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INTRODUCTION

In a previous paper in this journal (Hawthorne, 1996) | described a range
of nonmonotonic conditionals that behave like conditional probability
functions at various levels of probabilistic support. These conditionals
were all defined on languages for sentential logic. In this paper | will
extend the semantics of the most prominent family of these nonmonotonic
conditionals (the family ER) to a language for predicate logic. The
present paper, however, is intended to be self-contained, and will not
presuppose that the reader is familiar with the previous paper. But | will
briefly summarize some results of the earlier paper that help to motivate
the present project.

A conditional, —, is said to be monotonic if whenever ‘C' — B’
holds, ‘(C&D) — B’ must aso hold. For a monotonic conditional the
addition of new information to the antecedent of the conditional cannot
undermine the support of the consequent already tendered by the original
antecedent. The material conditional and the logical consequence relation
are familiar examples of monotonic conditionals. A conditional, —, is
called nonmonotonic if the addition of new information to the antecedent
can undermine its (degree of) support for the consequent. Indicative and
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subjunctive conditionals are typically nonmonotonic. Conditional prob-
ability is aso nonmonotonic in the sense that P[B | D&C| may have
quite a different probability value than P[B | C], either higher or lower.

In the previous paper | first characterized arange of distinct families of
nonmonotonic conditionals on sentential languages in terms of semantic
rules that the conditionals of each family obey. Then, | showed that the
conditionals in each family are essentially just the probability greater
than or equal to r parts of the Popper Functions. That is, | showed that
for each specified family of conditionals there is a probability value r
for that family such that, for each conditional — in the family there is a
conditional probability function P, (a Popper Function) that agreeswith
— in the following sense: for all sentences C' and B, ‘C' — B’ holds
justincase P_.[B | C] = r. Conversely, each family of conditionals may
be completely generated by first choosing the appropriate level r for the
family, and then specifying, for each conditional probability function (i.e.
Popper Function) P, a conditional — p generated from P as follows: for
all pairs of sentences C' and B, ‘C' —p B’ is defined to hold just when
P[B | C] > r. Thus, each family of conditionals turns out to be just
the collection of the probability greater than or equal to r parts of the
Popper Functions (for an appropriate value of r for the family).

Of particular interest is the family of conditionals | caled ER in
the previous paper. The conditionals in ER. are a particularly tenacious
variety of nonmonotonic conditional, a variety in which the support of
B by C may only be defeated by conjoining to C' the kind of new
information D that is “highly unexpected” in the sense that =D is also
supported by C' (before D is added to C') — i.e. the following semantic
rule holds for conditionals in ER: if C — B and C' -+ —D, then
C&D — B. We saw in the previous paper that these relations turn out
to be identical to the conditionals Lehmann and Magidor (1992) call the
Rational Consequence relations. And, remarkably, the conditionals in
ER turn out to be the conditionals that correspond to the probability 1
parts of the Popper Functions; they are essentially the same conditionals
identified by McGee (1994).

In the previous paper | specified autonomous semantic rules for the
family of conditionals ER, and then | showed that ER contains just
those conditionals — p such that P is a Popper Function, and such that
‘C —p B’ holds just when P[B | C| = 1. Of specia significance is
the fact that in the semantics for ER the nonmonotonic conditionals, —,
are the semantic primitives of the semantic theory, much as truth-value
assignments are the semantic primitives in the more usual truth-value
semantics for sentential languages. The conditionals, —, belong to the
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metalanguage rather than the object language. The semantic rules for
these conditionals do not presuppose other semantic notions like truth or
logical truth. Rather, the notions of logical truth and logical consequence
are independently definable in terms of the conditionals in ER, just as
these logical notions are independently definable in terms of truth-value
assignments.

It should not be too surprising that thisis possible. Beginning with the
work of Harper (1974, 1975), a number of logicians (e.g. Field (1977),
Leblanc (1979), and van Fraassen (1981)) have investigated probabilis-
tic semantic theories in which the Popper Functions, rather than truth-
values, are the semantic primitives. Thiskind of semantic theory specifies
the set of (possible) conditional probability functions (i.e. | call this set
‘POPPERFN’) in terms of semantic rules that do not presuppose the
notions of truth or logical truth, much as a truth-value semantics spec-
ifies the set of (possible) truth-value assignments (i.e. TVA) in terms
of semantic rules. The probabilistic semantic theory provides an alter-
native semantic basis for the definition of notions of logical truth and
logical consegquence, which prove to agree (extensionally) with the usual
(truth-value based) notions. In this respect the semantics of ER does
with conditionals precisely what the probabilistic semantic theories have
done with the Popper Functions.

Harper (1974, 1983), Field (1977), and Leblanc (1979, 1983a,b), also
show how to specify probabilistic semantic theories for the language
of predicate logic. However, each of these logicians extends the Pop-
per Functions to quantifiers in a different way. Harper's and Leblanc's
approaches are closely related to the truth-value semantics for substitu-
tional quantification. Field's approach may look a bit like substitution-
a quantification, too; but on closer inspection we will see that Field's
approach is quite closely tied to an objectual semantics for quantifiers.

The point of the present paper, then, is to pursue two related goals.
Thefirst goal isto extend the semantics of the nonmonotonic conditionals
in the family ER to the language of predicate logic. My approach will
be similar to the way that Field extends the probabilistic semantics of
the Popper Functions to quantifiers. Along the way | will attempt to
show how Field’s approach differs from a semantics for substitutional
guantifiers in crucial ways. It will turn out, however, that one of Field’s
probabilistic semantic rules for quantifiers is not precisely adaptable to
the semantics of nonmonotonic conditionals. Rather, the way in which we
must adjust Field’s approach to apply it to nonmonotonic conditionals
will suggest, in turn, an alternative to one of Field's quantifiers rules
for probahilistic semantics. The second goal of the present paper, then,
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will be to take a cue from the conditional semantics, and investigate
an alternative probabilistic semantic rule for quantifiers. | will carefully
compare this alternative semantic quantifier rule to Field's rule.

Here is an outline of what follows. In Section 1 | extend the semantics
of truth-value assignments, TVA, to a truth-value semantics for predi-
cate logic. The semantic quantifier rules for the truth-value semantics will
not employ the usual objectual apparatus of domains of discourse, but
will still manage to specify the same set of possible truth-value assign-
ments to sentences as objectual semantics. The quantifier rules for this
truth-value semantics will serve as models for the quantifier rulesin the
semantic theories for conditionals and conditional probabilities devel oped
in subsequent sections.

In Section 2 | will supplement the semantic rules for the nonmonotonic
conditionals in ER. with semantic rules for quantifiers that are closely
analogous to the quantifier rules for the truth-value semantics. | will
define a notion of logical consequence in terms of conditionals (rather
than truth-values), and show that this notion is extensionally equivalent
to the standard notion of logical consequence for predicate logic.

In Section 3 | will extend the probabilistic semantics for sentential
languages, the semantics of POPPERFN, to a probabilistic semantics
for predicate logic. The approach | will adopt employs a quantifier rule
closely related to the quantifier rule for conditionals, a rule that looks
distinctly weaker than the rule employed by Field (1977). This seman-
tics will aso furnish a basis for a notion of logical consequence that is
extensionally equivalent to the standard notion.

In Section 4 | will compare the probabilistic semantic quantifier rules
of Section 3 to Field's quantifier rule. Section 5 concludes the paper
with some suggestions about ways in which conditional semantics and
probabilistic semantics may be further extended.

One advantage of the general approach to quantifiers developed by
Field over a more straightforwardly objectual semantics is that Field's
approach manages to neatly side-step some of the metaphysical issues
that would arise if one attempted to specify semantic theories for non-
monotonic conditionals and conditional probabilities in an objectual way.
A quite natural reading of a nonmonotonic conditional assertion‘C — B’
is, “in amost al worlds in which C istrue, B is aso true.” And a nat-
ural reading of a conditional probabilistic assertion ‘P[B | C] = r’ is,
“the measure among worlds in which C'is true of the class of worlds
in which B is true is r.” So, for example, when sentences C and B
contain a name in common, a fully objectual version of nonmonoton-
ic conditional semantics and of probabilistic semantics will presuppose
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some view on the cross-world identification of objects and the naming
of objects across worlds. Field’s approach to quantifiers neatly side-steps
such issues. Although | believe that the metaphysical treatment required
to provide more directly objectua accounts is worth pursuing, Field's
approach permits us to get on with the task of exploring the logics of
nonmonotonic conditionals and conditional probabilities without having
to take a stand on these metaphysical issues in advance.

1. TRUTH-VALUES

Let £ be a standard first-order language with a countable list of predi-
cate symbols (including n-ary relation symbols), a countable list of name
symbols, and a countably infinite list of individual variables. The prim-
itive logical symbols of the language are the universal quantifiers (e.g.
“(x)’ for variable ‘z’), and the conjunction and negation symbols ‘&’ and
‘=, Existential quantifiers and the other logical connectives are defined
in the standard way in terms of these. (In Section 5 | will add ‘=’
for identity as a logical symbol.) Formulas and sentences of £ are as
usual. Expressions such as the following will be used as metalinguistic
terms for formulas of £: A, Be, Fx, (x) Dxe;, —C, (A& B). On occasion
I will need to refer to long conjunctions. | will abbreviate conjunctions of
form ‘(.- (B1&B2)& --- & B,,)’ by suppressing parentheses, and write
‘(B1& --- & By,)" instead.

To describe the semantics for quantifiers | will eventually need to
draw on a family of first-order languages that are name-extensions of
the root language L. | will call these languages £-languages. Given any
specific language £, a language L is called an £-language just in case
L results from supplementing £ with a countable number (possibly 0) of
new names. All £-languages have precisely the same syntax as described
for £, and differ from one another only with respect to the name symbols
they contain. For each £-language L, Sy, is the set of closed sentences
of L.

The usual objectual way to extend the semantics of sentential logic
to quantifiers is to define the notion of truth in terms of a more primi-
tive semantic predicate, satisfaction. Each interpretation of the language
assigns an object from a domain of objects to each name symbol, and
assigns a set of n-tuples of objects from the domain to each n-ary pred-
icate symbol (the n-tuples of objects that satisfy the predicate). Satis-
faction for complex formulas (under an interpretation) is defined in a
recursive way that depends only on which objects from the domain sat-
isfy the n-ary predicates and which objects the names name. A formula
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with n distinct free variables is defined as true under an interpretation
just when it is satisfied by all n-tuples of objects (assigned to free vari-
ables) from the domain of the interpretation. Thus, in the usual objectual
semantics for predicate logic the truth-value of a closed sentence under
an interpretation ultimately depends on which n-tuples of objects are
members of the sets of n-tuples associated with the n-ary predicates,
and on which objects are assighed to the names.

Rather than appealing to domains of objects (and to assignments of
objects and n-tuples of objects to names and predicates, respectively),
there are other ways to provide for the assignment of truth-values to first-
order sentences. One way to directly extend the semantics of Truth-Value
Assignments, TVA, for a sentential language is through a substitutional
interpret?tion of the quantifiers, as follows (where ‘v[B]" abbreviates
‘Bev):

For any L-language L,v € SUB/, (the set of SUBSstitutional quan-
tifier truth-value assignments on L) iff v C S, such that:

1) v satisfies the rules of TVA applied to sentences of L (i.e. for all B
and C in Sp: v[-B] iff not v[B]; v[(B&C)] iff v[B] and v[C]);
for any formula F'z containing only z free:

2) if v[(z)Fx], then v[F¢] for al namesc in L;

3) if v[F¢| for al names c in L, then v[(x)Fz].
B is SUB_-logically trueiff for all v € SUBy, v[B].
B isa SUBp-logical consequence of a set of sentences I iff for all
v € SUBy, if v[C] for each C € T, then v[B].

The semantics of SUB, isnot the Truth-value semanticsfor Quantifiers,
TQ, that | will ultimately adopt, but it points in the right direction.
Whereas SUB, interprets quantifiers substitutionally, the semantics for
TQ will be more closely aligned with an objectua interpretation of
guantifiers. However it will be easier to understand the rationale behind
the semantics for TQ by first considering how SUB, fails to adequate-
ly capture certain intuitions that underlie objectual semantics. This is
not to say that there is anything intrinsically wrong with substitutional
guantification. For some purposes we may want quantifiers to be read
substitutionally. But the objectual reading of quantifiers is clearly more
natural in many contexts, especialy in mathematics and the sciences.
(See Leblanc (1983b) for an excellent, comprehensive treatment of sub-
stitutional quantification for both truth-value semantics and probabilistic
semantics.)

The SUB,, semantics fails to model the objectual notion of truth
because of the inadequacy of rule 3. This rule is inadequate as a rep-
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resentation of the intuitive idea that universal quantifiers range over all
objects under discussion, including any unnamed objects. Rule 3 only
says that (z)Fx istrue in v if F istrue of al named things; so (z)Fx
may be true in v even when some unnamed object fails to satisfy F.
Indeed, in a substitutional semantics there is no way to say anything
about unnamed objects. One might attempt to overcome this difficulty
by adding enough names to the language to name every object. But when
more than a countable number of things are under discussion (e.g. the
geometric points in physical space) not enough new names can be added
unless the language is uncountable, in which case its sentences are not
recursively specifiable.

The logic of substitutional quantification expressed by SUB;, does
emulate the logic of our usual understanding of quantifiers to a certain
extent. It does turn out to specify the same set of logical truths as objec-
tual semantics. But SUB, fails to fully emulate the logic of objectual
quantifiers; the infinite set of sentences {F¢; | for every name¢; in L}
SUB -logically entails (z) F'x, but no subset of it does. Thus, compact-
ness fails for the notion of logical consequence that accompanies substi-
tutional quantifiers. Thisis symptomatic of the failure of the semantics of
substitutional quantification to adequately reflect the objectual intuitions
that underlie the standard notion of logical consequence.

Dunn and Belnap (1968) suggest a way to modify the SUB;, seman-
tics to get the same logical consequence relation as objectual semantics,
and yet maintain the substitutional interpretation of quantification. They
accomplished this by defining logical consequencein terms of alanguage
L together with name-extensions of L, extensions of L to languages with
additional names.

DEFINITION 1. Let L be any first-order language. A name-extensions
of L is any language that is just like L except that it may contain a
countable number (perhaps 0) of new name symbols.

Given the way | specified the notion of an £-language above, al L-
languages are name-extensions of £; and for each £-language L, al
name-extensions of L are also £-languages. For each language L™ that
is a name-extension of an L-language L, SUB;+ can be defined on
LT in just the way that SUB;, was defined on L. The semantic rule
for quantifiers on the £-languages remains strictly substitutional. How-
ever, Dunn and Belnap suggest a modification of the definition of logical
conseguence (and, similarly, of logical truth) for each £-language L, as
follows:



8 J. HAWTHORNE

B isa3UB-logical consequence of a set of sentences T iff for all L™
aname-extension of L and al v € SUB+, if v[C] for each C € T,
then v[B].

This definition produces the same logical consequence relation as the
usual objectual semantics. And so compactness no longer fails — e.g.,
the infinite set of sentences {F'c; | for every name ¢; in L} does not
SUB-logically entail (x)F'x; for, there is a name-extension L™ of L with
new name b such that Fb isnotin {F¢; | for every name ¢; in L}.

Although the invocation of extended languages in the SUB defini-
tion of logical consequence yields the same logical consequence relation
(extensionally) as objectual semantics, it does not yield the same col-
lection of possible truth-value assignments. One consequence of this is
that logical consistency is not quite the same on Dunn and Belnap's
substitutional account as it is on the objectual account. A set of sen-
tences T is objectually logically consistent just in case there is a possible
truth-value assignment to just the language of the sentences in T" that
makes all sentencesin I true. But for I' = {—(x)Fz, Fc1, Fep, ...}, NO
possible substitutional truth-value assignment to just the language of the
sentences in T' can make all sentence in T true. T' can only be ruled
logically consistent in substitutional semantics relative to some substi-
tutional truth-value assignment on a name-extension of the syntax that
occursin I

The substitutional approach to quantifiers engendered in the SUBy,
definition of the truth-value assignments circumvents the usual appara-
tus of objectual semantics (e.g. domains of discourse, assignments of
objects to variables, names, and predicates, and the notion of satisfac-
tion), but | think it does so at too high a price. It fails to represent all of
the objectua truth-value assignments, and so fails to adequately capture
the attendant notion of logical consistency. There is, however, a way to
characterize all of the objectual truth-value assignments on £-languages
without employing the usual objectual apparatus. The basic idea is this.

Consider an objectual interpretation on language L that makes (3z) Fx
true and makes F'c false for each name c. Let v be the set of sentences
that are true under that interpretation. Consider a name-extension L+
of L which supplements L with a new name b. The original objectu-
al interpretation can be name-extended to language L™ in such a way
that the previously unnamed object that satisfies F' gets the new name
b. This extended interpretation gives rise to a truth-value assignment v™
that extends v (i.e. v agrees with v on the language L) but also makes
Fb true. Similarly, if every possible name-extension of a given objectual
interpretation to an extended language (with additional names) makes F'c
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true for every name ¢ (old and new), then the original objectual inter-
pretation (and all of its name-extensions) must make (z) F'x true. Thus,
each truth-value assignment that arises from an objectual interpretation
can be associated with a whole collection of possible truth-value assign-
ments that arise from name-extensions of the objectual interpretation to
the extended languages.

Name-extensions of truth-value assignments play a central role in
what follows, so | will take the trouble of stating the relevant definition
precisely. We define what it means for an arbitrary set of sentencesto be
a name-extension of another set of sentences when the members of the
first set belong to a language that is a name-extension of the language
of the second set:

DEFINITION 2. For any set v a subset of Sy of an £-language L, if
LT is a name-extension of L and v* is a subset of S;+, then v isa
name-extension of v just in case v NSy, = v (v contains just the L
sentences that v contains).

In Definition 2 | do not presuppose that v and v™ are truth-value assign-
ments, for | intend to employ the notion of a name-extension in a defi-
nition of ‘truth-value assignment’.

One way, then, that we might specify an objectual truth-value assign-
ment without drawing on the apparatus of objectual semanticsisto direct-
ly define the associated class of truth-value assignments that would arise
from a standard objectual interpretation and its name-extensions. The
following definition formalizes this idea.

DEFINITION 3. R isa TQ-model class if and only if for dl v € R, v
is a subset of the sentences of some L-language L and sdtisfies the
following conditions (where ‘v[A]" abbreviates ‘A € v'):

1) v satisfies the rules of TVA applied to sentences of L (i.e. for all B
and C in Sp:v[-B] iff not v[B]; v[(B&C)] iff v[B] and v[C]);

for any formula F'z in L containing only x free:

2) if v[(z)Fx] then v[Fc| for al names c in L;
3) if for each v* € R suchthat v* is name-extension of v to L™ (where
L* is a name-extension of L), for all names ¢ in L™, v*[F¢|, then

Each TQ-model class is a collection of assignments of truth-values to
some collection of L-languages. Most TQ-model classes R contain a
hodgepodge of many unrelated truth-value assignments; but ignore the
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messiness, since it will play no meaningful role. What is important is that
each v in R has one (itself) or more name-extensions in R. Notice, too,
that any two distinct name-extensions of v in R may disagree on truth-
values for sentences containing names not in the language of v. However,
the crucial point is that each v in R belongs to a nested chain of (one
or more) name-extensions of itself (all in R), a chain in which each
successor agrees with all of its predecessors on their common language.
Some TQ-model classes consist only of name-extensions of a single
truth-value assignment v. Each of these classes correspond to a class
of truth-value assignments that arises from name-extensions of a single
objectual interpretation — and it is these classes the supply the crucial
link to objectual semantics. However, Definition 3 also permits (indeed,
requires) that the union of any number of TQ-model classesis also a TQ-
model class — and thus, the messiness of most of the classes, R. Thus,
most TQ-model classes may be partitioned into a number of unrelated
TQ-model subclasses, where all truth-value assignments within a given
subclass are name-extensions of a single truth-value assignments in that
subclass.

Notice, rule 3 requires that if v[—(x)Fz], then at least one name-
extension v+ of v in R has a name c in its language such that v*[-F¢].
Similarly, if v*[=(y)Gy] for another sentence (y)Gy in L™, then v in
turn has a name-extension v** in R such that v *[-Gb] for some name
b in LT+, Thus, the sentences in any finite set of negated universally
guantified sentences (or set existentially quantified sentences) that belong
to a truth-value assignment v in a TQ-model class R will al be exem-
plified by names in some single name-extension of v that also belongs
to R.

L et’s examine the connection between TQ-model classes and objectual
truth-value assignments even more closely. First we can see that every
objectual truth-value assignment is a member of a TQ-model class. For,
let v be any objectual truth-value assignment defined on a £-language
L in the usua way in terms of some objectual interpretation 7. It is
well known that each objectual interpretation I may be extended to an
w-complete interpretation 7™ — i.e. an interpretation I just like I but
on a language L+ that extends L with a countable collection of new
names such that 7™ makes an instance —F'c true whenever I makes
—(x)Fz true. The truth-value assignment v+ determined by I agrees
with u on the sentences of L, and for any formula F'z with only x free,
ut[=(z)Fz] justin case u™ [~ Fc] for somenamecin L*. It's routine to
verify that {u,u™} satisfies the rules for a TQ-model class. Thus, every
objectual truth-value assignment » belongs to some TQ-model class.
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Conversely, every member of a TQ-model classisatruth-value assign-
ment for some objectual interpretation. To see this, let R be any TQ-
model class, let v be in R, and let L be the language of v. Suppose for
the moment that any such v has an w-complete name-extension v on a
language L™ in some TQ-model class —i.e. suppose that for any formula
Fz with only x free, v [~(z)Fz] just in case v [=F¢c| for some name ¢
in L. (I will discharge this supposition by proving it in a moment. Note
that v is not necessarily a member of R.) Then we employ the standard
Henkin construction, letting the domain of interpretation consist of the
set of names in LT; let each name refer to itself; let the extension of
each n-ary predicate B be the set of n-tuples of names (c1, ¢z, ..., ¢,)
such that v*[Beicey . . . ¢,). It is easy to verify that this objectual interpre-
tation reproduces the set v* as its truth-value assignment. And v is just
vT restricted to the language L. Thus, v is also an objectual truth-value
assignment.

The argument just given rests on the assumption that any member
v of a TQ-model class has an w-complete name-extension belonging to
some TQ-model class. To see that the assumption holds, begin with any
v on a language L for some TQ-model class R. Let vy, v5,..., be a
nested sequence of name-extensions of v in R (each a name-extension
of the preceding ones) on languages L1, Lo, ... (each a name-extension
of the preceding ones) such that for any formula F'z (with only z free)
in L;, if v;[-~(x)Fz], then for some j > i, v;j[=F¢| for name ¢ in Lj;.
Rule 3 for R guarantees that such a sequence of name-extensions of v
exists. Let the language L., be the union of the languages L;, and let
Uso b€ the union of the sequence of v;. Clearly v, satisfies rules 1 and
2 for members of TQ-model classes (if it didn't, then v, would have to
violate one of these rules for some sentences in some L;; but v; and v
agree). Then {vy} isa TQ-model class: if vy, [~ (z)Fz], then for some
v;, vi[—(x)Fz]; so for some j > i, v;[~Fc| (c in Lj); thus veo[-F'c].
And notice that v, is an w-complete name-extension of v (although v,
might not be in R itself).

Thus, we see that each TQ-model class R is a collection of objectual
truth-value assignments, and each objectual truth-value assignment is in
some TQ-model class. Now define TQ as the union of all TQ-model
classes.

DEFINITION 4. TQ is the union of al TQ-model classes defined on
L-languages.

Clearly TQ is itself a TQ-model class, the largest such class. And the
arguments just presented have established the following theorem.
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THEOREM 1. TQ is the set of all objectual truth-value assignments on
L-languages.

We may now define TQ-logical truth and TQ-logical consequence in the
obvious way.

DEFINITION 5. BisaTQ-logical truth (i.e. = B) iff for al £-languages
L such that B € S;, and al v € TQ defined on L, v[B]. B isa TQ-
logical consequence of a set of sentences I' (i.e. I' £ B) iff for all
L-languages L such that B € Sp and I' C Sy, and for al v € TQ
defined on L, if v[C] for each C € T, then v[B].3

Theorem 1 makes it obvious that TQ-logical truth and TQ-logical con-
sequence precisely coincide with their objectual counterparts.

The main appeal of the semantics of TQ derives from its close con-
nection to objectual semantics. The semantics for TQ not only cap-
tures the same logical truths and the same logical consequence relation
as objectual semantics. What makes it really interesting is that it emu-
lates the treatment of quantifiers by objectual semantics without direct-
ly appealing to a domain of objects, but, rather, by capturing objectu-
a intuitions about the possibility of naming additional objects. For my
purposes in this paper the semantics of TQ is mainly of interest as a
bridge between standard objectual semantics and the semantic theories of
conditionals and conditional probabilities | will describe in subsequent
sections. TQ's treatment of quantifiers is easily adapted to extend the
sentential language semantic theories ER. and POPPERFN to quanti-
fiers. And TQ’stie to objectua intuitions strongly suggests that the very
similar semantic theories | will employ in the quantified versions of ER.
and POPPERFN are not far removed from a more directly objectual
treatment (e.g. one that employs possible worlds and possible objects).

2. NONMONOTONIC CONDITIONALS

The treatment of quantifiersin the extension of TVA to TQ is precisely
analogous to the method | will use in this section to extend the semantics
of ER to the nonmonotonic Entailment-Relation semantics for Quanti-
fiers, EQ. The object-languagesfor EQ belongsto afamily of languages
for predicate logic consisting of a language £ and its name-extensions,
the £-languages described in the previous section. A nonmonotonic con-
ditional, —, on an L-language L is a set of ordered pairs of sentences
of L that satisfy certain semantic rules that | will specify in a moment.
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Rather than write * (C, B) € —’ (and *(C, B) ¢ —"), | will usualy write
‘C — B’ (and ‘C' » B’). Define the notion of a name-extension of a set
of pairs of sentences — on a language L to a set of pairs of sentences
—™ on alanguage L™, a name-extension of L, as follows.

DEFINITION 6. For any set — C S;, x Sy, for an L-language L, if L™
is a name-extension of L and —* C S;+ x Sp+, then —* is a name-
extension of — if and only if for all B,C in S, C —* B holdsjust in
case C' — B holds.

We now define the EQ-model classes of conditionals by extending the
ER semantics for the Rational Consequence relations (of the previous
paper) in the same way that TQ-model classes were defined by extending
the truth-value semantics TVA.

DEFINITION 7. R is an EQ-model class if and only if for all — € R,
— is a subset of pairs of sentence of an £-language L that satisfies the
following conditions:

— satisfies the rules of ER. applied to sentences of L; i.e. for al
A,B,C in Sy, — sdtisfies the following rules:

1) forsome D and E in Sy, E » D;
2) A— A;
3) if (C&B) — A, then (B&C) — A4;
4.1) if C — (B&A), then C — (A& B);
42) if C — —(B&A), then C — —(A&B);
5.1) if B — ——A, then B — A;
52)if B— Aand B — —A, then B — C,
6.1) C — B and (C&B) — A iff C — (B&A);
6.2) C — —Bor (C&B) — —Aiff C — —(B&A);

and for all sentences B in S, and al formulas F'z in L containing
only z free:

7) if B— (x)Fx, then B — Fc for al namesc in L;

8) if for each —* € R such that —* is a name-extension of —
to Lt (where L™ is a name-extension of L), for every name
cin LT, B —* Fc, then B — (x)Fxz.

The intuitive idea behind taking conditionals (in EQ-model classes) as
semantic primitives (in place of truth-values) is that associated with each
nonmonotonic conditional, —, is a way of assigning meanings to sen-
tences and a way of measuring classes of possible worlds; and, relative
to its associated meanings and measures, a conditional assertion C' — B
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holds just in case B is true in amost al possible worlds in which C
is true. The semantic rules are intended as minimal constraints on any
conditional that may bear this reading. In particular, for each conditional
in ER, if C — A, then either C& B — A or C' — —B (this follows
primarily from rule 6.2). Thus, for a conditional — in ER (or, in an
EQ-model class), if A is true in amost all worlds in which C'is true,
then A must also be true in the subset of C' worlds in which B is true as
well, unless B is false in amost al C' worlds (in which case the (C& B)
worlds may or may not almost all make A true, and may even almost
all make A false). See my previous paper for more about this.

Rule 8 provides a treatment of quantifiers for EQ-model classes that
is closely analogous to the treatment for TQ-model classes. When a
sentence B fails to support the claim that everything has F' (according
to support relation —), then there must be some possible way (consistent
with how — is understood) of extending the support relation to a new
name c (that, presumably, names some object) such that B failsto support
Fec. An EQ-model class captures this idea by representing a class of
possible name-extensions of a given conditional to broader languages.

Rule 8 is equivalent to the following rule for EQ-model classes:

8") if B — —(z)Fz and B - D (for some sentence D in L), then
for some —* € R such that — is a name-extension of — to
LT (where L™ is a name extension of L), for some name ¢ in
LT, B-»T Fe.

In terms of existential quantifiers, rule 8* says that when a sentence
B supports the claim that (3x)Gx (according to a support relation —),
then either B supports every sentence or else there must be some possible
way in R of extending the support relation a new name ¢ such that Gc
is possible relative to B (i.e. B fails to support —Gc).

To see that 8* follows from 8, observe that if the consequent of 8* is
fase, then B — (x)Fx holds (by 8), so either B -» —(x)Fz or B — D
for al D. Conversely, to obtain 8 from 8*, suppose a class R satisfies
rules 1-7 and 8%, and suppose rule 8 fails, as follows: C' - (z)Gz,
but for every name-extension L™ of L and every —T € R a name-
extension of — to L*, C —* Gc for every name c in L™. Then for
every name-extension L+ of L and every —T € R a name-extension
of — to L*, C&—(z)Gx —* Gc for every name ¢ in L*; and yet
C&—(z)Gx — —(z)Gz. By 8, C&—(x)Gx — D for al D. Thus
C — (z)Gx (provable from ER rules), which contradicts C' » (x)Gxz.

Most EQ-model classes contain more than a single conditional and
its name-extensions. But such classes can always be subdivided into EQ-
model subclasses that are each composed of a single conditional and its
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name-extensions. Clearly, the union of all the EQ-model classes is itself
an EQ-model class—it is the class of al Rational Consequence relations
for predicate logic.

DEFINITION 8. EQ is the union of all EQ-model classes defined on
L-languages.

The semanticsfor EQ provided by Definition 7 is completely autonomous
from truth-value semantics. The possible nonmonotonic conditionals,
representing defeasible support relations, are the semantic primitives.
Indeed, the conditionals in EQ give rise to their own notions of logical
truth and logical consequence, versions of these logical concepts that
are native to EQ’s semantics and autonomous from the semantics of
truth-values. We may define the EQ versions of these logical concepts
as follows.

DEFINITION 9. B is an EQ-logical consequence of a set of sentences
I' (abbreviated I' => B) iff for al L£-languages L such that B and the
sentences in T are in Sy, and for al — € EQ defined on L, for each
sentence D in Sp, if D — C foreach C €T, then D — B.

B is an EQ-logically true (i.e. => B) iff for al L£-languages L such
that B € Sp and for al — € EQ defined on L, for each sentence
DeS;, D— B.

In cases where the set I' contains a single sentence C' and I' => B, |
will simply write ‘C => B’.

The EQ-logical truths might better be called EQ-logical certainties,
and the EQ-logical consequence relation may more appropriately be
caled the EQ-logically certain support relation, or something of that
sort. But it turns out that these EQ logical notions extensionally coincide
with the corresponding classical notions, and the terminology anticipates
this equivalence. The equivalence will be proved shortly.

Those who have read my previous paper will notice that the defini-
tion of EQ-logical consequence differs significantly from the definition
of ER-logical consegquence in the earlier paper: B is an ER-logical con-
sequence of C' iff for al — € ER, C — B. This previous definition
does not directly extend to infinite sets of premises, which Definition 9
handles easily. However, there is a straightforward relationship between
the definition of EQ-logical consequence and the kind of definition given
for ER-logical consequence. | will describe this relationship precisely in
Theorem 4, near the end of this section.

In the previous section we saw that each truth-value assignment in
TQ has an w-complete name-extension in TQ. An analogous property
applies to conditionals in EQ.
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DEFINITION 10. Let — be a set of pairs of sentences of an £-language
L (where — is not necessarily in EQ). — is caled explicit just in
case, for al formulas Fx in L with only x free and for all B in Sy,
B — (z)Fx if and only if for all namesc in L, B — Fe.

Explicit conditionalsin EQ are rather like w-complete truth-value assign-
ments. A sentence that claims that everything has F' fails to be supported
(by B) just in case for some name ¢, F'c is not supported (by B) either.
Indeed, replacing al occurrences of the phrase ‘fails to be supported’
with the phrase ‘is not true’ in the previous sentence produces a descrip-
tion of w-completeness. Each explicit conditionals — in EQ forms its
own EQ-model class {—}.

The next theorem shows that each conditional in EQ can be extended
to an explicit conditional in EQ. The theorem also shows that if — is
any set of pairs of sentence on an L£-language L that has an explicit
name-extension satisfying rules 1-6 of the semantics for EQ, then —
isin EQ. Not every EQ-model class contains an explicit conditional,
but all EQ-model classes consist of sequences of name-extensions of
conditionals that “approach”explicit conditionals in the limit.

THEOREM 2. For any set of pairs of sentences — on an L-language
L, — € EQ if and only if — has an explicit name-extension that satisfies
the ER rules (rules 1-6 of Definition 7).

Proof. (I) Suppose —' is an explicit name-extension of the set of
pairs — and satisfies rules 1-6. Since —' is explicit it also satisfies rule
7. Clearly — also satisfies rules 1-7 since —' is a name-extension of —.
It is easy to verify that the set {—, — '} is an EQ-model class.

(I1) Suppose — € EQ on a language Lo. — is in some EQ-model
class, cdl it R. Let — be designated ‘—¢’. | will show that R contains
conditionals that compose a certain nested sequence —gq, —1, —2, . .., Of
name-extensions of —q (each a name-extension of the preceding ones)
on languages Lo, L1, Lo, ... (each a name-extension of the preceding
ones). The union of the conditionals in the sequence is an explicit name-
extension of —.

For each conditional in R, let > be a sequence of all pairs of formulas
(D, Fx) in the language of the conditional such that D is a sentence and
Fz has only one free variable. Rule 8 of Definition 7 guarantees that
there is a sequence of conditionals in R beginning with —q such that
each conditional —; bears the following relationship to the preceding
conditionals in the sequence:

for each k < 4, if (D, Fz) is one of the first ¢ members of ¥, for
language Ly, and D —+;_; (x)Fz,
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then for some name c in L;, D -»; Fec.

Let the language L, be the union of al languages L; in this sequence,
and let —, be the union of all conditionals —; in the sequence. Clearly
—so IS @ Name-extension of — that satisfies rules 1-7 for EQ-model
classes (or else —, must violate one of these rules for some sentence
pairs in some L;; but —; agrees with —,, on L;, and —; isin R).
Furthermore, — ., is explicit. For, suppose D —+, (z)Fz; then for some
—; € R, D —»; (xv)Fx where (D, Fz) is the kth member of 3;; so for
somei>j+k, D-»; Fcforein L;. Hence D »,, Fc. Thus, — iS
an explicit name-extension of — that satisfies rules 1-7. O

The EQ notion of logical consequence coincides (extensionally) with
the classical notion, as the next theorem establishes.

THEOREM 3. T'=> B ifand only if I" = B.

Proof. (1) Suppose I' ¥ B. Then there is an w-complete truth-value
assignment v € TQ such that I' U {-B} C v. Define — = {(E, D) |
v[E D D]}. {—} isan EQ-model class (check Definition 7), so — € EQ.
And for any tautology T of sentential logic, [T D C] for al C €T,
and not v[T D BJ. Thus, I #> B.

(I) Suppose I' #£> B. Then there is a conditiona — in EQ on a
language L for I and B, and a sentence D in L such that for all C' € T,
D — C and D - B. Without loss of generality, we may suppose that
— is explicit. The strategy now is to use a technique similar to a Henkin
proof to build from — a truth-value assignment v in TQ on language L
suchthat v[C] forall C' € T'and v[—B]. Let A1, Ay, ... bean enumeration
of the sentences of L, and let ¢y, ¢, . .. be an enumeration of the names.
If B is of form (z)Fz, let ¢, be the first name in the enumeration
such that D&—-B —» Fe¢,, (such a ¢, exists, for: — is explicit; so, if
D&—(z)Fz — Fcforadl ¢, then D& —(x)Fx — (x)Fx,50D — (z)Fx
by ER rules). If B isof form (z)Fx, define —¢ such that for all X and
YinS., Y —o X iff (Y&-B)&-Fc,) — X.If B isnot of form
(z)Fx, define —¢ such that Y —o X iff (Y&-B) — X. The ER rules
imply that for all sentences E, if D — E, then D —q E; dlso D —q —B
and D »¢ B (and D —q —Fc¢,, if B isof form (z)Fz). And —q is
clearly in EQ. Now we extend —¢ in a sequence of conditional —; in
a similar way by going through an enumeration of all sentences of L:

D) If D —;_1 A;, then define —; such that:
1) Y —; X iff Y&A; —;—1 X, if A; isnot of form —(z)Fx;
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(12) Y —-; X iff ((Y&AZ)&—'FCk) —i_1 X, if A; is of form —|((L')F$
and ¢, is the first name in the enumeration such that D& A; »;_1
Feg.

(2) If D »;_1 A; then define —; such that:

DY —; X iff Y&—-A; —;1 X, if A; isnot of form (z)Fx;

(22) Y —-; X iff ((Y&—'Ai)&—\Fck) —i1 X, if A; is of form ((L‘)F.’L‘
and ¢;, isthe first namein the enumeration such that D& —A; »;_1
Feg.

In either case —; iIsinEQ,and D —; C foradl C'inT", and D —; =B
and D »; B. Let — be the union of al of the —;. {—} is an
EQ-model class since — is explicit (for, if —, failed any of the EQ
rules or failed to be explicit, then so must one of the —;). Define v as
the set of all sentences F such that D — ., E. Then v is an w-complete
member of TQ. But v[C] for &l C € I" and v[-B]. O

(For those familiar with my earlier paper — with the aid of Theorem 3 it
is fairly easy to prove that EQ is a predicate logic version of the Ratio-
nal Conseguence relations described in the previous paper. That is, if the
rules of the set of conditionals called R in the previous paper (the rules
in Definitions 9, 11, and 12 of the previous paper) are applied to first-
order sentences of £-languages, and if the notion of logical consequence
used in those rules is understood to be classical (objectual) logical con-
sequence for predicate logic, then the resulting theory (call it RQ) of
nonmonotonic conditionals is equivalent to EQ. The rules of RQ may
easily be derived from those of EQ with the help of Theorem 3; so all
conditionals in EQ are also in RQ. Moreover, each conditional in RQ
can be shown to have an explicit name-extension that satisfies the rules
1-6 of EQ, so al conditionals in RQ belong to EQ (by Theorem 2).)

We now establish that the definition of EQ-logical consequence (Def-
inition 9) is equivalent to an alternative characterization (which matches
the form of the definition of ER-logical consequence offered in my pre-
vious paper).

THEOREM 4. T' => Bifandonlyif thereisafinitesubset {C1,...,C,}
of I" such that for all — € EQ on a language containing B and sentences
in{C,...,Cp}, (- (C1&C2)& ---&C,,) — B.

Proof. First, Theorem 3 together with the compactness of classical
logical consequence establishes that I' => B just in case there is a
finite subset {C1,...,C,} on I' such that {C1,...,C,} => B. Notice
too that {C4,...,Cy,} => B justin case (C1& ---&C,) => B. (This
follows from the ER rules, which suffice to prove that for each sentence
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D, D — (C4h& ---&C),) just in case for each C; € ', D — C;). Now
we show that for any sentence C, C' => B just in case C' — B holds
for every — in EQ on languages containing C' and B.

(1) Suppose C' — B for all — € EQ on languagesfor C' and B. Then
D&C — B for dl — ¢ EQ on the language of C, D, and B (for, if
D&C -+ B, then there is a conditiona —’c EQ such that for al X
and Y in the language of —, Y —' Y iff D&X — Y; and C -’ B).
So, for each — € EQ and any D, if D — C (and D&C — B), then
D — C&B; so D — B. Consequently, C' => B.

(I1) Suppose C => B. Thenfor all — € EQ on alanguage containing
C and B and for @l D in this language, if D — C, then D — B. But
C — C for al such conditionals —, so C' — B for all such —. ]

The truth-value semantics for TQ was primarily of interest for the aid
it provided in making sense of the quantifier rules for the semantics of
EQ. And quantifier rules of the semantics for PQ (the Probabilistic
semantics for Quantifiers) presented in the next section is also rather
similar to TQ. However, the semantics for EQ is, of course, interest-
ing in its own right. It extends one of the main systems of sentential
nonmonotonic conditionals to predicate logic. These nonmonotonic con-
ditional s constitute an autonomous semantic theory for predicate logic, a
semantics of defeasible support (under interpretation) that is independent
of the semantics of truth-values (under interpretation). The properties of
conditionals in EQ will also shed light on the nature of the conditional
probability functions that will make up PQ. We will see that the condi-
tionals in EQ are the probability 1 parts of the conditional probability
functions in PQ, thus extending the relationship between their respec-
tive sentential logic parts ER. and POPPERFN. Proof of the clam
that the semantics for PQ captures the classical notion of logical con-
sequence will, indeed, derive quite easily from the fact that EQ-logical
consequence coincides with the classical notion.

3. CONDITIONAL PROBABILITIES

In “Logic, Meaning, and Conceptual Role” Field (1977) extended the
Popper Functions to first-order languages by extending the semantics of
POPPERFN in much the same way that | built EQ from ER in
the previous section. In this section | will provide a somewhat modified
version of Field's probabilistic semantics, and show that it leads to the
same logical consequence relation as the truth-value semantics for TQ
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and the nonmonotonic support-relation semantics for EQ. The support-
relation semantics EQ will turn out to be a subtheory of probabilistic
semantics. In the next section | will explicitly compare Field's version of
probabilistic semantics with the version developed in the present section.

Several researchers have developed probabilistic semantic theories for
predicate logic by extending the Popper Functions. Harper’s (1974) and
Field's (1977) are the ground breaking works on probabilistic semantics
for first-order languages. Harper first developed probabilistic semantics
for a free quantificational logic (see his (1983) for a summary). Field
(1977) independently constructed a probabilistic semantics for standard
predicate logic. Leblanc conducted pioneering work on Popper functions,
and has developed versions of probabilistic semantics that reflect the
substitutional reading of quantifiers (see 1979, 1983a, b). Van Fraassen
(1981) takes another interesting approach to probabilistic semantics for
predicate logic. All of these approaches extend the Popper Functions
to quantifiers by employing semantic rules that essentially say of each
probability function P that it (or some name-extension of it) satisfies the
following condition: for ¢, cp, ... alist of all namesin the language of
P, P[(x)Fz | B] =lim, P[(Fc1& - -- &F'¢,,) | B]. The semantics | will
specify does not appeal to this kind of condition. Rather | will employ
semantic rules for quantifiers that are precise analogues of the simpler
guantifier rules of EQ.

In order to extend the Popper Functions to a semantics for predicate
logic, | will first define the notion of a PQ-model class. PQ-model classes
provide a means of representing the import of quantifiers; they are the
probabilistic analogues of the model classes for TQ and for EQ. The
main idea is that whenever (z)F'z is uncertain given B (i.e. whenever
P[(x)Fz | B] < 1 for afunction P in model class R), there must be a
name-extension of the language that contains at least one name ¢ such
that F'c is uncertain given B (i.e. there must be a P*, a name-extension
of P, in R such that for some name ¢, P*[Fc | B] < 1).

DEFINITION 11. RisaPQ-modd classif and only if foradl P € R, P
is a function from all pairs of sentence of an £-language L into the real
numbers in the interval [0,1], and P satisfies the following conditions:

P satisfies the rules of POPPERFN applied to sentences of L;
i.e. foral A, B, Cin S, P satisfies the following rules:

1) for some D and E in Sy, P[D | E] # 1,
2) P[A| Al =1,

3) P[A| C&B] = P[A | B&C];

4) PIB&A| C] = P[A&B | C;
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5) PIA| B]+ P[-A| B]=1or P[C'| B] = 1;
6) PIA&B | C] = P[A | B&C] x P[B | C];

for al sentences B in Sy, and all formulas F'x in L containing only
x free:

7) if P[(x)Fz | B] =1, then P[Fc| B] =1 for dl namescin L;

8) if for each P* € R suchthat P isaname-extensionof Pto L™
(i.e. where L™ is aname-extension of L, and P agrees with P*
on sentences of L), for every name ¢ in L*, PT[Fc| B] = 1,
then P[(z)Fx | B] = 1.

The union of al PQ-mode classes is itself a PQ-model class; | call
this class PQ, because it derives from a Probabilistic semantics for
Quantifiers.

DEFINITION 12. PQ is the union of al PQ-model classes defined on
L-languages.

In the previous paper we saw that the nonmonotonic conditionals in ER
are just the probability 1 parts of the conditional probability functions
in POPPERFN. A similar relationship holds between EQ and PQ.
To establish this claim we first define the set of conditionals PQJ1]
that correspond to the probability 1 parts of the conditional probability
functions in PQ as follows:

DEFINITION 13. For each £-language L, — € PQ[1] on L if and only
if forsome P e PQon L, —={(C,B) | P[B|C]=1}.

In the previous paper | established that for sententia logic ER =
POPPERFN]]] (Theorems 4 and 5 of the previous paper). The next
theorem establishes the corresponding result for predicate logic.

THEOREM 5. PQ[1] = EQ.

Proof. (1) First let’s establish that PQ[1] C EQ. We only need show
that PQ[1] is an EQ-model class. Clearly each — in PQJ1] satisfies
rules 1-7 of an EQ-model class. To see that rule 8 is satisfied, suppose
— isin PQJ[1]. Then there is some function P in PQ such that — =
{{(C,D) | PID | C] = 1}. Now, suppose that for each — € PQ][1]
such that —™ is a name-extension of — to L™, for every name c in
LT, B —T Fe. Then, for each function P™ € PQ such that P™ is a
name-extension of P to L™, for every name c in L™, PT[Fc| B] = 1.
Then P[(z)Fz | B] = 1. Hence, B — (z)Fx.
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(1) Now let's see that EQ C PQI1]. Suppose — € EQ on language
L. Let —* be an explicit name-extension of —. For the moment think of
each sentence that begins with a universal quantifiers in the language L*
of —* as a sentence letter; then Theorems 4 and 5 of the previous paper
imply that there is a probability function P* satisfying rules 1-6 of PQ
such that for al X and Y of L*, P*[X | Y] = 1 just when Y —* X.
P* sdtisfies rule 7 for PQ-model classes, since: P*[(z)Fz | B] = 1 only
if B —* (x)Fz only if for each ¢ in L*, B —* Fc only if for each
cin L*, P*[Fc | B] = 1. {P*} is a PQ-model class since (given any
B and Fz in L*): for dl ¢ in L*, P*[Fc | B] = 1 only if for al ¢
in L*, B —* Fc only if B —* (z)Fz (since —* is explicit) only if
P*[(z)Fz | B] = 1. Let P be P* restricted to the language L. {P, P*}
is also a PQ-model class, so P € PQ. But — is the restriction of —*
to L, and — = {(Y, X) | P[X | Y] = 1}. Thus — € PQ][1]. ]

We can define a notion of logical consequence in terms of the probability
functions in PQ. PQ-logical consegquence will turn out to be extension-
aly equivalent to the classical notion.

DEFINITION 14. T = B (i.e. B is a PQ-logical conseguence of a set
of sentences I") iff for all £-languages L such that B and the sentences
inT" arein Sy, and for all P € PQ defined on L, for each sentence D
in Sy, if P[C'| D] =1foreach C €T, then P[B | D] = 1.

B is a PQ-logical truth (i.e. = B) iff for al L-languages L such
that B € S, and al P € PQ defined on L, for each sentence D € Sy,
P[B|D]=1

The PQ-logical “truths” might better be called probabilistic-logical cer-
tainties and the PQ-logical consequence relation may more appropriately
be called the probabilistic-logically certain support relation (or some-
thing of that kind). | employ the terms ‘logical truth’ and ‘logical con-
sequence’ in order to aert the reader to the fact that these PQ logical
properties turn out to extensionally coincide with the corresponding clas-
sical logical notions.

From the fact that EQ-logical conseguence coincides with classical
logical consequence (Theorem 3 of the previous section) it is fairly
straightforward to prove that the probabilistic notion of logical conse-
guence is extensionally equivalent to the classical notion.

THEOREM 6. T'= B ifandonly if I' £ B.
Proof. (1) Suppose I' ¥ B. Then there is an w-complete truth-value
assignment v € TQ such that I' U {—-B} C v. Define a function P
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on the sentences of L as follows: P[X | Y] = 1if ¢[Y D X], and
P[X | Y] = 0 otherwise. { P} satisfies the rules for a PQ-model class.
And for any tautology T of sentential logic, [T D C] for al C € T,
and not v[T D BJ. ThusT' % B.

(I1) SupposeI' = B. Thereis a function P in PQ on a language L
containing the sentences in I' and sentences B and D such that for al
Cel, PIC|D]=1and PB | D] < 1. From Theorem 5 it follows
that there is a conditional — € EQ suchthat D — C for dl C inT" and
D —+» B.So, T" #> B. Then, by Theorem 3, T" ¥ B. |

There are several equivalent ways to characterize the PQ-logical con-
sequence relation. Theorems 7 and 8 will establish two natural alterna
tives. Theorem 7 shows that the definition of logical consequence for
POPPERFN in the previous paper works for PQ as well.

THEOREM 7. T" = B if and only if thereis a finite subset {C1, ..., C),}
of I' such that for all P € PQ on languages containing B and the
sentencesin {C4,...,Cy}, P[B | (C1& --- &C,)] = 1.

Proof. I' = B iff ' ¥ B iff I' => B iff there is a finite subset
{C1,...,C,} of T such that for all — € EQ = PQ[1] on languages
containing B and the sentencesin {C1,...,C,}, (C1& ---&C),) — B.
This last claim holds iff there is a finite subset {C1,...,C,} of T such
that for all P € PQ on languages containing B and the sentences in
{C4,...,Cy}, P[(C1&---&C,,) | B] = 1. O

Field (1977) defines probabilities on sets of sentences, including infinite
sets. He employs probabilities of sets of sentencesin another probabilistic
characterization of logical consequence. Field's definition of probabilities
on sets goes like this:

DEFINITION 15. Let I" be a countable set of sentences of £-language L
and let C be asentenceof L; let P € PQ be defined on L. If T isfinite
andI' = {C4,...,C,}, then define P[I" | C| = P[(C1& ---&C,,) | C.
If T is countably infinite and Cy1, Cs, ... C,, ... isan enumeration of the
members of T', define P[I" | C] = lim,, P[(C1& --- &C,,) | C1.

The functions P are clearly well defined on finite sets I since the rules
of POPPERFN imply that the value of the probability of a string
of conjuncts does not vary with order. The limit must exist because
the values of P[(C1& ---&C,,) | C] as n increases are monotonically
decreasing and bounded below by 0; and it is axiomatic of the read
numbersthat every set of real numbers with alower bound has a greatest
lower bound (the limit).
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When T is an infinite set of sentences there is no natural definition
of conditional probabilities P[B | I'] as limits of finite subsets. For, the
values of P[B | (C1& ---&C,,)] can swing up and down as n increases,
and they may not converge to any limit. Even when a limit does exist,
its value may depend on the order in which the C; are enumerated.
However, the definition of P[I" | C] for infinite I' does not encounter
these difficulties since it is monotonically descreasing and bounded below
(by 0).

Field calls the inference from a set of sentences I' to a sentence
B probabilistically valid just in case for every function P (in PQ),
P[B | C] = P[I' | C] for every sentence C' in the language of P. The
next theorem establishes that Field's characterization of probabilistically
valid inferences is equivalent to the notion of PQ-logical consequence
specified in Definition 14.

THEOREM 8. T = B if and only if for all P € PQ on a language
L containing B and the sentences in I, for all C' in S, P[B | C] >
PIT| C].

Proof. (1) SupposeI" = B. By Theorem 7, for some {C14,...,C,} a
finite subset of T, for all P € PQ on alanguageof B and {C1,...,C)},
P[B | (C1& ---&C,,)] = 1. For brevity, let ‘D’ represent the sentence
(C1& --- &C,,). Then, for any such P and al C in the language for P,
P[B | D&C] = 1 (otherwise the following function P’ would be in PQ
and P'[B | D] < 1 P[X |Y]=P[X |Y&C] fordl X, Y inthe
language of P). So P[B | C] > P[D | B&C]| x P[B | C] = P[D&B |
C]=P[B|D&C])x P[D|C]=P[D|C]= P[l'| C].

(I1) Suppose for al P € PQ on languages containing B and the
sentencesin I', and for al C in that language, P[B | C] > P[I" | C]. Let
P’ be any member of PQ on a language for B and I" such that for all
C in the language, P'[C; | C] =1fordl C;inT. Then P'[l' | C] = 1;
so P'[B|C]=1 O

In the previous paper | provided a more classical set of axiomsfor Popper
Functions, and | called the set of probability functions that satisfy these
axioms CONDPROB (Definition 5 of that paper). These axioms define
conditional probability functions on a sentential language in terms of
more classical looking axioms, axioms that employ the classical notion
of logical consequence. We may extend the rules for CONDPROB
to al first-order sentences of £-languages simply by taking the notion
of logical consequence employed in its rules to be classical (objectual)
logical consequence for predicate logic. Call the resulting theory ‘CPQ’
(for CONDPROB with Quantifiers).
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DEFINITION 16. P € CPQ iff P is a function from al pairs of sen-
tences of an £L-language L into [0, 1] such that:

1) forsome £ and G in S;,, P[G | E] # 1, andfordl A, B, C, D
in St

2)if FC =B, then P[A| B]= P[A| C];

3)if Ck A, then P[A|C] =1,

4) if C E -(A&B), then either P[AV B | C| =
P[A|C]+P[B|C]or PID|C|=1,

5) P[A&B | C] = P[A| B&C] x P[B | C].

The rules of CPQ are easily derived from those of PQ with the help
of Theorem 6; so al conditionalsin PQ are also in CPQ —i.e. PQ C
CPQ.

Is it dso the case that CPQ C PQ? Each function in CPQ is
easily shown to satisfy rules 1-7 of PQ-model classes. But rule 8 for
PQ is harder to verify for functionsin CPQ. The issue can be clarified
by introducing the notion of an explicit probability function, in analogy
with the notion of an explicit conditional as specified in Definition 10.

DEFINITION 17. Let P be a function from all pairs of sentences of an
L-language L into theinterval [0, 1] (where P is not necessarily in CPQ
orin PQ). P iscaled explicit just in case for all formulas F'z in L with
only = free and for all sentences B in Sy, if P[Fc| Bl =1foradl cin
L, then P[(x)Fz | B] = 1.

Corresponding to Theorem 2 — which states the relationship between ex-
plicit conditionals and members of EQ — we have the following theorem
for PQ.

THEOREM 9. For any function P from all pairs of sentences of an
L-language L into [0, 1], P € PQ if and only if — has an explicit name-
extension that satisfies the POPPERFN rules (1-6 of Definition 11).

Theorem 9 can be proved by simply rewriting the proof of Theorem 2
with ‘functions from £-languages into [0, 1]’ in place of ‘sets of pairs of
sentences’, and with ‘PQ’ in place of ‘EQ’.

Now we can specify a subset of CPQ that is bound to coincide with
PQ.

DEFINITION 18. Define CPQ* asthe set of all functionsin CPQ that
have explicit name-extensions in CPQ. Each explicit member of CPQ
is an explicit name-extension of itself, and so must also belongto CPQ*.
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Since PQ C CPQ, Theorem 9 guarantees that PQ C CPQ*. And
CPQ* isaPQ-modéd class (by the rules of Definition 11), so CPQ* C
PQ. In sum we have established the following theorem.

THEOREM 10. PQ = CPQ* C CPQ.

| strongly suspect that every probability function in CPQ has an explicit
name-extension in CPQ, but | have not worked out a satisfactory proof
of this conjecture. (The idea, though, is to represent each probability
function in CPQ by a monadic “classical” probability function on the
non-standard reals — see the appendix of Lehmann and Magidor (1992)
and the paper by McGee (1994) — and then to adapt a proof by Gaifman
(1964, Theorem 2) to these monadic probability functions. | will say a
bit more about this at the end of the next section.) If this conjecture
proves correct, then indeed PQ = CPQ* = CPQ.

4. PQ AND THE REASONABLE PROBABILITY FUNCTIONS

Field's semantic rules for quantifiersin his (1977) differ in some impor-
tant respects from rules 7 and 8 for PQ-model classes. In this section
I will recount Field's version of probabilistic semantics and explore its
relationship to the semantics of PQ.

Field cals the counterparts of PQ-model classes in his version of
probabilistic semantics reasonability classes. He defines them as follows:

DEFINITION 19. R is called a reasonability class if and only if for all
P € R, P isafunction from all pairs of sentence of an £-language L
into the real numbers in the interval [0, 1], and P satisfies the following
conditions:

P sdtisfies the rules of POPPERFN applied to sentences of L; for
all sentences B in Sy, and all formulas Fx in L containing only x
free:

7) P[(Fc1& ---&F'ey,) | B] = P[(z)Fx | B] for all names ¢y, ...,
cn, N L;

8) for each real number r, if for each P™ € R such that P+ isa
name-extension of P to L™, for every list of names cy, ..., c,
in Lt, PT[(Fa1& ---&F¢,) | B] > r, then P[(z)Fz | B] > r.

P is called reasonable just in case it is a member of some reasonability
class on a L-language; call the union of al reasonability classes FPQ
(Field’s version of PQ).
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Definition 19 differs only insignificantly from the way Field defines
reasonability classes. Field employs existential quantifiers and disunc-
tions rather than universal quantifiers and conjunctions. If we contra-
pose rule 8, substitute ‘-Gz’ for ‘ Fx’, use the fact that P[-X | B] =
1- P[X | B] (or elsefor dl D, P[D | B] = 1), and take the definition
of ‘(Gep VvV ---V Geyp)' to be ‘=(-Ger& - - - &—Gey,)’, then we recover
the rule in the form in which Field states it:

for each real number s (=1 —r), if P[(3x)Gz | B] > s, then there
isa PT € R such that P* is a name-extension of P to L™, and
thereisalist of names s, ...,c, in LT, such that PT[(Gep Vv ---V
Gep) | B] > s.

Rule 8 of Definition 19 captures the idea that if P[(z)Fxz | B] < r
(for P in reasonability class R), then there must be some way to intro-
duce a conjunction of assertions about named things that approximates
the uncertainty of the universally quantified assertion as closely as one
wishes — i.e. there must be some P in R with names cy, ..., ¢, inits
language such that P[(z)Fz | B] < P[(Fa1& --- & Fey,) | Bl < 7.

Rules 7 of the definitions of PQ-model classes and of reasonabili-
ty classes are equivalent in the context of the first six rules for Pop-
per Functions. For, it follows immediately from rule 7 of Definition 19
(for FPQ) that if P[(z)Fx | B] = 1 then P[Fc | B] = 1 for dll
c. Conversely, suppose that P[(Fc1& ---&Fe¢,) | B] < Pl(z)Fz |
B] but that rule 7 of Definition 11 (for PQ) holds. Then observe:
P[(x)Fx | B] > P[(z)Fz&(Fc1& ---&F¢y,) | Bl = P|(z)Fx | B] x
P[(Fc1& ---&F¢,) | (v)Fx&B); 01 > P[(Fc1& -+ - & Fey,) | () Fr&
B] =1 (since P[(z)Fx | (x)Fx&B] = 1); a contradiction. So the two
versions of rule 7 are interchangeable in Definition 11 and 19. The only
substantia difference between the definition of reasonability classes and
the definition of PQ-model arises in their versions of rule 8.

Every reasonability class is a PQ-model class since reasonability
classes satisfy rule 8 of Definition 11. To see this, suppose R is a rea-
sonability class, and suppose that for every Pt € R, a name-extension
of P to L™, and for al ¢ in L*, PT[Fc | B] = 1; then for al such
Pt and dl names ¢i,...,¢, in LT, PY[(Fa1&---&Fc,) | B] = 1;
so for all » < 1, for al such P and all names cy,...,c, in LT,
PT(F1& - &Fc,) | B] > r; then for al r < 1, P[(z)Fxz | B] > r;
thus P[(x)Fz | B] = 1. Since FPQ is itself a reasonability class, it
follows that FPQ C PQ.

Let's say that a sentence B is an FPQ-logical consequence of a set of
sentences I just in case for al P € FPQ on the language of T" and B,
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for every D in the language of P, if P[C' | D] =1for dl C in T, then
P[B | D] = 1. We can now immediately prove the following theorem.

THEOREM 11. B is an FPQ-logical consequence of I' if and only if
I'F B.

Proof. (I) Suppose that T" ¥ B. Then an w-complete truth-value
assignment that makes all sentencesin I" true and B false can provide a
reasonability class, just as in part | of the proof of Theorem 6.

(I1) Suppose I' £ B, then (sinceI"’ = B and FPQ C PQ) B isan
FPQ-logical consequence of T'. O

Field, of course, did not have PQ or EQ to work with, so his proof
of Theorem 11 takes more work. In order to prove his version of The-
orem 11 Field introduces the notion of a saturated Popper Function.
Saturated Popper Functions are similar to w-complete truth-value assign-
ments, and similar to explicit EQ-models.

DEFINITION 20. Let P be a function from all pairs of sentences of an
L-language L into the interval [0, 1] (where P is not necessarily in FPQ
or PQ). P iscalled saturated just in case for all formulas F'z in L with
only = free and for al sentences B in Sy, lim, P[(Fci& ---&Fey,) |
B] = P[(x)Fz | B], where ¢y, ¢y, ... isalist of al the namesin L. If
there are only m namesin L, the limit is understood to be P[(Fc1& - - -
&Fen) | Bl.

Just as every PQ-model has an explicit name-extension, it turns out
that every reasonable Popper Function has a saturated name-extension.
Indeed FPQ consists of precisely those functions that have saturated
name-extensions that satisfy the rules of POPPERFN. This result will
prove useful; it was first proved in (Field, 1977).

THEOREM 12. For any function P from pairs of sentences on an L-
langauge L into the real numbersin the interval [0, 1], P € FPQ if and
only if P has a saturated name-extension that satisfies the POPPERFN
rules (i.e. rules 1-6 of Definition 11).

Proof. (1) Suppose P’ is a saturated name-extension of the function
P and satisfies rules 1-6. Since P’ is saturated it also satisfies rule 7. (If
P'[(Fa1& ---&Fe,) | C] < P'[(x)Fx | C] for some names cy, ..., ¢,
in L, then since the probability of the conjunction cannot increase with
additional conjuncts (rule 6), convergence to P’[(z)Fz | C| would fail.)
Clearly P also satisfies rules 1-7 since P’ is a name-extension of P. It
is easy to verify that the set { P, P’} is a PQ-model class.
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(I1) Suppose P € PQ on a language Lo. P is in some PQ-model
class R. Let'sdesignate P as‘ Fp’'. | will show that R contains probabil-
ity functions that compose a certain nested sequence Py, P1, Ps, . .., of
name-extensions of Py (each a name-extension of the preceding ones) on
languages Lg, L1, Lo, . .. (each a name-extension of the preceding ones).
Think of each function P, as a set of triples: where (B, C,r) € P just
when P;[B | C] = r. The union of the sequence of probability functions
will be a saturated name-extension of P.

For each language L of a conditiona in R, let > be a sequence of
al pairs of formulas (D, Fz) from L such that D is a sentence and
Fx has only one free variable; let o be a sequence of all names of L.
Rule 8 of Definition 11 guarantees that there is a sequence of functions
in R beginning with Py such that each function P; bears the following
relationship to the preceding functions in the sequence:

for each k < 4, if (D, Fz) is one of the first i members of %

for languages Ly, then for some initial sequence ci,...,¢, in o;,

P,_1[(z)Fz | D] < P[(Fc1& -+~ &Fey) | D] < P_a[(x)Fx | D] +

(1/2)".
Rule 8 (together with 7) guarantees that such a P; existsin R since for
each such (D, Fz), P,_1[(x)Fx | D] < P,_1[(x)Fx | D] + (1/2)".

Let the language L, be the union of all languages L; in this sequence,
and let P, bethe union of the P; in the sequence. Clearly P, isahame-
extension of P that satisfies rules 1-7 for PQ-model classes (or else Py,
must violate one of these rules for some sentence pairs in some L;; but
P, agrees with P, on L;, and P; isin R).

The following argument shows that P, is saturated. Let D and Fx
be in L, and suppose, for a reductio, that lim,, P [(Fc1& -+ - & Fey,) |
D] # Py [(x)Fz | D]. Thenfor somer in [0,1], Py [(Fc1& - - & Fey) |
D] > r > Py[(x)Fz | D] for al namesin L. But Fz and D belong to
some language L;; and for some k, (D, F'z) in the kth member in X;.
So for each m > j + k, Pj[(x)Fx | D] <r < Pp[(Fbi& --- &Fby,) |
D) < Pj[(z)Fz | D] + (1/2)™ for the b; in an initial segment of oy,.
But for m large enough, P;[(z)Fz | D] + (1/2)™ < r. So there must
be some initial segment cs, ..., ¢, of o, (Which contains b4,...,b, as
a subsequence) such that Py [(Fe1& --- & Fey,) | D] < r, contradiction.

Therefore, P, is a saturated name-extension of P that satisfies rules
1-7. O

Earlier we saw that FPQ C PQ, and we established in the previous
section that PQ = CPQ*" C CPQ. In a manner similar to the spec-
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ification of CPQ™ in the previous section, we can specify a subset of
CPQ that is bound to coincide with FPQ.

DEFINITION 21. Define CPQ™** as the set of functions in CPQ that
have saturated name-extensions in CPQ. Notice that each saturated
member of CPQ is a saturated name-extension of itself, and so must
also belong to CPQ**.

Since FPQ C CPQ, Theorem 12 guarantees that FPQ C CPQ*".
And CPQ"" is areasonability class (by the rules of Definition 19), so
CPQ"™ C FPQ. Thus we have established the following theorem.

THEOREM 13. FPQ = CPQ** C PQ = CPQ* C CPQ.

| strongly suspect that FPQ = CPQ, but | have not yet worked out
a satisfactory proof of this conjecture. (Indeed the same reason cited
in the previous section for thinking that CPQ* = CPQ should apply
equally to show that CPQ** = CPQ — represent each probability func-
tion in CPQ by a monadic “classical” probability function on the non-
standard reals; then adapt the proof in Gaifman (1964, Theorem 2) to
these monadic probability functions. Gaifman’'s Theorem 2 shows that
every classical monadic probability function on a fist-order language can
be extended to a saturated monadic probability function.) If this conjec-
ture proves correct, then FPQ = PQ = CPQ and Field’'s version of
probabilistic semantics turns out to specify precisely the same of proba-
bility functions as the semantics for PQ.

5. CLOSING REMARKS

I will conclude this paper with a few remarks about how the semantic
theories for nonmonotonic conditionals and conditional probabilities may
be furhter expanded. The expansion of the semantics for TQ, EQ, and
PQ to systems that treat identity as alogical constant is straightforward,
and a similar approach will permit any first-order theory to be added as
“part of the logic”.

First, we can extend the semantic theories to theories with identity as
follows:

DEFINITION 22. Suppose each £-language has a special binary relation
symbol ‘=". Define TQ™, EQ~, and PQ~ as follows:

v e TQ™ iff v € TQ on an L-language L and
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9) v[e = ¢] for @l names ¢ in L;
10) for all names b and ¢ and al formulas Fx with only x freein
language L, if v[b = ¢| and v[Fb], then v[Fc|.

— € EQ™ iff - € EQ on an L-language L and

9) B — ¢ = ¢ for dl sentences B and names c in L;
10) for all names b and ¢, all sentences B and al formulas F'z with
only z freein language L, if B — b = c and B — Fb, then
B — Fe.

P e PQ~ iff P e PQ on an £-language L and

9) Plc =c| B] = 1for al sentences B and names ¢ in L;
10) for al names b and ¢, all sentences B and all formulas Fx
with only = free in language L, if P[b = ¢ | B] = 1 and
P[Fb| B] =1, then P[Fc| B] = 1.

It should be noted that rule 10 for PQ~ is equivalent to a rule asserting
that ‘P[F'c | B] > Plb = ¢& Fb | B]’; and rule 10 could equally be
replaced by the rule that ‘ P[(b = ¢& Fb) D Fc | B] = 1'. Similarly,
rule 10 for EQ™ is equivalent to the rule ‘if B — (b = c¢& Fb), then
B — Fc,andasototherule B — (b= c& Fb) D Fc'. Definition 22
may strike you as a trivial way to introduce identity into the semantics.
But recall that much of the point behind the way we've approached
semantics in this paper is to emulate objectual semantics without having
to work out the metaphysical details in advance — to get the form without
assuming too much about the content. Definition 22 does just that.

One may sometimes find it useful to take some first-order theory to
be part of the “background logic” for conditional probability functions
in PQ~ (e.g. aversion of applied ZF set theory with urelements, see
Supppes (1972)). This is easily handled.

DEFINITION 23. For any set of sentencesT” in an £-language L, define
PQ+T(PQ™ +T) astheset of dl P € PQ(PQ™) on L-languages
containing the sentences in 7" such that for each sentence C' in the lan-
guageof Pandall Be T, P[B|C]=1.

One may define EQ + T similarly (i.e. as the set of all — ¢ EQ such
that for each C in the language and for all B € T, C' — B).

Notice that if D isalogical consequence of T, then it’s easily shown
that for each P € TQ + T (or PQ™ +T), P[D | C] = 1 (for @l C
in the language of T'). And conversely, if for every P € PQ + T (or
PQ~ + T), for al C in the language of P, P[D | C] = 1, then D
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must be a logical consequence of T'. These claims follow directly from
Theorem 6 (and Definition 14).

Thereis afurther way in which the semantic theoriesfor EQ and PQ
might be extended — away that is of a very different kind. The semantics
of EQ might be extended to provide a semantics for a language con-
taining object-language nonmonotonic conditionals (e.g. object language
subjunctive conditionals). And, similarly, PQ might be extended to pro-
vide a semantics for object-language probabilities (e.g. probabilities that
represent the physical propensities of systems). The idea is that just as
truth-value semantics explicates ‘&’ and ‘=’ in the object-language in
terms of ‘and’, ‘not’, and ‘is true’ in the metalanguage, so some kinds of
indicative and subjunctive object-language conditionals might be expli-
cated in terms of metalinguistic conditionals in EQ. For such a condi-
tional ‘—>’ in the object-language it may prove useful to extend EQ with
adirect inference rule, something like: ((B — A)& B) — A. The tricky
part will come in trying to specify the kinds of conditions C' that should
defeat the direct inference — i.e. the sentences C' such that (C& ((B —>
A)&B)) - A. For instance, if C' is of form (D& ((D&B) —> —A)),
then, pretty clearly, C' should defeat the direct inference.

Similar issues arise for semantic probability rules that govern object-
language probabilities. In the present systems the only purely logical
relationships that hold among sentences in PQ-models are logical entail-
ment and a closely related notion. That is, the only conditional probability
vaues on which al members P of PQ agree are these: P[A | B] =1
when B F A; P[A | B] = 0 when both = -4 and F B. Suppose we
expand PQ to an object-language that contains a binary “function sym-
bol” ‘p’ that represents object-language probabilities. For instance, ‘p’
might apply to pairs of predicates and map them to (object-language
representations of) real numbers r in [0,1]; so that ‘p(Fz,Gz) = 7’
says that the propensity for things with G-ness to exhibit F-ness is r.
It would then be natural to supplement PQ with a direct inference rule:
P[Gc | Fe& p(F,G) = r| = r. Here again the trick will be to specify
which sorts of sentences C' can defeat the direct inference, and this will
likely be quite difficult to work out satisfactorily.

NOTES

1 My thanks to Chris Swoyer and to an anonymous referee for their very helpful
comments.

2 My only reason for employing the notation ‘v[A]’ rather than sticking strictly to
‘A e v isthat | want to maintain a rough analogy between the notation for truth-value
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assignments and the usual notations for nonmonotonic conditionals and for conditional
probabilities. That is, the nonmonotonic conditionals | will describe in a bit are semantic
relations — they are sets of ordered pairs of sentences. And, although it is technically
correct to write ‘ (B, A) € —’, it is more usua to simply write ‘B — A’. Similarly,
for semantic conditional probabilities it is more usua to write ‘ P[A | B] = r’, but one
could instead use the notation ‘ (A, B,r) € P’, where ‘P’ represents a function from
sentence pairs to real numbers between 0 and 1.
3 A referee for JPL offered the following comment:

What is the purpose of defining TQ-logical truth not only for sentences of £, but
also for sentences B that belong to an extension of £ without belonging to £ itself?
| took it that the “root language” L is the language for which semantic notions are
to be defined. What other purpose is there for singling out £? If it is understood that
B is a sentence of £, and hence a sentence of every £-language, then Definition 5
becomes

B isaTQ-logical truth iff for al v € TQ defined on £, v[B].

The definition of consequence and Definitions 9 and 14 can similarly be simplified.
And Theorem 1 could state that the truth-value assignments v € TQ which are
defined on £ constitute the set of all objectual truth-value assignments on L.

It seems to me that the referee’s suggestion would work just fine. And the referee's
point is right; it is the notions of logical truth and logical consequence for the “root
language’ that are of centra interest. But, if | were to switch to the suggested aternative
definitions, the reader might then wonder whether they could be generalized to apply
to £ and it's name extensions al at once, or whether there might be some reason for
not doing so. Thus, having made the reader aware of these aternative renditions, I'll
continue to employ the broader versions.

REFERENCES

Dunn, J. M. and N. Belnap Jr.: ‘ The Substitution Interpretation of the Quantifiers', Nols
2, 1968, 177-185.

Field, H.: ‘Logic, Meaning, and Conceptua Role’, Journal of Philosophy 74, 1977,
379-409.

Gaifman, H.: ‘Concerning Measures in First Order Calculi’, Israel J. of Mathematics 2,
1964, 1-18.

Harper, W.: ‘ Counterfactuals and Representations of Rational Belief’, Doctoral Disserta
tion, University of Rochester, 1974.

Harper, W.: ‘Rational Belief Change, Popper Functions and Counterfactuals’, Synthese
30, 1975, 221-262.

Harper, W.: ‘A Conditional Belief Semantics for Free Quantificational Logic with Identi-
ty’, H. Leblanc et al., eds., Essays in Epistemology and Semantics, Haven, New York,
1983, 79-94.

Hawthorne, J.: ‘On the Logic of Nonmonotonic Conditionals and Conditional Probabili-
ties', Journal of Philosophical Logic 25, 1996, 185-218.

Leblanc, H.: ‘ Probahilistic Semanticsfor First-order Logic’, Zeitschrift fur Mathematische
Logik und Grundlagen der Mathematik 25, 1979, 497-509.



34 J. HAWTHORNE

Leblanc, H.: ‘Probabilistic Semantics: An Overview’, H. Leblanc et a., eds., Essays in
Epistemology and Semantics, Haven, New York, 19833, 57—-78.

Leblanc, H.: ‘Alternatives to Standard First-order Semantics’, D. Gabbay, F. Guenthner,
eds., Handbook of Philosophical Logic, Vol. |, Reidel, Dordrecht, Chapter 1.3, 1983b,
189-247.

Lehmann, D. and M. Magidor: ‘What Does a Conditiona Knowledge Base Entail?,
Artificial Intelligence 55, 1992, 1-60.

McGee, V.: ‘Learning the Impossible’, E. Edlls, B. Skyrms, eds., 5r0babi|ity and Condi-
tionals, Cambridge U. Press, Cambridge, 1994, 179-199.

Suppes, P: Axiomatic Set Theory, Dover, 1972.

Van Fraassen, B.: ‘Probabilistic Semantics Objectified’, Journal of Philosophical Logic
10, 1981, 371-394, 495-510.

Department of Philosophy,
University of Oklahoma,
Norman, OK 73069, USA



