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Abstract. I’ll describe a range of systems for nonmonotonic conditionals that 
behave like conditional probabilities above a threshold. The rules that govern 
each system are probabilistically sound in that each rule holds when the 
conditionals are interpreted as conditional probabilities above a threshold level 
specific to that system. The well-known preferential and rational consequence 
relations turn out to be special cases in which the threshold level is 1. I’ll 
describe systems that employ weaker rules appropriate to thresholds lower than 
1, and compare them to these two standard systems. 

 
 
1   Introduction 
 
I will describe a range of nonmonotonic conditionals that behave like conditional 
probabilities above a threshold. More precisely, let r be a fixed real number greater 
than 1/2, and let P be any conditional probability function defined on a language for 
predicate logic with identity. Consider the conditional |~ defined as follows: B|~A 
holds just in case P[A | B] ≥ r. Let’s call |~, as just defined, the r-level consequence 
relation associated with conditional probability function P. More generally, the r-
level consequence relations are just those associated with at least one conditional 
probability function P at threshold level r. I will characterize r-level consequence 
relations for various values of r in terms of logical rules – rules like, “if (B·C)|~A and 
(B·¬C)|~A, then B|~A”, which are only about the conditional expressions, and say 
nothing of probabilities. It turns out that the logical rules that these conditionals 
satisfy are mostly weaker versions of the logical rules for the two best-known logics 
of nonmonotonic conditionals – i.e., the logics of the preferential consequence 
relations, P, and of the rational consequence relations, which I’ll call R.1 
  The conditionals I’ll be investigating are of the kind that nonmonotonic logicians 
call ‘consequence relations’ by analogy to the logical consequence relation. They are 

                                                           
1 See [4] for a thorough treatment of P, and [5] for the scoop on R. The best known 
semantics for these conditionals is in terms of preferential models, which is fully 
explicated in these two papers, and also in [7]. 



 

metalinguistic relations between sentences. Conditional probability functions applied 
to sentences are also usually taken to be metalinguistic – i.e. they are not generally 
taken to be part of the object language. So, the corresponding conditionals, |~, are also 
metalinguistic. Thus, I will call all of the conditionals under investigation here 
‘consequence relations’. 
  This paper is aimed at two audiences. It’s pitched at probabilistic logicians, who 
may find it of interest for the way it articulates the qualitative structure of conditional-
probability-above-a-threshold. In that regard this logic is somewhat like the logic of 
Qualitative Probability (a.k.a. Comparative Probability). But whereas the basic 
concept in that logic is the ‘A is-no-more-probable-than B’ relation, A � B, the basic 
concept we’ll be looking at here is the ‘given B, it-is-very-probable-that A’ relation 
B|~A. More accurately, we will investigate a whole array of such consequence 
relations ranging from ‘it-is-more-probable-than-not-that’ (corresponding to a 
threshold just over 1/2), through consequence relations for various higher threshold 
levels, up to ‘it-is-almost-certain-that’ (corresponding to a threshold of 1). Each 
quantitative probability function embodies all of these qualitative notions at once. 
Perhaps something can be learned from disentangling them. 
  The other audience I’m pitching consists of logicians interested the nonmonotonic 
conditionals known as consequence relations. The systems under study have a 
common core, a system I’ll call O, whose rules are weaker analogues of the rules for 
the well-known system P of Preferential Consequence Relations. Various ways of 
supplementing the rules of O give rise to various systems of consequence relations, 
including the system P itself and the system for the Rational Consequence Relations, 
R. What ties these systems together is the way in which they are embodied by (i.e. 
modeled in) the conditional probability functions. Indeed, every conditional 
probability function embodies a complete array of nonmonotonic consequence 
relations drawn from the systems we’ll be looking at. 
  Here is a brief outline of how I’ll proceed. First I’ll specify the logic of 
conditional probabilities that will serve as a standard against which we’ll gauge the 
nonmonotonic conditional logics. Next I’ll set down rules for a system of 
consequence relations that I call O. Each rule for consequence relations in O is r-level 
sound for each r > 0. That is, choose any specific threshold r > 0: then by replacing 
each conditional expression of form B|~A in the rules of O by a conditional 
probability sentence P[A | B] ≥ r, each rule turns out to hold for every probability 
function P. If we add an additional simple rule to O, the rule known as AND, we get 
the preferential consequence relations P – even though three of the rules of O are 
much weaker than their usual counterparts associated with P. Add to the rules of P the 
rule known as Rational Monotony (RM) and we get the rational consequence relations 
R. Interestingly, it turns out that the consequence relations of system R are just the 
class of threshold-level-1 probabilistic consequence relations. That is, for each 
relation |~ that satisfies the rules of R there is a conditional probability function P 
such that B|~A holds just in case P[A | B] = 1; and the probability 1 part of each 
conditional probability function is just a consequence relation |~ that satisfies the 
rules of R. 
  The fact that the 1-level consequence relations are so tightly connected with the 
well-known rational consequence relations suggests that it may be illuminating to 
take a look at r-level consequence relations for values of r less than 1. We will see 



 

what additional rules, added to O, are probabilistically sound for various levels of the 
threshold r below 1. Although neither AND nor Rational Monotony (RM), nor the rule 
known as Cautious Monotony (CM) are probabilistically sound for thresholds r below 
1, the weaker monotonicity rule called Negation Rationality (NR) does turn out to be 
probabilistically sound for each possible threshold level r > 0. The system for 
consequence relations gotten by supplementing O with Negation Rationality 
constitutes the system I’ll call Q. 
  None of the rules of Q itself are specific to a given threshold level r > 0. That is, 
each rule of Q applies to all r-level consequence relations, for any given value of r. 
However, there are two additional rules that are closely tied to specific threshold 
levels. One applies whenever the threshold r is greater than some rational number 
(n−1)/n, for fixed n � 2. The other applies whenever the threshold r is no greater than 
the rational number n/(n+1), for fixed n � 2. I call the system of consequence relations 
that satisfy both of these rules, for a specific value of n, Q(n). They behave like 
conditional probabilities above some threshold r such that (n−1)/n < r ≤ n/(n+1).  
These level-specific rules turn out to have a close connection to the Preface and the 
Lottery Paradoxes. 
 
2   The Logic of Conditional Probabilities 
 
When applied to propositions or sentences, probability is usually specified as a one-
place function, and conditional probability is then defined in terms of this function: 
P[A | B] = P[A·B]/P[B] for P[B] > 0, and P[A | B] is undefined for P[B] = 0. 
However, there is a very natural way of axiomatizing probability that takes 
conditional probability as primitive. It turns out that this treatment of conditional 
probability is closely related to logics of nonmonotonic conditionals. 
  Think of conditional probabilities as extending logical entailment to a conception 
of probabilistic truth-transmission from premise to conclusion. There are many such 
extensions – many such probability functions. For, unlike deductive logical 
entailment, the notion of probabilistic entailment may depend on what the sentences 
mean. Formally, the degree to which premise B probabilistically entails conclusion A 
relative to an interpretation � of a language L is represented by a function on pairs of 
sentences, P�[A | B]. We may think of each conditional probability function P� as 
associated with some way of assigning meanings to the terms of the language, and as 
supplementing that with a measure on possible worlds. Thus, ‘P�[A | B] = r’ may be 
taken to say that among the worlds in which sentence B is true, A is true in proportion 
r of them (according to some measure on worlds associated with P�). 
  Alternatively, we may think of ‘�’ as representing a possible agent, and think of 
each possible agent as having (either implicitly or explicitly) some degree-of-belief 
function that expresses how strongly premise sentences support conclusion sentences. 
For an agent �, let P� represent her conditional degree-of-belief function, given the 
meaning of the sentences of her language. 
  Whatever way one conceptualizes the conditional probability functions, the 
axioms for these functions specify constraints that they must respect given the 
meanings of logical terms (not, and , or, etc.). Here is a fairly standard set of axioms: 
 

Definition 1: CP. Let L be a language for predicate logic with identity. Let ‘|=‘ be 



 

the standard logical entailment relation. A Conditional Probability Function 
(CP Function) on L is any function P from pairs of sentences to real numbers 
between 0 and 1 that satisfies the following rules. 
0. There are sentences D and E such that, P[D | E] < 1; 
 for all sentences A, B, C: 
1. If B |= A, then P[A | B] = 1; 
2. If |= (B�C), then P[A | B] = P[A | C]; 
3. If C |= ¬(B·A), then either P[(A∨B) | C] = P[A | C] + P[B | C] or P[D | C] = 1 

for every sentence D; 
4. P[(A·B) | C] = P[A | (B·C)] · P[B | C]. 
 

  Holding any sentence C fixed, each function P[... | C] behaves just like a classical 
unconditional probability function as usually defined on sentences of a formal 
language. Furthermore, whenever P[Y | C] > 0, P[X | Y·C] = P[X·Y | C] / P[Y | C], in 
agreement with the classical definition of conditional probability. However, the CP 
functions extend classical probability in that they remain defined even when 
probabilities are conditionalized on sentences having probability 0 – i.e. P[A | (B·C)] 
remains defined even when P[B | C] = 0.2 
  Perhaps a comment on the formal language I’m using is in order here before 
proceeding. All of the logical systems I’ll describe in this paper are defined on a 
standard formal language L for predicate logic with identity. Nothing I’ll say really 
hangs on this. The language could just as well have been weaker – say, that of 
sentential logic. But then the reader might have been left wondering whether the 
results only hold for the weaker language.3  

                                                           
2 The CP functions are basically just the Popper-Field functions; however the usual 
axiomatization for the Popper-Field functions is more elegant in that it does not 
employ (or in any way presuppose) the deductive notion of logical truth or logical 
consequence. See [2] and [3] for details. 
3 It is also common to define probability on propositions instead of on sentences of a 
formal language, where a proposition is taken to be a set of possible worlds. In that 
case one would have to broach the issue of whether the probability functions are 
countably additive or only finitely additive. That issue doesn’t arise here because the 
object language L doesn’t have an expression for infinite disjunction (which would 
correspond to countable unions). It does, however, have existential quantifiers, which 
behave somewhat like infinite disjunctions. Indeed, one could add a weak kind of 
countable additivity axiom to the axioms of CP, as follows: for each open formula Fx, 
P[∃xFx | B] = limn P[Fc1∨...∨ Fcn | B], where the individual constants c1, ..., cn, ..., 
exhaust the countably infinite list of L’s individual constants. However, in the context 
of predicate logic this axiom seems overly strong, since it effectively assumes that 
every individual gets named. If we don’t assume that all individuals are named, the 
strongest claim we should want is that P[∃xFx | B] � limn P[Fc1∨...∨Fcn | B]. 
However, this already follows from the axioms of CP, because B·(Fc1∨...∨ Fcn ) |= 
∃xFx, so P[∃xFx | B·(Fc1∨...∨ Fcn )] = 1, so P[∃xFx | B] �  P[(Fc1∨...∨Fcn) | B·∃xFx] · 
P[∃xFx | B]  =  P[(Fc1∨...∨Fcn)·∃xFx | B]  =  P[∃xFx | B·(Fc1∨...∨Fcn)] · 
P[(Fc1∨...∨Fcn) | B] =  P[(Fc1∨...∨Fcn) | B]. 



 

 
3   Systems O and P 
 
There are two complimentary ways of describing a logic for nonmonotonic 
consequence relations. Sometimes logicians identify such a logic in terms of its 
inference rules. The issue then is, “what are reasonable rules for a nonmonotonic 
consequence relation to follow, and what inferences can we make from some 
conditional claims to others based on these rules.” Other times we think of such a 
logic as a class of possible consequence relations, all of those that satisfy certain 
constraints. In this mode the “rules” just express the constraints. In standard deductive 
logic the former mode is most usually associated with the “syntactic” proof theory of 
the logic, and the later mode is associated with the semantics. But labeling these two 
modes as “syntactic” and “semantic” is not very helpful in the logics we will be 
looking at. Rather, in these logics it may be best to think of the consequence relations 
themselves as semantic, as part of the metalanguage, just as probability functions are 
semantic – i.e., they are not part of the object language. That’s how presentations of 
the well-known nonmonotonic logics P and R often treat consequence relations (e.g. 
see [4] and [5]). 
  To see the point, think about the logic of conditional probability – the system CP 
just described. The axioms of CP can be used to derive some conditional probability 
claims from others – a very useful thing when we have only partial information about 
a probability function (or about a class of such functions). On the other hand, we also 
associate with CP the class of all conditional probability functions – all functions on 
pairs of sentences that satisfy the axioms. When we think of the logic this way, the 
axioms play the role of constrains that must be satisfied if a function is to be 
considered a CP-function. Thus the “logic of CP” both tells us which functions are 
“in CP” in terms of rules that specify constraints on all such functions, and it gives us 
rules for deriving some probability statements from others, where the soundness of 
such derivations depend on the fact that all CP-functions are defined in terms of those 
very rules. 
  Both of these ways of looking at CP is “semantic” in the sense that the probability 
functions in CP are semantic functions – not part of the object language. The object 
language on which they are defined is generally a formal language for sentential or 
predicate logic. The probability functions play the role of metalinguistic, semantic 
predicates, in much the way that truth-under-interpretation is metalinguistic and 
semantic. So the “derivation rules” are really semantic rules that specify precisely 
what semantic claims (involving probabilities) can be derived from others – much as 
the semantic rules governing truth-value assignments can be used to derive claims 
about what truth-values of sentences follow from the truth-values of other sentences. 
  Each of the systems for nonmonotonic consequence relations I’ll discuss has this 
same dual aspect. For example, I am about to specify “the logic” of the system I’ll 
call O. (Think of O, represented by the letter ‘O’, as system-zero, the weakest system 
I’ll talk about.) I will specify O in terms of certain semantic rules that any 
consequence relation must satisfy to be an O-relation. 
  Consider the set of all ordered pairs of sentences from a given language. Take any 
subset of it – let’s call it ‘�’. Any such � is a rudimentary consequence relation. We 
usually write these ordered pairs like this: ‘B|~A’, rather than like this: ‘<B,A>’. So 



 

when the pair <B,A> is in �, we say instead that the conditional expression ‘B|~A’ is 
in �. (One might here employ the subscripting convention we used with probability 
functions: just as there are various possible probability functions P� , there are various 
possible consequence relations |~�.) 
  Many such consequence relations will be of no interest at all. They violate even 
the most obvious constraints on how a consequence relation should behave. The 
system O specifies some very weak semantic rules that we’ll suppose any set of pairs 
of sentences should satisfy if it is to reasonably count as a consequence relation. The 
consequence relations in O are just those that satisfy the following semantic 
constraints. 
 

Definition 2: O. Let L be a language for predicate logic with identity. Let ‘|=’ be 
the standard logical entailment relation. An O Consequence Relation on L is any 
set of pairs of sentences that satisfies the following rules: 
0. There are sentences D and E such that 
   it’s not the case that E|~D        (Non-Triviality) 
1. A|~A                     (REFLEX: Reflexivity) 
2. if C|~B and B|=A, then C|~A        (RW: Right Weakening) 
3. if B|=C and C|=B and B|~A, then C|~A  (LLE: Left Logical Equivalence) 
4. if (C·B)|~A and (C·¬B)|~A, then C|~A  (WOR: Weak Or) 
5. if C|~(B·A), then (C·B)|~A         (VCM: Very Cautious Monotony) 
6. (C·¬B)|~B , C|~A then C|~(B·A)      (WAND: Weak And) 

 
  Some of the rules of O should be familiar. The non-triviality condition is not 
usually given. Clearly it is only violated by that one monstrous consequence relation 
that holds between all pairs of sentence. Reflexivity, Right Weakening, and Left 
Logical Equivalence are plausible conditions, satisfied by all well-known families of 
consequence relations. The three remaining rules are weakened versions of well-
known rules for nonmonotonic consequence relations. We’ll look at them in more 
detail in a moment. 
  Notice that each of the rules 0-6 is probabilistically sound at level r, for any level r 
you might choose. That is, fix a threshold value r. Now replace each expression of 
form X|~Y in these rules with the corresponding expression P[Y | X] � r. Then each 
such rule is a theorem of probability theory – i.e., each follows from the rules of CP. 
This is obvious for rules 0-3. Rule 4 (WOR) becomes the following theorem of CP: 

if P[A | (C·B)] ≥ r and P[A | (C·¬B)] ≥ r, then P[A | C] ≥ r.4 
The soundness of rule 5 (VCM) is obvious, since the following is a theorem of CP: 

                                                           
4 Because CP is a slightly non-standard axiomatization of probability, and the reader 
may not be familiar with it, I’ll be very careful here. First observe that for CP, 
whenever Z |= (X≡Y), P[X | Z] = P[Y | Z]. (That’s easy to show: suppose Z |= (X≡Y); 
then Z |= ¬(X·¬Y) and Z |= (X∨¬Y); so either P[D | Z] = 1 for all D (and we’re done), 
or by rule 3, 1 = P[X∨¬Y | Z] = P[X | Z] + P[¬Y | Z] = P[X | Z] + 1 − P[Y | Z]; done.) 
Now suppose P[A | (C·B)] ≥ r and P[A | (C·¬B)] ≥ r. Then either P[A | C] = 1 � r 
(done), or (from rules 3, 4, and the previous result) 1 > P[A | C] = P[(A·B)∨(A·¬B) | 
C] = P[A·B | C] + P[A·¬B | C] = P[A | B·C]·P[B|C] + P[A | ¬B·C]·P[¬B | C] � r. 



 

if P[(B·A) | C] ≥ r, then P[A | (C·B)] ≥ r.5 
Rule 6 (WAND) is also sound, since: 
  if P[¬B | (C·B)] ≥ r and P[A | C] ≥ r, then P[(A·B) | C] ≥ r.6 
Thus we have the following theorem. 
 

Theorem 1: Probabilistic Soundness of O. Choose any threshold level r > 0. The 
rules of O are probabilistically sound at level r. 

 
  However O is not probabilistically complete There are consequence relations 
satisfying all of these rules that cannot be represented by any conditional probability 
function and threshold. This follows from the fact that there are additional 
probabilistically sound rules not derivable from the rules of O. We will see some of 
these additional rules presently. 
  How do the rules of O compare with those of the well-known preferential 
consequence relations, characterized by the set of rules P? P has rules 1-3 (REFLEX, 
RW, and LLE). But P contains stronger versions of each of the rule 4-6. Here is a 
typical definition of P: 
 

Definition 3: P. Let L be a language for predicate logic with identity. Let ‘|=’ be 
the standard logical entailment relation. A P Consequence Relation on L is any 
set of pairs of sentences that satisfies the following rules: 
0. There are sentences D and E such that 
   it isn’t the case that E|~D        (Non-Triviality) 
1. A|~A                     (REFLEX: Reflexivity) 
2. if C|~B and B|=A, then C|~A        (RW: Right Weakening) 
3. if B|=C and C|=B and B|~A, then C|~A  (LLE: Left Logical Equivalence) 
4P. if B|~A and C|~A, then (B∨C)|~A    (OR) 
5P. if C|~B and C|~A, then (C·B)|~A     (CM: Cautious Monotonicity) 
6P. if C|~B and C|~A, then C|~(B·A)     (AND) 

 
Rule 0 is usually left out of P. It merely eliminates the consequence relation for which 
each sentence is a consequence of every sentence. Now let’s compare the rules of O 
to the corresponding rules of P. 
  Rules 0-3 are the same. So consider rule 4P (OR). This rule is probabilistically 
sound only when the threshold level r = 1.7 OR cannot be derived from WOR plus the 
other O rules, because whereas the O rules are probabilistically sound at thresholds 
below 1, OR is not. Indeed, from rules 1-3 it is easy to show that WOR is equivalent to 
the following rule, which makes the relationship between OR and WOR transparent: 
                                                           
5 Suppose P[B·A | C] ≥ r. Then r � P[A·B | C] = P[A | C·B] · P[B | C] � P[A | C·B]. 
6 Suppose for r > 0, P[A | C] � r and P[B | C·¬B] ≥ r. If P[B·A | C] = 1, we’re done; so 
suppose P[B·A | C] < 1. Since P[¬B | ¬B·C] = 1 (rule 1), we have P[B | ¬B·C] + P[¬B 
| ¬B·C] � r + 1 > 1, so P[B | ¬B·C] = 1 (rule 3), so 1 = P[¬(B·¬B) | C] = 1 − P[B·¬B | 
C] = 1 − P[B | ¬B·C]·P[¬B | C] = 1 − P[¬B | C] = P[B | C] (rules 1, 3, 4, 3). Then, r � 
P[A | C] = P[(A·B)∨(A·¬B) | C] = P[A·B | C] + P[A·¬B | C] = P[A | B·C]·P[B|C] + 
P[A | ¬B·C]·P[¬B | C] = P[A | B·C]. 
7 See the Appendix. 



 

4*. if |= ¬(B·C) and B|~A and C|~A, then (B∨C)|~A (XOR: exclusive or).8 
This makes it clear that WOR is derivable from OR (together with the other O rules), 
and that OR is a strengthening of WOR. 
  Rule 5P (CM), is also probabilistically sound only when the threshold level r = 1.9 
Clearly rule 5 (VCM) can be derived from CM (and the other O rules). But since CM is 
sound only for r = 1, it cannot be derive from VCM together with the other O rules. 
The way in which CM is a strengthening of VCM is obvious. 
  AND, which is the P counterpart of O rule 6 (WAND) is also probabilistically sound 
only when the threshold level r = 1.10 Furthermore, WAND can be derived from AND 
plus the other O rules; but since AND is sound only for r = 1, it cannot be derive from 
WAND plus the other O rules. 
  The relationship between WAND and AND may not seem quite obvious. To see it 
more clearly, notice that the condition ‘(C·¬B)|~B’ in the antecedent of WAND is a 
strengthening of the condition ‘C|~B’ in AND.11 It expresses the idea that “C makes B 
certain” – i.e., C supports B so strongly that adding any other sentence D to C cannot 
undermine its support for B. (We’ll establish this in a moment.) AND strengthens 
WAND by weakening its antecedent condition ‘(C·¬B)|~B’ to the condition ‘C|~B’. 
  To see more clearly what an expression of form ‘(C·¬B)|~B’ means in the context 
of O, consider the following theorem: 
 

Theorem 2: Some Theorems of O. Let |~ be any consequence relation in O. 
(1)  The following three conditions are equivalent: 

(i) (C·¬B)|~B; (ii) for all E, (C·¬B)|~E; (iii) for all D, (C·D)|~B. 
(2)  If (C·¬B)|~B, then, for all A, C|~A if and only if (C·B)|~A. 

 
proof: Clause 1: Clearly, (ii) implies (i), and (iii) implies (i). To see that (i) 
implies (ii): suppose (i); then (C·¬B)·¬B|~B (LLE) and C·¬B|~¬B (REFLEX, RW); 
so C·¬B|~B·¬B (WAND); so C·¬B|~E for any E (RW). To see that (i) implies (iii): 
suppose (i); then for all E, C·¬B|~E (just proved); so for any D, C·¬B|~(D·B); then 
for any D, (C·D)·¬B|~B (VCM, then LLE) and (C·D)·B|~B (by REFLEX, RW); thus, 
for any D, C·D|~B (WOR). 
Clause 2 of the theorem follows in one direction directly from rules WAND and 
VCM, and in the other direction from clause 1 (ii) and WOR.  

 
Thus, when ‘(C·¬B)|~B’ holds, ‘(C·¬B)’ acts like a contradiction – i.e., ‘(C·¬B)’ 
implies everything, and ‘C’ itself monotonically implies ‘B’. 
  Thus, O is weaker than P precisely in that its versions of rules 4-6 (WOR, VCM, 
WAND) are weaker versions of the corresponding P rules (OR, CM, AND), versions that 
are satisfied at each threshold r > 0 by every conditional probability function. 
  One might wonder whether we need to strengthen each of the weaker O rules in 
                                                           
8 Suppose WOR, and suppose |= ¬(B·C) and B|~A and C|~A. Then (by LLE) 
(B∨C)·¬C|~A and (B∨C)·C|~A, so B∨C|~A (WOR). Conversely, suppose XOR, and 
suppose C·B|~A and C·¬B|~A. Then (C·B)∨(C·¬B)|~A (XOR), so C|~A (LLE). 
9 See the Appendix. 
10 See the Appendix. 
11 In O, C·¬B|~B implies C|~B: for, C·B|~B (REFLEX, RW), so by WOR C|~B. 



 

order to get the system P? The answer turns out to be, no! It’s not hard to show that 
4P (OR) and 5P (VCM) are derivable from the weaker rules (1-5) together 6P (AND). 
Thus, the Preferential Consequence Relations are just those consequence relations in 
O that also satisfy AND. 
 

Theorem 3: Alternative Rules for P. 
Given rules 1-3 (REFLEX, RW, LLE), rules 4P-6P (OR, CM, AND) imply rules 4-6 
(WOR, VCM, WAND). Given rules 1-3, rules 4 and 5 (WOR, VCM) together with 6P 
(AND) imply rules 4P (OR) and 5P (CM). Thus, |~ is a relation in O that satisfies 6P 
(AND) if and only if |~ is a consequence relation in P. 
 
proof: Given 1-3, getting 4-6 from 4P-6P is easy. So lets go the other way. 
Suppose 1-5 and 6P. 
Here is how to get 4P (OR): Suppose B|~A and C|~A. Then (B∨C)·B|~A (LLE), so 
(B∨C)·B|~A∨¬B (RW); and (B∨C)·¬B|~A∨¬B (REFLEX, RW); thus B∨C|~A∨¬B 
(WOR). Fairly similarly, (B∨C)·C|~A (LLE), so (B∨C)·C|~A∨B (RW); also 
(B∨C)·¬C|~A∨B (REFLEX, RW); thus B∨C|~A∨B (WOR). From the “thus” parts of 
the previous two sentences, B∨C|~(A∨B)·(A∨¬B) (AND); so B∨C|~A (RW). 
5P (CM) is easy: Suppose C|~B and C|~A. Then C|~B·A (AND), so C·B|~A (VCM). 

 
4   Systems Q and R 
 
The well-known Rational Consequence Relations are usually obtained by adding the 
following rule to those in P: 
 

Definition 4: R. An R Consequence Relation on L is any P consequence relation 
that satisfies the following rule: 

  7R. if C|~A, then C|~ ¬B or (C·B)|~A (RM: Rational Monotony). 
 

Like 4P-6P (OR, CM, AND), rule RM is probabilistically sound only for threshold level 
r = 1.12 
  The Rational Consequence Relations, R, are usually obtained by adding RM to the 
P rules. But in light of the previous result the usual rules of R are equivalent to the 
weaker rules 1-5 for O together with 6P (AND) and 7R (RM). In other words, the 
Rational Consequence Relations are just those consequence relations in O that satisfy 
AND together with RM. 
  It turns out that the rules in O ∪ (AND, RM) are not only probabilistically sound at 
threshold level 1. They are also probabilistically complete at level 1. That is, for each 
Rational Consequence Relation |~ in R, there is a corresponding conditional 
probability function P in CP such that ‘B|~A’ holds just in case P[A | B] = 1. In 
effect, the Rational Consequence Relations are just the probability 1 parts of 
Conditional Probability Functions. Or, to put it another way, given any Rational 
Consequence Relation |~, it can always be extended to a conditional probability 
function P by assigning P[A | B] = 1 when ‘B|~A’ holds and by assigning some 

                                                           
12 See the Appendix. 



 

appropriate non-negative number below 1 to P[C | D] whenever ‘D|~C’ fails to hold. 
Let’s state all of this formally. 
 

Theorem 4: Probabilistic Soundness and Completeness of R. For each CP 
function P, if |~ is the level-1 consequence relation corresponding to P (i.e. if |~ is 
defined by ‘B|~A’ holds just in case P[A | B] = 1), then |~ is in R. Furthermore, 
for each consequence relation |~ in R, there is a probability function P in CP such 
that P[A | B] = 1 just in case B|~A is in R. 
 
proof: Soundness is easy. Completeness takes hard work (see [1], [3], and [8]). 

 
  The system I call Q is the weaker analog of R, much as O is the weaker analog of 
P. Here is the definition of Q: 
 

Definition 5: Q. A Q Consequence Relation on L is any O consequence relation 
that satisfies the following rule: 
7. if C|~A then (C·B)|~A or (C·¬B)|~A   (NR: Negation Rationality). 

 
It is easy to check that NR is probabilistically sound for each threshold level.13 Thus, 
all of the Q rules are probabilistically sound at every threshold level. NR (rule 7) is 
clearly a weaker analog of RM (rule7R), and is derivable in R. Indeed, NR may be 
derived using only rule RM together with VCM (rule 5 of O) together with the 
following rule (which is derivable in P): 
 

8.  if B|~A and B|~¬A, then B|~D for every sentence D (XM: excluded middle).14 
 
Notice that XM is itself probabilistically sound for each threshold level greater than 
1/2.15 This rule is implied by one of a spectrum of rules that correspond to lower 
bounds on threshold levels. We’ll now investigate systems that build on Q by 
drawing on such threshold-specific rules. 
 
5   The Q(n) Systems 
 
The rules of Q place no constraints on the value of the threshold level r > 0 required 
for conditional probability functions to satisfy them. That is, choose any probability 
function P from CP and any threshold level r you want. You may even choose r to be 
much smaller than 1/2 – even extremely close to 0. The consequence relation 
                                                           
13 Suppose P[A | C] � r. Then either for every D, P[D | C] = 1, so 1 = P[A·B | C] = 
P[A | C·B] · P[B | C], so P[A | C·B] = 1 � r,  or else r � P[A | C] = P[(A·B)∨(A·¬B) | 
C] = P[A | C·B] · P[B | C] + P[A | C·¬B] · P[¬B | C], which cannot be if both r > P[A | 
C·B] and r > P[A | C·¬B].   
14 To see that NR follows from VCM, RM, and XM, suppose C|~A. (1) If C|~¬B and 
C|~B, then by XM, C|~B·A, so C·B|~A by VCM. (2) If C |/~ ¬B, then C·B|~A by RM. 
(3) If C |/~ B, then C|/~¬¬B, so C·¬B|~A by RM.  
15 Suppose r > 1/2, and suppose P[A | B] � r and P[¬A | B] � r. By CP rule 3, since 
P[A | B] + P[¬A | B] = 2r > 1, we have P[D | B] = 1 for all D.  



 

corresponding to P[ | ] � r will, nevertheless, satisfy all of the Q rules. We now 
supplement Q with rules that characterize various levels of probabilistic support 
above 1/2. For each integer n � 2 we specify a distinct “n-level logic”, defined in 
terms of two rules that are jointly probabilistically sound for all and only threshold 
levels r in the range (n−1)/n < r � n/(n+1), for n � 2. 
 

Definition 6: Q(n). For specific integer n � 2, a Q(n) Consequence Relation on L 
is any Q consequence relation that satisfies the following two rules: 
8{n}. if (B·(A1·...·An))|~ ¬(A1·...·An), B|~A1 , ..., B|~An,  

then for all D, B|~D                (PL(n): Preface Logic n); 
9{n+1}. if (B·(A1·A2))|~ ¬(A1·A2) , ..., (B·(Ai·Aj))|~ ¬(Ai·Aj) , ..., 
     (B·(An·An+1))|~ ¬(An·An+1), 

then B|~ ¬A1 or ... or B|~ ¬An+1       (LL(n+1): Lottery Logic n+1). 
 
  Notice that PL(n) doesn’t presuppose that the Ai are distinct sentences. Thus, the 
rule PL(n) implies each of the rules PL(m) for m � n. Also notice that the P rule AND 
implies every PL(n) rule, for every value of n � 2. 
  Rule PL(n) says that if a collection of sentences is small enough (� n) and B 
nonmonotonically implies each of them, but B also implies-with-certainty that they 
cannot all hold, then B behaves like a “contradiction” in the sense that it implies every 
sentence. However, it is perfectly compatible with this rule that a “non-contradictory” 
sentence B may imply each of a large collection of jointly incompatible sentences, 
provided that collection consists of more than n distinct sentences. 
  In the case where n = 2, for instance, PL(2) requires that if B|~A and B|~¬A, then 
(since B·(A·¬A)|~ ¬(A·¬A)) it follows that B|~D for every sentence D. More 
generally, rule PL(2) says that whenever B·(A1·A2)|~ ¬(A1·A2), we cannot have both 
B|~A1 and B|~A2 unless B behaves like a contradiction (i.e. unless B|~D for all D). 
Furthermore, each rule PL(n) for n > 2 implies this PL(2) rule. 
  Think of PL(n) this way. Consider the situation of the preface paradox (first raised 
by Makinson in [6]). The author’s careful editing of his book strongly supports his 
belief that page i is error free, for each page i, but his knowledge of his own fallibility 
strongly implies that at least one error has slipped by in the editing process. Let each 
of the first n−1 sentences Ai be a sentence Fi that says that page i of the book is Free 
from error, and let sentence An be the sentence ‘¬(F1·...·Fn−1)’, which says that not all 
n−1 pages of the book are error free – that at least one page contains an error. Notice 
that in this case the sentence (A1·...·An) is the sentence ‘(F1·...·Fn−1·¬(F1·...·Fn−1))’, 
which is an outright logical contradiction. So, given the author’s knowledge B about 
the book, B·(F1·...·Fn−1·¬(F1·...·Fn−1))|~ ¬(F1·...·Fn−1·¬(F1·...·Fn−1)) simply follows from 
REFLEX and RW. Thus, the rule says that when the number of pages is n−1 (or fewer), 
B cannot consistently imply each of the n−1 claims that page i is error free and at the 
same time imply the claim that at least one of the pages contains an error. That is,  
rule PL(n) says that when the number of pages is too small (n−1 or smaller), B may 
imply each of these claims separately, and also imply that at least one of them is false, 
only if B itself is effectively a contradiction (in that B implies every claim, even it’s 
own negation). 
  The “preface interpretation” of the Ai described here is merely an illustration of 
the rule. The same rule holds regardless of what the sentences Ai say. Notice too that 



 

this same rule, PL(n), also applies to a preface case for an n page book (and not 
merely to an n−1 page book, as in the above example) provided that that B implies-
with-certainty that at least one page has an error – i.e. provided that 
B·(F1·...·Fn)|~ ¬(F1·...·Fn). 
 It turns out that PL(n) is probabilistically sound for all and only the threshold levels 
r > (n−1)/n, as the next theorem shows. 
 

Theorem 5: Probabilistic Soundness of Rule PL(n) for all and only the 
Threshold Values r > (n−1)/n. For n � 2, for each r > (n−1)/n and each CP 
function P, the level-r consequence relation |~ corresponding to P (defined as 
‘B|~A’ holds just in case P[A | B] � r) satisfies PL(n). Furthermore, for each r � 
(n−1)/n, there is a CP function P such that the level-r consequence relation |~ 
corresponding to P violates PL(n). 
 
proof: To see that whenever r > (n−1)/n, PL(n) is satisfied by every probability 
function for threshold r: Suppose r > (n−1)/n and P[¬(A1·…·An) | B·(A1·…·An)] � 
r, but there is a D such that P[D | B] < 1. (We show that for at least one of the Ai, 
P[Ai | B] < r.) 
From the suppositions it follows that 0 = P[¬(A1·…·An)·(A1·…·An) | B] = 
P[¬(A1·…·An) | B·(A1·…·An)] · P[(A1·…·An) | B] � r · P[(A1·…·An) | B]. So 
P[(A1·…·An) | B] = 0. Then 1 = P[¬(A1·…·An) | B] = P[¬A1∨...∨¬An | B] ≤ P[¬A1 | 
B] +...+ P[¬An | B] = (1 − P[A1 | B]) +...+ (1 − P[An | B]) = n − (P[A1 | B] +...+ 
P[An | B]). So P[A1 | B] +...+ P[An | B] ≤ (n−1). Now, given this, if P[Ai | B] � r > 
(n−1)/n for every Ai, then we would have (n−1) = n·((n−1)/n) < n·r � P[A1 | B] 
+...+ P[An | B] � (n−1), contradiction!!! Thus, for one of the Ai, P[Ai | B] < r. 
Conversely, to see that whenever r � (n−1)/n, rule PL(n) is violated by at least one 
consequence relation that corresponds to a conditional probability with threshold 
r, notice that there is clearly a probability function P with the following 
characteristics: for a sentence B such that P[¬B | B] < 1 there are n sentences Ai 
such that B |= (¬A1∨...∨¬An), B |= ¬(¬Ai·¬Aj), and each ¬Ai has the same 
probability given B. Then P[¬Ai | B] = 1/n for each i. So P[Ai | B] = (n−1)/n � r 
for each i, yet there is a D such that P[D | B] < 1; and (since we also have that 
B·(A1·...·An) |= (¬A1∨...∨¬An)) we have r < 1 = P[(¬A1∨...∨¬An) | B·(A1·...·An)] = 
P[¬(A1·...·An) | B·(A1·...·An)]. 

 
  One additional observation is in order. Rule 6P is in effect the least upper bound 
of the PL(n) rules as n goes to infinity. This makes good sense in terms of the 
probabilistic models of these rules. A PL(n) rule corresponds to lower bound (n−1)/n 
on the threshold in conditional-probabilistic models of consequence relations. As n 
increases, r is driven ever closer to 1, which is precisely the probabilistic threshold 
appropriate to AND. 
  For each n � 2, the LL(n+1) rule applies to any n+1 distinct sentences Ai that are 
implied-with-certainty by B to be mutually exclusive. Notice that LL(n+1) implies 
each LL(m) rules for m � n+1. So as n decreases the LL(n+1) rules become stronger. 
  Think of LL(n+1) this way. Consider a lottery (described by B) in which no two 
tickets can win. Let each of the n+1 sentences Ai say that ticket i will win, and 
suppose that B implies-with-certainty that no two ticket can win – i.e. that this lottery 



 

can have at most one winner. The expressions of form ‘B·(Ai·Aj)|~ ¬(Ai·Aj)’ express 
this. Then, according to LL(n+1), for any given block of n+1 such tickets, B must 
nonmonotonically imply, for at least one ticket i, the claim that ticket i will not win. 
(Indeed, if B treats all n+1 tickets in the same way, then it must imply that each will 
not win – though the requirement that all tickets are treated equally is not a part of 
rule LL(n+1) itself.) The idea behind LL(n+1) is that if the number of tickets is too 
large (n+1 or bigger), and if B makes it certain that at most one can win, then at least 
one of the tickets must have such little chance of winning that B defeasibly implies 
that it won’t win.16 
  There is no assumption here that the lottery is fair – that all tickets have the same 
chance of winning. So the logic only forces the issue for one of the n+1 tickets. Also 
notice that if there are more than (n+1) tickets, then for each block of (n+1) tickets, 
the rule applies. In other words, only for n or fewer tickets may B allow that each of 
them “might win” – i.e. only for n or fewer tickets may the conditional ‘B|~ ¬Ai’ fail 
to hold for each of them. 
  The “lottery interpretation” of the Ai here is, of course, merely an illustration of 
the rule. The same rule holds for all consequence relations in Q(n), regardless of how 
the Ai are interpreted. 
  It turns out that rule LL(n+1) is probabilistically sound for all and only the 
threshold levels r � n/(n+1), as the next theorem shows. 
 

Theorem 6: Probabilistic Soundness of Rule LL(n+1) for all and only the 
Threshold Values r � n/(n+1). For n � 2, for each r > 0 such that r � n/(n+1), and 
for each CP function P, the level-r consequence relation |~ corresponding to P (i.e. 
defined as ‘B|~A’ holds just in case P[A | B] � r) satisfies LL(n+1). Furthermore, 
for each r > n/(n+1), there is a CP function P such that the level-r consequence 
relation |~ corresponding to P violates LL(n+1). 
 
proof: To see that whenever 0 < r � n/(n+1), rule LL(n+1) is satisfied by every 
probability function applied to threshold r: Suppose 0 < r � n/(n+1) and for each 
pair of the n+1 sentences Ai, P[¬(Ai·Aj) | B·(Ai·Aj)] � r. Notice that if for all D, 
P[D | B] = 1, then P[¬Ai | B] = 1 � r for each Ai, and we’re done! So let’s also 
suppose that for some D, P[D | B] < 1. (We want to show that for at least one Ai, 
P[¬Ai | B] � r.) 
From the suppositions it follows that for each distinct pair Ai and Aj, 0 = 
P[¬(Ai·Aj)·(Ai·Aj) | B] = P[¬(Ai·Aj) | B·(Ai·Aj)] · P[(Ai·Aj) | B] � r · P[(Ai·Aj) | B]. 
So P[(Ai·Aj) | B] = 0. Then we have 1 � P[A1∨...∨An+1 | B] = P[A1 | B] +...+ P[An+1 
| B]. Now, given this, if P[Ai | B] > 1/(n+1) for every Ai, then we would have 1 � 
P[A1 | B] +...+ P[An+1 | B] > (n+1)·(1/n+1) = 1, contradiction!!! Thus, for at least 
one of the Ai, P[Ai | B] � 1/(n+1), so P[¬Ai | B] � n/(n+1) � r. 
Conversely, to see that whenever r > n/(n+1) rule LL(n+1) is violated by at least 
one consequence relation that corresponds to a conditional probability function 
with threshold r, notice that there is clearly a probability function P with the 
following characteristics: for a sentence B such that P[¬B | B] < 1, there are n+1 
sentences Ai such that B |= (A1∨...∨An+1), B |= ¬(A1·Aj) for each pair, each Ai has 

                                                           
16 Kyburg first raised the lottery paradox in [9], and treated it further in [10]. 



 

the same probability given B. Then for r > n/(n+1) we have P[Ai | B] = 1/(n+1) for 
each Ai, so P[¬Ai | B] = n/(n+1) < r for each Ai. But B·(A1·Aj) |= ¬(A1·Aj), so 
P[¬(Ai·Aj) | B·(Ai·Aj)] = 1 � r for each pair. 

 
  Rule LL(n+1) is clearly compatible with rule PL(n), since the probability above r 
part of every conditional probability function satisfies both rules whenever (n−1)/n < 
r � n/(n+1). Thus, Theorems 5 and 6 show that the rules for Q(n) are probabilistically 
sound for precisely those thresholds r greater than (n−1)/n but no greater than n/(n+1). 
  The logic of the Rational Consequence Relations, R, may reasonably be called 
Q(�). For one thing, as n grows ever larger, the bounds r such that (n−1)/n < r � 
n/(n+1) for probabilistic models of the Q(n) logics approach 1. For another thing, the 
rules PL(n) are implied by AND, and are superseded by it when r = 1. Furthermore, as 
n increases, rules LL(n+1) approaches vacuity. At the same time, at r = 1 rule NR 
(Negation Rationality) becomes too weak, and rule RM (Rational Monotony) 
supersedes it. Finally, at r = 1 the rules of R are probabilistically sound and complete 
– i.e., the probability 1 part of each conditional probability function constitutes a 
consequence relation in R, and each consequence relation in R is the probability 1 
part of some conditional probability function. 
 
 
6   Concluding Remarks 
 
  We’ve seen that the rules for Q(n) are probabilistically sound for precisely those 
thresholds r above (n−1)/n and no greater than n/(n+1). For any threshold level in this 
interval, the part of each conditional probability function above that level constitutes a 
consequence relation in Q(n). And for each threshold level outside of this interval, 
there is a conditional probability function whose part above that threshold constitutes 
a consequence relation not in Q(n). However, the rules of Q(n) have not been shown 
to be probabilistically complete. Indeed, in a private communication David Makinson 
has shown me that there are (linear ranked) consequence relations satisfying Q(n)’s 
rules that are not probabilistically modelable at any threshold level. So although in the 
extreme case Q(�), i.e. R, we do have probabilistic completeness, additional rules are 
needed to restrict the class of Q(n) consequence relations for 2 � n < � to the 
probabilistically modelable ones. What are these additional rules like? 
  Those of you who are familiar with the logic of qualitative probability (a.k.a. 
comparative probability) know that one way to get probabilistically modelable 
qualitative probabilities is to introduce a rule that says, in effect, that each qualitative 
probability relation is extendable to a relation on language that includes sentences that 
form arbitrarily fine partitions, where all sentences of a given partition are 
“approximately qualitatively equal”. It may then be shown that these equal partition 
sentences can be used as a standard of comparison to fix numerical probabilistic 
weights on all sentences of the language, and thereby generate a numerical probability 
function. A rather similar idea may be applicable to the consequence relations in 
Q(n). I investigated one way to make this idea work in an earlier article (see [2], 
sections 4.2 and 4.3). But the presuppositions of that approach seem overly strong. 
So, the issue of how to plausibly supplement Q(n) in a way that completely 



 

characterizes probabilistic consequence relations remains an open question.17 
 
 
Appendix 
 
Theorem. Given any threshold r such that 0 < r < 1, for each rule OR, CM, and AND, 
there is a CP function P (indeed, there is a classical Kolmogorov probability function) 
that violates the rule. However, for threshold r = 1 each of these rules is 
probabilistically sound with respect to the CP functions. 
 
Proof: Let r be any fixed real number such that 0 < r < 1. To show that a given rule 
fails for r we only need show that there is a probability function P such that when we 
replace each expression of form ‘Z |~ Y’ in the rule by ‘P[Y | Z] � r’ the rule fails for 
P. (Notice that in each case below the probabilistic model P that violates the rule can 
be one of the usual Kolmogorov probability functions; it need not be one of the “non-
standard” functions in CP.) Furthermore, we show that replacing each expression of 
form ‘Z |~ Y’ in the rule by ‘P[Y | Z] = 1’ yields a theorem of CP-probability. 
 
1. OR: We want to show that for each r such that 0 < r < 1, there is a function P and 
sentences C, B, and A such that P[A | B] � r and P[A | C] � r but P[A | B∨C] < r. 
 Clearly for any r such that 0 < r < 1, there is a P such that for some C, B, and A, the 
following hold: P[B·C | C∨B] = P[¬B·C | C∨B] = P[B·¬C | C∨B] = 1/3, and P[A | 
B·C] = r+�, while P[A | ¬B·C] = P[A | B·¬C] = r−�, for some � > 0 but small enough 
that 0 < r−� < r+� < 1. 
 Now, P[B | C] = P[B | C·(B∨C)] = P[B·C | B∨C] / P[C | B∨C] = P[B·C | B∨C] / 
(P[B·C | B∨C] + P[¬B·C | B∨C]) = 1/2; and so also P[¬B | C]  = 1/2. So, P[A | C] = 
P[A | B·C]·P[B | C] + P[A | ¬B·C]·P[¬B | C] = (1/2)·(r+� + r−�) = r.  
 Similarly, P[C | B] = 1/2 and P[¬C | B] = 1/2; so P[A | B] = r. 
 But since P[¬B·¬C | C∨B] = 0, P[A | C∨B] = P[A | B·C]·P[B·C | C∨B] + P[A | 
B·¬C]·P[B·¬C | C∨B] + P[A | ¬B·C]·P[B·¬C | C∨B] = (1/3)·(r+� + r−� + r−�) = r − �/3 
< r. 
 For r = 1: suppose P[A | B] = P[A | C] = 1. Then (unless for all D, P[D | B∨C] = 1, 
and we’re done) P[A | B∨C] = P[(A·B)∨(A·C) | B∨C] = P[A·B | B∨C] + P[A·C | 
B∨C] = P[A | B]·P[B | B∨C] + P[A | C]·P[C | B∨C] = P[B | B∨C] + P[C | B∨C] = 
P[B∨C | B∨C] = 1. 
 
2. CM: We want to show that for each r such that 0 < r < 1, there is a function P and 
sentences C, B, and A such that P[B | C] � r and P[A | C] � r but P[A | C·B] < r. We 
divide the proof into two cases, depending on whether r � 1/2 or r > 1/2. 
 Case 1: First, suppose that 0 < r � 1/2. Clearly there is a P such that for some C, B, 
and A, the following hold: P[A·B | C] = P[¬A·¬B | C] = 0, P(¬A·B | C] = r, P(A·¬B | 

                                                           
17 I am indebted to Greg Wheeler, two conference referees, and the participants at 
CMSRA-IV (Lisbon, September 22-23, 2005) for many valuable comments and 
suggestions. Special thanks to David Makinson for a number of stimulating email 
communications about these logics. 



 

C] = 1−r � r. Then P[B | C] = P[¬A·B | C] = r; P[A | C] = P[A·¬B | C] = 1−r � r. 
However, P[A | C·B] = P[A·B | C] / P[B | C] = 0 < r. 
 Case 2: Alternatively, suppose that 1 > r > 1/2. There is a P such that for some C, B, 
and A, the following hold: P[A·B | C] · [(1−r)/r2] = P[¬A·B | C] = P[A·¬B | C] > 0 and 
P[¬A·¬B | C] = 0. We need to check that the function P as just specified is not “over-
constrained”. First, 1 = P[A∨¬A | C] = P[A·B | C] + P[A·¬B | C] + P[¬A·B | C] + 
P[¬A·¬B | C]  = P[A·B | C] · (1 + 2·[(1−r)/r2]) = P[A·B | C] · [(r2 − 2r +1) + 1]/r2 = 
P[A·B | C] · [(1−r)2 + 1]/r2; so our specification of P only requires that P[A·B | C] = 
r2/[(1−r)2 + 1], which for 1/2 < r � 1 is clearly greater than 0, and cannot be greater 
than 1 (else: r2 > (1−r)2 + 1 = 2 − 2r + r2, so 2r > 2, which is impossible since r � 1). 
And since P[A·B | C] = r2/[(1−r)2 + 1], we have P[¬A·B | C] = P[A·¬B | C] = P[A·B | 
C] · [(1−r)/r2] = (1−r)/[(1−r)2 + 1], which for 1 > r > 1/2 is clearly between 0 and 1. 
 Now we only need check that P[A | C] � r and P[B | C] � r, but P[A | C·B] < r. P[A | 
C] = P[A·B | C] + P[A·¬B | C] = r2/[(1−r)2 + 1] + (1−r)/[(1−r)2 + 1] = 
[(1−r)2 + r]/[(1−r)2 + 1], which must be � r (else: r > [(1−r)2 + r]/[(1−r)2 + 1], so 
r·(1−r)2 + r > (1−r)2 + r, so r > 1). 
 Similarly, P[B | C] = P[A·B | C] + P[¬A·B | C] = [(1−r)2 + r]/[(1−r)2 + 1] � r. 
 But, P[A | C·B] = P[A·B | C] / P[B | C] = (r2/[(1−r)2 + 1])/([(1−r)2 + r]/[(1−r)2 + 1]) 
= r2/[(1−r)2 + r], which is must be < r (else: r � r2/[(1−r)2 + r], so [(1−r)2 + r] � r, so 
(1−r)2 � 0, which cannot be for r < 1.) 
 For r = 1: suppose P[A | C] = P[B | C] = 1. Then either for all D, P[D | C] = 1, so 1 = 
P[A·B | C] = P[A | B·C]·P[B | C] = P[A | C·B] or else 1 = P[A | C] = P[A·B | C] + 
P[A·¬B | C] = P[A | B·C]·P[B | C] + P[A | ¬B·C]·P[¬B | C] = P[A | C·B]. 
 
3. AND: We want to show that for each r such that 0 < r < 1, there is a function P and 
sentences C, B, and A such that P[B | C] � r and P[A | C] � r but P[B·A | C] < r. 
Choose any such r. Clearly there exists a P such that for some C, B, and A, P[B | C] = 
r and P[A | C] = r, and where B and A are independent for P given C, so that P[B·A | 
C] = P[B | C] · P[A | C] = r2 < r. 
 For r = 1: suppose P[B | C] = 1 and P[A | C] = 1. Then either for all D, P[D | C] = 1, 
so P[A·B | C] = 1 or else 1 = P[A | C] = P[A·B | C] + P[A·¬B | C] = P[A·B | C] + P[A 
| ¬B·C]·P[¬B | C] = P[A·B | C]. 
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