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Any inferential system in which the addition of new premises can lead to the retraction of
previous conclusions is a non-monotonic logic. Classical conditional probability
provides the oldest and most widely respected example of non-monotonic inference.
This paper presents a semantic theory for a unified approach to qualitative and
quantitative non-monotonic logic. The qualitative logic is unlike most other non-
monotonic logics developed for Al systems. It is closely related to classical (i.e.,
Bayesian) probability theory. The semantic theory for qualitative non-monotonic
entailments extends in a straightforward way to a semantic theory for quantitative partial
entailment relations, and these relations turn out to be the classical probability functions.

1. OVERVIEW

Formal logics for Al systems are usually implemented as a controlled sequence of syntactic
transformations on expressions in a formal language. The syntactic transformations are designed
to compute some underlying notion. -- €.g., some notion of logical entailment, logical consistency,
or justified degree of certainty. Ideally the underlying logical notion is made precise by a semantic
theory. The semantic theory identifies certain primitive semantic concepts (e.g., truth or
satisfaction), and defines more complex semantic concepts in terms of the primitives (e.g.,
consistency and logical entailment). It provides for the establishment of important semantic
theorems (e.g., that some collection of syntactic transformations is truth preserving).

This ideal is well illustrated by automated systems for sentential logic. The underlying semantic
theory takes the notion of a truth-value assignment to every sentence as primitive. Semantic rules
govern how truth-values may be assigned to complex sentences in terms of the truth-values of
constituents. Logical entailment is defined. A sentence A is a logical consequence of B just in case
every possible truth-value assignment that makes B true also makes A true. Semantic theorems
establish that certain syntactic transformations (e.g., resolution) suffice to deduce every logical
entailment of any set of premises. Other semantic theorems establish that interesting weaker
syntactic deduction systems (e.g., Horne-clause resolution) are incomplete. Some truth preserving
inferences escape them. Semantic theorems characterize the usually more efficiently computable
subset of logical entailments that weaker deduction systems compute.
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Systems for predicate logic and some modal logics also fit the ideal of syntactic deduction systems
motivated by precise formal semantic theories. But many of the logics for Al systems have no
rigorous semantic theory. The syntactic transformations are motivated by rough intuitions, and are
adjusted to particular applications in a pragmatic but ad hoc fashion. A semantic theory furnishes a
deduction system with justified principles of correct inference. Applications of the system turn
mainly on implementing techniques for using the principles to make desired inferences.

This paper will present a formal semantic theory for a class of qualitative non-monotonic entailment
relations. It will describe several interesting properties of these entailment relations. Then it will
show how to extend the semantics to represent a class of quantitative non-monotonic partial
entailment (i.e., degree of entailment) relations. These relations turn out to be the classical (i.e.,
Bayesian) probability functions, but with a twist. The semantics permits non-monotonic, non-
Bayesian jumps from one classical probability function to another when sentences considered
previously to be "impossible” (i.e., they had probability zero) are accepted as new premises.

I won't discuss syntactic deduction methods for the semantic relationships described in this paper.
Nor will I prove any of the semantic theorems that establish the characteristics of the entailment
relations. These theorems are proven elsewhere [3]. The purpose of this paper is to introduce an
approach to a non-monotonic logic that unifies a qualitative and a quantitative notion of non-
monotonic entailment into a single coherent system.

The systems in this paper will be restricted to the language of sentential logic, but the semantic
theories and theorems are easily extended to a language for first-order predicate logic. Hartry Field
[2] first introduced a probabilistic semantics of this kind for first-order logic in 1977. That paper
initiated several investigations into probabilistic semantics, including this one. For an excellent
recent treatment see the papers of Bas van Fraassen [5] [6]. Other investigations are citied in its

references.
The next section illustrates a typical truth-value semantics for sentential logic. This will be used in

succeeding sections as a standard for comparison. Those sections will develop the semantic theory
for non-monotonic entailments.

2. TRUMH

Let L be a formal language for sentential logic. L contains the following categories:

sentential letters: Pj, Py, ...

logical symbols: &, -

parentheses: ), (
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sentences: 1) sentential letters
2) if A is a sentence, -A is a sentence
3) if A and B are sentences, then (A&B) is a sentence.

Let S be the set of all sentences of L. We use ‘A’, ‘B’, etc. as metalinguistic variables ranging

over members of S.

The only logical symbols of L are ‘&’ and "-’. Other standard symbols are considered

abbreviations:

(AvB) for -(-A&-B),
(A—B) for -(A&-B),
(AB) for (-(A&-B)&-(-A&B)).

A truth-value semantics for L specifies all possible ways the sentences of L can be simultaneously
assigned truth-values -- i.e., be true or false. For sentential logic the concept of truth is the
semantic primitive. Presumably the truth or falsehood of a sentence depends on the meanings of
constituent terms and the actual state-of-the-world they refer to. In more complex logics (e.g.,
predicate logic, modal logic) the semantics may take meaning assignments and possible states-of-
the-world as primitive, and define the notion of truth in terms of them. But for the purposes of
sentential logic meaning and possible states add nothing essential beyond their contribution to
truth. It suffices to formalize the semantics in terms of truth, and to leave meaning and world
states as an informal account of how truth is determined.

A semantics for sentential logic may be specified in terms of truth-sets. Initially each subset of the
set of all sentences S can be thought of as a possible truth set. Let T,, Ty, etc. be subsets of S. If

a sentence A is in T, we say that T,, makes A true, abbreviated "T,(A)". If A is notin T, then T,
makes A false, abbreviated "not T,(A)". So each subset T, of S can represent a possible truth-
value assignment to all members of S. But not every T, in S is a permissible truth-value

assignment.

For T, to be a truth-value assignment it must satisfy certain semantic rules that constrain the notion

of truth:

forallA,Bin S:

1) T,(-A) iff not T,(A),

2) T,((A&B))iff T,(A) and T4(B),
("iff" abbreviates "if and only if").
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Let TVA be the set of all T, such that T, is a subset of S that satisifies these semantic rules. TVA
represents the set of all coherent truth-value assignments to L. Every possible meaning assignment
to sentences of L together with a possible state-of-the-world corresponds to some member of TVA.
And each member of TVA is a truth set for some possible meaning assignment and state-of-the-
world. But the contributions of meaning and the world to truth need not be formalized in the
semantics for sentential logic. The semantic rules don't require such distinctions, so they stay
informally in the background.

The only notion of entailment usually associated with sentential logic is the notion of logical
entailment. Logical entailment is the relation of truth preservation for all possible truth-value
assignments:

definition:  A=/B (read "A is logically entailed by B") iff
for every T, in TVA, if T(B), then T,(A).

Logical entailment is both monotonic and transitive:
Monotonicity A=/B only if A=/(B&C) ;
Transitivity A=/B and B=/C only if A=/C.

Monotonicity and transitivity are closely related in the non-monotonic entailments described in the
next section.

3. ENTAILMENT

Truth-value semantics is inadequate as a basis for non-monotonic entailments because the concept
of truth it explicates is monotonic to the core. Any truth-value assignment that makes A true will
also make (A&B) true if B is true.

Non-monotonic logic presumes that there is more to the meaning of a sentence than the
determination of truth-values at possible worlds. The meaning of a sentence (and, perhaps, the
state-of-the-world) imbues a sentence with an inferential connection to other sentences. This
connection is commonly expressed in one of the following ways:

1) If B were the case, then A would be.
2) A is true if B is, ceteris parabus.
3) B would make A nearly certain.
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Each of these expressions indicates that A is entailed by B in some sense. And each expression
tends to be non-monotonic. Replacing B by (B&C) can undermine the entailment. The standard

* example is:
. 1. "it flies" is entailed by "it's a bird";
2. "jt flies" is not entailed by "it's a bird and it lives in the Antarctic";
3. "it doesn't fly" is not entailed by "it's a bird and it lives in the Antarctic";
4. "jt flies" is entailed by "it's a bird and it lives in the Antarctic and it's a tem";
5. "it doesn't fly" is entailed by "it's a bird and it's a penguin";
6. "it's a bird" is entailed by "it's a penguin";
7. "it doesn't fly" is entailed by "it's a penguin".

The breakdown of monotonicity is illustrated by 1-5. Transitivity fails for this notion of
entailment, as 1, 6, and 7 illustrate.

Truth-value semantics takes the notion of truth as primitive, and specifies truth preserving
relationships. The semantics for non-monotonic entailments will take entailment as a primitive
notion, and will specify entailment preserving relationships.

For language L let SXS be the set of all pairs of sentences, <A,B>. Each subset of SXS is a
potential entailment relation among sentences. Let =/,, =/}, etc. represent subsets of SXS. If an
ordered pair of sentences <A,B> is in =/, we say that A is entailed by B under entailment-value
assignment =/,, abbreviated "A=/,B". If <A,B> is not in =/, we say that A is not entailed by B in
=/,, abbreviated "not A=/,B".

Not all subsets of SXS are permissible entailment relations. The class of entailment relations of
interest should satisfy certain plausable semantic rules. For each =/, in $xS, =/, is in ERA (the set

of permissible entailment relation assignments) just in case it satisifies the following semantic rules:

1) for some A and B, not A=/,B;

and for all A,B,C:
2) A=/ A;
3) A=/4(B&C) only if A=/,(C&B);
. 4.1) (A&B)=/,C onlyif (B&A)=/,C;
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4.2) -(A&B)=1,C only if (B&A)=/,C;

5.1) --A=/,Bonlyif A=/,B;

5.2) A=/,Band -A=/,B onlyif C=/,B;

6.1) (A&B)=/,C iff A=/,(B&C)and B=/,C;
6.2) -(A&B)=/,C iff -A=/,(B&C) or -B=/,C.

ERA characterizes a set of entailment relations. Each entailment relation assigns entailment to hold
or not hold between each pair of sentences. Presumably the meanings of the sentences and the
state-of-the-world contribute to the specification of an entailment relation. But for our purposes we
can take the concept of an entailment relation as primitive. What is more important is that the
semantic rules governing entailment relations are plausible restrictions on the intuitive notions of

non-monotonic entailment we are after.

The semantic rules for ERA are plausible when A=/,B is read "among possible states (possible

worlds) where B is true, A is almost always true". With this reading rules 1-5.2 are clearly
plausible. Notice that an instance of 1 is "not -B=/,B, for some B". The converse of 5.1 is

provable as a semantic theorem. Rule 5.2 says that if B make both A and -A nearly certain, then B
makes every sentence nearly certain. In that case we shall say that B is inconsistent in entailment
relation =/,,.

Rule 6.1 contains a weak form of transitivity. It only permits
A=/,(B&C) and B=/,C only if A=/,C.
Full transitivity would say that
A=/,B and B=/,C only if A=/;C.
Full transitivity doesn't generally hold for members of ERA.
The weak transitivity fits the penguin case pretty well.
[it flies]=/, [it's a bird], and
[it's a bird]=/,(it's a penguin],
but not [it flies]=/,[it's a penguin],
because not [it flies]=/, ([it's a bird] & [it's a penguin]).

Rule 6.1 also permits the conjunction of entailed conjuncts. For every member =/, of ERA:

A=/,C and B=/,C iff (A&B)=/,C.

This can be proved as a semantic theorem.
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Rule 6.2 contains a weak form of the deduction theorem. It implies

(B—A)=/,C only if A=/,(B&C) or -B=/,C,

where the deduction theorem would have
(B—A)=/,C only if A=/,(B&C).

The strong form of the deduction theorem would threaten to force monotonicity. From A=/,C we
can get (B—A)=/,C, which would lead to A=/,(B&C) with the strong version. Reading "=/," as

"is made nearly certain by", the weak version permits:

it flies]=/, [it's a bird],

so ([it's a penguin] /it flies]) =/, [it's a bird],

though not [it flies] =/, ([it's a bird] & [it's a penguin]),

because -[it's a penguin] =/, [it's a bird],

(i.e., given only that it's a bird, it almost certainly is not a penguin).

Notice that the semantics does not involve the notion of logical entailment in the truth-value sense.
It is totally autonomous with respect to truth-value semantics. ERA semantics does not presuppose
that logically equivalent sentences can be substituted in an ERA entailment to determine other
entailments. Nor does it assume that members of ERA respect logical entailment. Rather, ERA
permits an alternative definition of logical entailment.

We may define ERA logical entailment as entailment in every member of ERA:
definition: A is ERA logically entailed by B iff for every =/, in ERA, A=/,B.

Semantic theorems about ERA show that the logical entailments in the classical TVA sense are just
those entailments that hold in every member of ERA, the ERA logical entailments:

A=/B iff for every =/, in ERA, A=/,B.

So the members of ERA may be thought of as all possible ways of extending the classical logical
entailment relation to permit additional non-monotonic entailments.

Other semantic theorems show that within each member of ERA one can substitute =/, -- equivalent

sentences:

for all C, A=/,(B&C) and B=/,(A&C) onlyif for all D, A=/,D only if B=/,D.
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Le., if A and B are monotonicly equivalent in =/, (but not necessarily logically equivalent), then
whatever entails A in =/, also entails B in =/,. The substitution rules for the premise of a relation in

ERA doesn't require monotonic equivalence:
A=/,B and B=/,A only if forall D, D=/, A only if D=/,B.

When do montonicity and transitivity break down for an ERA entailment relation? Monotonicity
only fails with the addition of a new premise that was previously considered almost certainly false:

A=/,B and not A=/,(B&C) only if -C=/,B.
And for transitivity the following theorem holds:
A=/,B and B=/,C and not A=/,C only if -C=/,B.

Indeed, B monotonically entails A for a member =/, of ERA just in case whatever entails B also
entails A in =/, i.e.

for every C, A=/,(B&C) iff for every D, B=/,D only if A=/,D.

The syntactic structure of ERA entailment relations is quite different from that of other non-
monotonic logics. Other systems state explicitly in a non-monotonic inference rule what condition
will counter-act the inference. In ERA interference with transitivity and monotonicity are signaled
by other entailments that hold between the sentences involved:

A=/,B and not A=/,(B&C) can only occur when -C=/,B.

The syntactic structure for ERA non-monotonic entailments resembles the non-monotonicity of
conditional probabilities associated with probabilistic dependence and independence. The next
section shows how closely entailments in ERA are related to classical probability functions.

4. PROBABILITY

The entailment semantics of the previous section extrapolates in a straightforward way to a
semantics for partial (i.e., probabilistic) entailments. The class of probabilistic entailment relations
turns out to be almost precisely the class of all classical (i.e., Bayesian) probability functions.
They satisfy the standard axioms for probability theory -- up to a point.

A typical semantic approach to classical probability theory for a sentential language defines the set
PROB of probability functions on L:
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P, is in PROB iff

1) P, is a function from S into the real interval [0,1];

2) P4(A)=1if A is alogical truth;

3) P4 (A vB))=Pa(A )+P4(B) if -(A&B) is a logical truth.

Some versions have the additional rule that logically equivalent sentences have the same
probability. But that rule can be derived from 1-3 above.

On this approach probability is sometimes taken to represent the degree of certainty that a sentence
is true. An alternative interpretation takes expressions like P,(A)=r to say, roughly, that given the
meaning of A (that P, presupposes), A is true in J00xr percent of the possible states-of-affairs

(possible worlds).
In PROB semantics conditional probability is a defined notion:
finition: P,(AIB)=P ,((A&B))+P 4(B) if P,(B)#0, and is undefined if P,(B)=0.

Intuitively, P,4(A/B)=r might be understood to say that A is true in J00xr percent of the states in
which B is true.

PROB semantics relies on the concept of logical truth. It's semantic rules employ that concept.
The concept of logical truth is borrowed from truth-value semantics -- i.e., truth in all members of
TVA. Strictly speaking, the semantics employs two primitives, the concept of truth and the
concept of probability.

The ERA semantics suggests a different approach to probabilistic semantics. For ERA we took
certain subsets of SxS as relations which qualify as entailments. Each relation =/, maps each pair
of sentences onto either "entailment holds" (i.e., the pair is in =/,) or "entailment doesn't hold"
(i.e., the pair is notin =/,). Let Rbe the set of all mappings from SxS into the real interval from 0
to 1, inclusive. Each member of R is a set of triples of form <A,B,r>, where A and B are in S and
risin [0,1]. I will characterize a class of these functions in R that capture the notion "A is entailed
by B to degree 7". Members of R will be represented by symbols like /', and we write "A,/,B"
for "<A,B,r>€l,". I, is a mapping, i.e., a function, so <A,B,r>€/, and <A,B,s>€/, only if r=s (r
and s reals in [0,1]). R contains all and only such functions. Every sentence is entailed by each
sentence to some unique degree for each partial entailment function / in R.

Define PVA as the set of all probabilistic entailment value assignments /,€R that meet the

following conditions:

1) for some A,B€S, not A;/,B;
and for every A,B,CeS,r,5,9,€[0,1]:
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2)  AJA;

3) A/ (B&C)only if A/ ,(C&B);

4 (A&B)J,C only if (B&A),C;

5) A,/ B and -Ay/ B and r+s#I only if C}/,B;

6) (A&B),/,C and Ay/,(B&C) and Bq/aC only if r=sxg.

Each rule is the obvious extension of a similarily numbered rule for ERA. Rule S is the natural
extension of 5.2, and covers 5.1 Rules 4 and 6 extend 4.1 and 6.1. The connection between a
sentence and its negation imposed by Rule 5 is sufficiently strong to cover the counterparts to 4.2
and 6.2.

Since /, is a function we can establish a notational convenience. We will rewrite A,/ B as
P,(A/B)=r, and say P,€ PVA rather than /,€ PVA. Rewriting 1 through 6 we have:

1) for some A,BeS, P,(A/B)#l;
and for all A,B,CeS:
2) P(AIA)=1,
3) P (A(B&C))=P ,(A/(C&B));
4) P,((A&B)IC)=P,((B&A)/C);
5) P(A/B)+P,(-AIB)=1 or P ,(CIB)=1,
6) P((A&B)IC)=P ,(Al(B&C))XP 4,(BI/C).

Notice that it is not assumed that the members of PVA are classical probability functions, nor that
logical entailments have conditional entailments of 1. PVA contains just those P, that are functions

from SxS into [0,1] satisfying conditions 1-6.

Presumably, sentences are true or false because of their meanings and the state-of-the-world. TVA
doesn't make such distinctions because they contribute nothing essential to sentential logic. Only
when the formal language is extended to intentional contexts (e.g., modal operators) need the
semantics explicitly reflect the separate contributions to truth by meaning and the possible world or
state-of-affairs that an interpretation takes the sentences to be about.

Similarily, the semantics for partial entailments given by PVA need not make explicit the separate
contributions made by meaning and the nature of possible states. Presumably, A,/,B holds under
interpretation /, because /, represents both a way of associating meaning with A and B, and certain
probabilistic relationships among the possible states-of-affairs that A and B are about. Roughly,
A,/ ;B says that r is the measure or frequency of A being true among possible states (possible
worlds) where B is true. Parsing members of PVA into these components may play an essential
role in a semantics for an intentional language. But, for our purposes it is only a useful heuristic
for understanding what partial entailment represents. Understood in this way, the semantical rules
are plausible principles for partial entailments.
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Semantic Rules 1-4 seem totally uncontroversial. Rule 5 is plausible, too. Presumably each
possible state makes either A true or -A true. So their truth-frequencies should add to / among
states where B is true. Rule 6 is also a plausible principle when read in terms of truth-frequencies
among possible states. Of course any other interpretation of partial entailments (e.g., as
conditional degrees of belief) is also captured by PVA provided it satisifies the semantic rules.

PVA semantics does not presuppose a notion of logical entailment. Like ERA, it permits an
independent definition of logical entailment:

A is PVA logically entailed by B iff for all P, in PVA, P,(A/B)=1.

Then a semantic theorem establishes that the defined notion coincides with classical TVA logical
entailment. Logical truth is just logical entailment by every sentence. So that notion, too, is
definable in PVA semantics.

Relative to any given sentence C, for each P, in PVA the function P,( /C) satisfies the classical

probability rules of PROB. This is provable as a semantic theorem. Observe that Rule 6 for PVA
requires that conditionalization relative to a sentence B fits the classical definition of conditional
probability when P 4(B/C)#0:

P4 (AI(B&C))=P ,((A&B)IC)+P ,(BIC) if P4(B/C)=0.

So P,( /C) behaves as classical probability unless conditionalized on a sentence B that is "nearly
impossible”, has measure 0, relative to C. But entailment to degree 0 need not make B absolutely
impossible. Rule 6 permits P,( /(B&C)) to behave as a new classical probability function. It, too,
behaves classically until some new condition D for which P,(D/(B&C))=0 is added. Then

P,( (D&(B&C))) behaves classically, and so on.

Bayes' theorem is a direct consequence of classical conditionalization:

P(AI(B&C))=P ,(AIC)X[P 4(B(A&C))+P 4(BIC)] for P ,(BIC)=0.

It states how adding a new premise B influences the degree to which 4 is entailed by C. Rule 6
requires members of PVA to transform in classical Bayesian fashion when P,(B/C)#0. When

P4(B/C)=0, Rule 6 permits P,(A/(B&C)) to take a non-Bayesian leap -- P,( /(B&C)) becomes a
different classical probability function than P,( /C), and they are not related by a Bayesian
transformation. In effect each member of PVA is a class of Bayesian probability functions with
non-Bayesian jumps from one to another impelled by new conditions considered nearly impossible
under previous conditions.
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5. CONCLUSION

Probabilistic inference is itself non-monotonic, and some have suggested it subsumes the >
qualitative notion. Cheeseman [1] and Heurion [4] have argued extensively that classical
probability theory is sufficient for all forms of reasoning under uncertainty. They argue that the
numerous other theories for uncertain inference developed for Al applications suffer disorders
ranging from being simply unnecessary (i.e., classical probability would do as well), to ad hoc and
misleading, to unsound. While I largely share their views regarding quantitative alternatives to
classical probability, I take a different view of qualitative non-monotonic inference.

x

The semantic theories described above show that classical probability theory is a simple
quantitative extension of an underlying semantic theory of non-monotonic entailments.
Entailments are not subsumable under the Bayesian conditionalization mechanism of classical
probability. Rather, non-monotonic entailments can furnish non-Bayesian jumps from one
classical probability function to another. The semantic theory suggests a general approach to
uncertain inference that unifies qualitative and quantitative non-monotonic inference into a single

coherent system.
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