, ifand only if for every set of n distinct elements
{Gy,...,Gp} of U, GiV---VGyp = G V-V Gpy. So, whether or not
a conditional holds depends only on the number of partition elements in
the antecedent and consequent. Thus, when E,V---VE, —» E|V---VE,,
holds we may abbreviate this by the expression ‘n — m’, and we may
write ‘n /% m’ to abbreviate that £, V---V E, A FE\V---V E,,.

Let A, B, C, D, and U satisfy the antecedent of the theorem. Notice,
B - Aiff B— B&A,and D 4 C iff D 4 D&C'. Let B be represent-
edin U by B|V---V By and B& A be represented in U by By V---V B,
for some a < b. Similarly, let D be represented by Dy V --- V Dy,
and let D&C be represented by Dy V --- V D, for some ¢ < d. So,
BiV---VBy—> BV---VByand D1 V---VDg 5 DV---VD. We
want to show that a+b > c-=d, so assume for reductio that c+d > a+b.
Thus, we have b — a, d /% ¢, and we are assuming that b+a > d<c > 1,
and we’re looking for a contradiction.

Now, the strategy of the proof is to apply an iterative process that
strips elements of U from b — a and d 4 ¢, leaving ever shorter
disjunctions of elements of U on either side of ‘—’ and ‘/A’. To specify
this iterative process there are just three kinds of cases to consider:

(1) Suppose d > b. Then ¢ > a, so (Weak Or) implies that d—b 4 c—a,
withb+a>(d—b)+(c—a)> 1.
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(2) Suppose b > d. Then either a > c or ¢ > a.
(2.1) If a > ¢, then b > d, so (Negation Rationality) implies b—d — a—c,
with (b—d) - (a—¢c)>2d+c> 1.
22)Ifc>a,thenb —>c(andd 4 ¢,s0b > d),sob—d +c—c
(where ¢ — c is F).

Case 2.2 is impossible since members of U cannot bear — to F (this
follows from ‘D /4 C’). Now notice that cases (1) and (2.1) can be
iterated: if case (1) applied and yielded ‘d — b /4 ¢ — a’, then using
‘d—b 4 c—a in place of ‘d /4 ¢’ again apply either case (1) or
case (2) (depending on whether d — b > b or b > d — b); if case (2.1)
applied and yielded ‘b —d — a — ¢’, then using ‘b —d — a — ¢’ in place
of ‘b — a’ again apply either case (1) or case (2) (depending on whether
b—d>dord>b— d). The iteration of this process strips elements of
U from b — a and d /4 ¢, leaving ever shorter disjunctions of elements
of U on either side of ‘—’ and ‘4’ until an instance of case (2.2) arises
to produce a contradiction. O

Consider any conditional, —, in Q relative to which a partial partition
U is uniform enough. Define the function Py as follows: for A, B
representable in U, Py[A | B] = #y[A&B| <+ #y[B] or = B D F and
Py[A | B] = 1. Clearly Py is a classical conditional probability function
on the algebra of sentences representable in U. The previous theorem
implies that there must be some real number r such that for all sentences
A and B representable in U, Py[A | B] > r if and only if B — A. The
next theorem establishes that if — also satisfies the rules for Q[p,q],
then the value of a real number r that divides support from non-support
must lie between p and q.

THEOREM 12. Let — be a member of Q[p, q|, and let U be a uniform
enough partial partition for —. Then for some T such that p < r < q,
for all A, B representable in U, #y|A&B] +#y[B| 2 r iff B — A.

Proof. Q[p,q] C Q and Theorem 11 implies that for some 7, 0 <
r < 1, #y[A&B] + #y|B] > r iff B — A. So we just need to show that
p < r < q. The rules of O permit us to restrict attention to sentences
A and B such that A = B, and to further restrict attention to their
respective representations in U of form G,V ---V Gy and G1 V- -V Gy,
for b > a. Thus, it will suffice to prove the following cases:

(HDiIfGV---VGy— Gy V-V G, then a/b > p (we may define 7
as the smallest such ratio a/b > p);

@) ifGIV---VGy A G V- VG, thena/b < g < 1.

(1) Suppose that G} V-V Gy = G V--- VG, and p > a/b.
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(1.1) Let p = 1/(n + 1) for some integer n > 2.

Then 1/(n+1) > a/b,sob> (n+1)a>n+1. Thus, G| V--- VG can
be subdivided into n + 1 segments with at least a disjuncts from U in
each segment. From the ~ equivalence of elements of U, G| V- .-V G,
must bear — to each of these segments. Then by the rule for Q[1/n +
1,1] and the logical incompatibility of each pair of segments we have
G1V---VGy — F. But then G; — F for all of the G; in U (by repeated
application of (Negation Rationality)), which contradicts the definition
of U.

(1.2) Let p = (n — 1)/n for some integer n > 2.

Then (n—1)/n > a/b, son(b—a) > b > a. Thus, G| V---V G, can
be subdivided into n or fewer segments, Dy, ..., Dy, with b—a or fewer
elements of U in each segment. Let D; be any one of these segments.
Then Gy V---VGy = -D; (since Gy V--- VG, > G V- VG, so
Giv---VGy — (G1V' . '\/Ga)&‘"l(Ga+1\/' . '\/Gb), soG1V---VGp —
=(Ggy1V -+ V Gp), and similarly for any segment with b — a or fewer
elements of U). G{V---VGy |= D V---VDg. So, G V- --VGy logically
entails this disjunction of strings supplemented with enough repetitions
of the first string to make exactly n disjoined strings. Then, by the rule
for Q[(n — 1)/n,1], Gy V ---V Gy — F, which leads to G; — F for
each GG;, which contradicts the definition of U.

(2) Suppose G4 V--- VG, A G V---VGsand 1 > a/b > q.

(2.1) Let ¢ = n/(n + 1) for some integer n > 2.

The a/b > n/(n+1),s0b > (n+1) x (b—a) > (n+1). Thus,
G V- - -V Gy can be subdivided into n+ 1 mutually inconsistent segments
with at least b — a disjuncts from U in each. The rule for Q[0,n/(n+1)]
yields G| V ---V Gy — =D for at least one of these (n + 1) segments,
D. It follows that G, V---V Gy = (G1 V-V Gp)&—D; and (G| V
-V Gp)&~D is logically equivalent to some disjunction G; V - - - V Gy,
that contains a or fewer distinct disjuncts from U. Then, from the ~
equivalence of the G, it follows that G, V--- VG, - G| V---VG,, a
contradiction.

(2.2) Let ¢ = 1/n for some integer n > 2.

Then, a/b > 1/n, so na > b > a. Thus, G; V - - - V G} can be subdi-

vided into n or fewer segments, D1,..., D, with a or fewer elements
of U in each segment. Then G|V --- V Gy 4 D; for each D;. This
contradicts the rule for Q[0, 1/n]. O

As a consequence of Theorem 12 it is easy to illustrate how conditionals
in Qlp, q] deal with the lottery paradox for various levels of p and gq.
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Consider a fair lottery in which 100 tickets are sold. Let C' describe
relevant background conditions about the nature of the lottery, and let
each sentence W;, for 1 < 1 < 100, say “ticket ¢ will win”. The condition
that exactly one ticket will win is captured by the formal requirements
that C = W; V-V Wi and C = ~(W;&W;) for distinct tickets i
and j. Let U = {C&Wj,...,C&Wjp} be a uniform enough partial
partition on the conditional —. A fair lottery should be represented by a
conditional for which the “weightiness” of the claim that a given ticket
will win is the same for each ticket. The uniformity of the partial partition
U for — formalizes this condition.

Theorem 12 implies that for — in Q[99/100, 100/101}, C /4 —~W; for
each of the tickets, since #y[W1&C'V - - -V Wy &C| = #y[C] = 99/100.
But if — is a member of Q that corresponds to a less stringent support
level, say Q[98/99,99/100], then C — —W; holds for each ticket. At
this level, though, C 4 - W;&—W; holds for each distinct pair of tickets
i and j. In general it can be shown that if — is in Q[(n—1)/n,n/(n+1)]
(alternatively, Q[1/(n + 1), 1/n]) for any integer n from 99 through 2,
then there is an integer k, where (100 - (n+1)) -1 <k < 100 +n
(alternatively, 100 x ((n — 1) +n) — 1 < k < 100 x (n + (n + 1)),
such that C — —~W;& - - - &—Wj holds for all conjunctions of k or fewer
tickets but C 4 —~W;&---&~Wj; holds for all conjunctions of more
than k tickets.

Uniform enough partial partitions will provide a qualitative way to
precisely identity the conditionals in Q[p, ¢ that belong to
POPPERFN]|p, q].

The next two subsections will show how.

4.3. Probabilistic Representations of Conditionals on Finite
Languages

I will restrict attention now to languages containing any finite number of
sentence letters. I am not yet sure how to extend the following results
to infinite languages, but I suspect some adaptation of the work on qual-
itative probability on the non-standard reals will do the trick. For any
finite language L let POPPERFN| [p, g] and QL [p, ¢] to be the sets of
conditionals on L that satisfy the definitions of POPPERFN|p, ¢| and
Q|[p, q|, respectively.

Theorem 10 established that all conditionals in POPPERFNL [p, q]
satisfy the rules of QL [p, ¢]. How may we characterize those members of
QL[p, g that impose sufficient ordering relations on sentences to qualify
for membership in POPPERFN; [p, ¢|? In this subsection I will answer



NONMONOTONIC CONDITIONALS AND CONDITIONAL PROBABILITIES 213

this question for an important part of POPPERFN| [p, ¢; the next
subsection extends the answer to all of POPPERFNY [p, q].

The conditional probability functions that derive from classical prob-
ability theory were specified in Definition 2. Let’s call the set of these
classical conditional probability functions CLASSCOND. It is eas-
ily verified that CLASSCOND C POPPERFN; the members of
CLASSCOND are just those Popper Functions that contain only one
finite rank, and also rank oo. Thus, the set of conditionals

CLASSCONDy [p, ¢,
when defined in the obvious way, will be a subset of POPPERFN| [p, ¢|.

DEFINITION 22. — € CLASSCOND)|p, g] iff there is a
P € CLASSPROB and some real number r,

p<r<gq, suchthat—» ={(B,A)|P[A|B]=>r}

Theorem 10 implies that CLASSCOND/p, q] C Q[p, q|.

Clearly, if — is a conditional in QL[p, q] (for finite L) and the set of
state descriptions of L is a uniform enough complete partition of L for —,
then CLASSCONDy [p, g] will contain —; this follows directly from
Theorem 12. But for most conditionals in Qy[p, ¢ the state descriptions
will not constitute a uniform enough partition. However, many of these
conditionals satisfy the rules of Definition 20 in a coherent enough way
to be in CLASSCOND), [p, ¢]. The following definition picks out just
the right class.

DEFINITION 23. For any finite language L, — € Q[ [p, q] iff there is a
finite extension of L, Lt, and an extension of = to LT, =¥ (i.e. —»T
agrees with — on sentences of L), such that:

(1) —=*e Qu+[p, gl

(2) there is a uniform enough partial partition U for —* such that
each state description in L is logically equivalent to a disjunction
composed only of elements from U and sentences from F' = {B |
B —»* F}.

The next theorem shows that the conditionals in Qf [p, ¢] are precisely
those that are representable by conditional probability functions. These
conditional probability functions employ a probabilistic level of support
r, for p < r < q, that reflects the notion of support engendered in the

Q.[p, g] rules.
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THEOREM 13. For any finite L, Qf [p, g = CLASSCOND, [p, ¢|.

Proof. (1) Suppose — € Qf [p, |, and let —»* be the extension of
— to LT described in Definition 23. Some sentence C in L is logically
equivalent to a disjunction of elements from both U and F, or even
from F alone. So, extend the definition of #y as follows: #;;[C] = the
number of elements from U in a disjunction of elements from U and
F that is logically equivalent to C. For all A, B in L define P[A |
B] = #y[A&B] = #y[B], or 1 if B — F. P is a classical conditional
probability function on language L. And, by Theorem 12, there is an r,
p < r < g, such that P[A | B] > r just in case B — A.

(2) Conversely, suppose -+ € CLASSCOND, [p, ¢, and let P and r
be the classical conditional probability function and support level (for p <
r < q) that define —. Since the language L is finite there exists a classical
conditional probability function P’ (with only rational number probability
values) that behaves just like P in the sense that for all sentences A, B,
P'|A | B] > r iff P[A | B] > r (and for which the unconditional
probabilities are also rational numbers). Let {Dy, ..., D,} be the state
descriptions of L. P’ assigns each state description either O or a positive
rational number. Let s be the largest positive rational number such that for
every D;, P'[D;] is an integer multiple of s. The language L can now be
extended to a language L™ with enough new sentence letters to subdivide
all state descriptions D; into new state descriptions, where each new state
description is either assigned probability s or probability O by a function
P that agrees with P’ on L (since the state description probabilities for
L™ can clearly be assigned so as to sum to the values of P'[D;] for each
D,). The new state descriptions that have positive probabilities provide a
uniform enough partial partition U for the conditional —* (where B —*
A iff PT[A| B] > r). And —7 satisfies the rules of QL[p, g]. O

The requirements for membership in Qf [p,q] are rather modest con-
straints on conditionals that belong to Qq [p, ¢] already. Let {D;, ..., D}
be the set of state descriptions of L. If they are all ~ equivalent for con-
ditional — (except those in F, i.e. those that bear — to F'), then member-
ship in Qj [p, ¢ is assured. If the state descriptions are not ~ equivalent
for —, extend L to language L™ containing an exclusive and exhaustive
set of “bets” {W7,..., Wn,}, each compatible with the state description
of L (except those in F'). The “bets” W in the extended language might,
for example, each claim that a different ticket (or no ticket) will win
some lottery that has absolutely nothing to do with the subject matter of
language L. For each state description D; of L (except those in F), let
U contain mutually exclusive sentences of form Di&(Wj VooV W)
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Effectively, the weight of each state description is diluted by conjoining
it to some disjunction of conjectures about the lottery outcome. Each
state description of L is subdivided into less weighty sentences. If for
some extension — 1 of — there is such a partial partition U that subdi-
vides the state descriptions of L into ~; equivalent parts, then — is in

Qi lp, q]-

4.4. Conditionals from Q that Contain Conditionals in R

The set of conditionals Qf [p,q] = CLASSCOND [p, g| is a proper
subset of POPPERFN| [p, q]. We will need to expand the definition
of Q} [p, q] if we are to capture POPPERFN. [p, q] precisely. Qf [p, g]
comes up short because a partial partition for — is not uniform enough
unless for every pair of sentence A and B, A can be subdivided into
parts, A&C;, each of which is no weightier (in terms of > for —) than
B (except when B — F). But conditionals in POPPERFN| [p, g] may
arise from Popper Functions that contain two or more finite ranks, and
no two finite ranks can be represented by a single uniform enough partial
partition.

The obvious way to extend the definition of Qf [p, ] to capture all of
POPPERFN| [p, q] is to consider the set of conditionals in Q that are
ranked by the >> relation of Definition 13. I'll call this set QR. Then
define Qj [p, g] to be the set of conditionals in QR that can be extended
to possess uniform enough partial partitions at each rank. These will turn
out to be just the conditionals in POPPERFN| [p, q]. The remainder
of this section executes the details of this idea.

Definition 13 specified ordering relations, >, that conditionals in O
impose on sentences. Theorem 6 showed these to be strict partial orders
(i.e. transitive and asymmetric). The associated symmetric relations =
are reflexive but may not in general be transitive. However, when = is
transitive the associated symmetric relation > is automatically a weak
order. So let’s restrict attention to conditionals for which = is transitive.
For these conditionals the relations > will rank the sentences of L.

DEFINITION 24. — € QR|p, q] (more generally, - € OR, and — €
QR) iff — € Q[p,q¢] (— € O, —» € Q) and satisfies the following
condition: if A ~ B and B ~ C, then A =~ C. For - € QR|p,q| (or
OR or QR) define the rank function and an associated conditional —>
in R as follows:

rank[A] = 1 iff T = A;

rank[A] = i+ 1 iff A /A F, rank[A]£4, and for all B,

rank[B] < i or B = F or A>B;
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rank[A] = oo iff A — F.

B—>A iff for all C' € SD{A, B} such that
rank[C] = rank[B], if C |= B then C | A.

Theorem 9 and the discussion following it established that the ranking
specified by a weak order 3> on state descriptions completely charac-
terizes a conditional in R. Definition 24 takes advantage of this fact to
uncover a conditional —> in R superimposed on each conditional — in
QR.

Now let us return to the question of primary interest: for a finite lan-
guage L, how may we characterize those members of QRy[p, ¢ that
impose sufficient ordering relations on sentences to qualify for member-
ship in POPPERFN{ [p, g]? The next definition and theorem extend
the answer given in the previous subsection (by Definition 23 and The-
orem 13).

DEFINITION 25. For a finite language L, — € QR [p, q] iff there is a
finite extension of L, LT, and an extension of — to L, =T, with the
following properties:

() =% € QR +[p, ql;

(2) for each finite rank ¢ of —7, there is a uniform enough partial
partition, U;, containing only elements of rank ¢;

(3) for every state description D in L, either the rank of D is oo,
or there is a finite rank 7 such that D is logically equivalent to a
disjunction of elements from U; and sentences of rank oo.

The conditionals in QR [p, ¢] turn out to be precisely those that corre-
spond to the probability greater than r; parts (for each rank i) of Popper
Functions, as spelled out in Definition 16.

THEOREM 14. For any finite L, QR{ [p, q) = POPPERFN| [p, q|.
Proof. Observe that for conditionals in either QR [p, ] or

POPPERFN| [p, q], a conditional assertion B — A holds just in case
another conditional D — C holds for D the disjunction of the highest
ranking state descriptions that logically entail B and C the disjunction of
these state descriptions that also entail B& A. The present theorem then
follows from the application of the proof of Theorem 13 to each rank of
the conditionals in QR [p, ¢] and in POPPERFN| [p, q]. O

Theorem 14 says that the logic of probabilistic support at levels between
p and q is soundly and completely captured by the rules for conditionals
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in QR [p, g]. One important implication is that logics for nonmonotonic
conditionals and conditional probabilities may be coherently integrated
in computer based defeasible reasoning systems. More generally, Theo-
rem 14 suggests that qualitative and probabilistic approaches to uncertain
knowledge share a common logic.

5. CONCLUSION

Most of the inferences we commonly make are defeasible, and nonmono-
tonic conditionals provide a way to model significant features of the logic
of defeasible reasoning. The nonmonotonic logic embodied by condition-
al probabilities has long been our best model of defeasible support for
beliefs by evidence, a model in which support for a belief reflects the
probability that it is true. Each nonmonotonic conditional in a family
QR*|p, q] behaves precisely like a conditional probability function at
some level of probabilistic support between p and g. These conditionals
provide a logically sound qualitative model of the support and revision
of beliefs due to evidence, a model in which support is an indicator
of the probability that the belief is true. Conversely, any nonmonotonic
conditionals that violates rules of QR*[p, ¢] must conflict with the logic
of conditional probability. Thus, any conditional that does not belong to
some QR*[p, ¢] cannot effectively represent the probable truth (at some
level) of “supported” beliefs.

NOTES

! Chris Swoyer provided very helpful comments on drafts of this paper.

% See the investigations of Adams (1966, 1975), Stalnaker (1970), Harper (1975),
Pollock (1976), Pearl (1988), and Lehmann and Magidor (1992).

* Both indicative and subjunctive (or counterfactual) conditionals are nonmonotonic.
Among the most influential treatments of these conditionals are those cited in the previous
note, and the following: (Stalnaker 1968), (Lewis 1973), (Nute 1980), (Kraus, Lehmann,
Magidor 1990); and also the papers collected in (Harper, Stalnaker, Pearce 1981), (Rein-
frank, De Kleer, Ginsberg, Sandewall 1989), and (Jackson 1991). Nute (1984) provides
an excellent overview of conditional logics.

4 Harper (1975) explored the connection between Popper Functions and personalist
probability, and first recognized a connection between Popper Functions and condition-
als. Field (1977) developed Popper Functions into a semantics for first-order logic. See
Leblanc (1979, 1983) and van Fraassen (1981) for further developments of probabilistic
semantics for first-order logic.
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