JAMES HAWTHORNE

MATHEMATICAL INSTRUMENTALISM MEETS THE
CONJUNCTION OBJECTION

ABSTRACT. Scientific realists often appeal to some version of the conjunction objection
to argue that scientific instrumentalism fails to do justice to the full empirical import of
scientific theories. Whereas the conjunction objection provides a powerful critique of
scientific instrumentalism, 1 will show that mathematical instrumentalism escapes the
conjunction objection unscathed.

Our most sophisticated scientific theories are highly mathematical. Read
literally, they assert the existence not only of physical things and prop-
erties like electrons, charges, and fields, but also of such non-physical
things as numbers, vectors, mathematical functions, and sets. So sci-
entific realists, if they are physicalists, should be instrumentalists with
regard to at least some parts of our best scientific theories. For, if only
the physical is real, then either mathematically endowed theories must
be false, or (if they may be true) the sentences they imply that con-
tain mathematical terms should not be taken literally. Physicalists should
hold that the mathematical terms in a scientific theory are merely instru-
mental, an aid in the logical systematization of the theory’s real subject
matter.!

Physicalist’s might adopt either of two distinct varieties of mathemat-
ical instrumentalism. Formalists take the mathematical expressions in
theories to be literally meaningless but useful syntactic tools. Fictional-
ists, on the other hand, maintain that statements containing mathematical
expressions make meaningful but deliberately false claims. The 1ssues
regarding mathematical instrumentalism that I will address in this paper
apply equally to either version. Both varieties of instrumentalism share
the view that mathematical assertions are not literally true, but mathe-
matical expressions are an important aid in the logical systematization of
the purportedly true, non-mathematical, substantive claims that theories
make.

If mathematics plays only an instrumental role in scientific theories,
might not other terms in these same theories also assume a merely instru-
mental part? Scientific instrumentalists believe so. Some believe that
there is an identifiable theory/observation boundary, and attempt to draw
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the line between empirically meaningful and purely instrumental sen-
tences along a divide between “observation sentences” (which contain
only terms that purportedly refer to observable things) and “theoretical
sentences” (which contain some terms that purportedly refer to unob-
servable things). Other versions of scientific instrumentalism attempt to
draw a different line between empirically meaningful and purely instru-
mental sentences on the bases of other distinctions. But however sci-
entific instrumentalists choose to draw this line, scientific realists chide
them for not taking theories at face value. But are scientific realists who
regard mathematics as a mere instrument in any position to reproach
scientific instrumentalists for not taking theories literally? Only mathe-
matical realists, it seems, may profess a strictly literal reading of theo-
ries.

Despite these considerations, 1 will argue that mathematical instru-
mentalism is defensible in a logically principled way that is not available
to the scientific instrumentalist. To be precise, scientific realists often
appeal to some version of the conjunction objection to argue that instru-
mentalism fails to do justice to the full empirical import of scientific
theories (see, e.g., Boyd, 1973; Putnam, 1973). I will argue that whereas
the conjunction objection provides a powerful critique against scientific
instrumentalism, mathematical instrumentalism can escape the objection
unscathed.

Phrased in terms of the theory/observation distinction, the conjunction
objection contends that the “theoretical” part of a scientific theory carries
hidden observational content not expressed by its observational subtheo-
ry. This hidden excess content shows itself when theories are conjoined.
For, the observational logical consequences of the conjunction of two the-
ories T\ and T, may far exceed the observational logical consequences
of the conjunction of their observational subtheories. Indeed, it can be
proved that given any theory T, there exists an alternative theory T3
that has precisely the same observational subtheory as 77, but such that
when T3 is conjoined with some auxiliary theory 75 it yields very differ-
ent excess observational consequences than does the conjunction of Tj
with T5.2 Usually 7} will have an infinite number of such “observation-
ally equivalent” alternatives that each implies very different additional
observational consequence when conjoined with some common auxiliary
theory 15.

The realist then argues that since the instrumentalist believes that
theories T} and T, are merely instrumentally correct, she is not at all
entitled to believe that their conjunction is also instrumentally correct.
Until the excess consequences of the conjoint theory (1} & T,) are empir-
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ically tested against the excess consequences of (I3 & T»), the most that
an instrumentalist is entitled to believe are the consequences of the con-
junction of the non-instrumental part of T} (which is identical to the
non-instrumental subtheory of T3) with the non-instrumental part of 75.
Thus, the realist argues, to the extent that the instrumentalist is disposed
to believe the excess observational consequences of the conjoint theory
(Ty &T3), as scientists usually do, she treats the “theoretical” parts of
these theories realistically rather than instrumentally — as though each is
true rather than merely empirically adequate.

Notice that the way in which the theory/observation distinction is
specified makes no difference to the force of the conjunction objec-
tion. Notice also that precisely the same argument applies to any ver-
sion of scientific instrumentalism however the line between the merely
instrumental and the empirically meaningful is drawn. Thus, it appears
that to whatever degree the conjunction objection favors a realist stance
towards theoretical claims, it must equally favor a realist stance towards
mathematical claims. For, when theories are conjoined, the mathematical
parts of each may, it seems, contribute to the entailment of excess non-
mathematical consequences in just the way that theoretical statements
contribute to the entailment of excess observational consequences. So
aren’t scientific realists who wield the conjunction objection against sci-
entific instrumentalism obliged by a precisely analogous argument to
take mathematical statements realistically as well? Aren’t they obliged
to believe in the existence of the mathematical things that are said to
exist by the scientific theories they believe? I will argue that they need
not be. Mathematical instrumentalism can beat the conjunction objection
in a logically principled way that is not available to a broader scientific
instrumentalism.

Specifically, I will show that when Representation theorems of the
kind proved by Field (1980) for Newtonian gravitation theory hold for
each of a pair of mathematically endowed theories, then the conjunc-
tion of the mathematical versions of the theories® implies only those
non-mathematical consequences that are already implied by the con-
junction of their non-mathematical parts. That is, the conjunction of the
mathematical theories is a conservative extension* of the conjunction of
their non-mathematical subtheories. So, when Representation theorems
hold, alternative mathematical theories 7} and T3 that agree on non-
mathematical consequences may be viewed simply as different mathe-
matical formulations of the same physical theory. When each is conjoined
to an auxiliary theory T, the resulting theories (T & T3), and (T3 & T53)
make precisely the same non-mathematical claims. By contrast, if the
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dividing line between instrumental sentences and realistic assertions is
drawn “lower down,” so that some non-mathematical terms are taken to
be merely instrumental, then the conjunction of two instrumental theo-
ries will generally be a non-conservative extension of the conjunction
of there non-instrumental parts. Thus, mathematical instrumentalists can
overcome the conjunction objection in a logically principled way that is
not generally available to theoretical instrumentalists.’

My aim in this paper is to state all of these claims precisely and to
show that they are warranted. The treatment will be greatly facilitated
by drawing on the resources of many-sorted languages containing many-
sorted quantifiers. Their logic is a very modest extension of familiar
one-sorted logic. In the next three sections I will discuss the utility of
a many-sorted logic for a proper explication of instrumentalism, and
I will introduce the relevant formal details of a many-sorted language
and its semantics. Then, in Section 4 through 7 I will provide a precise
treatment of the conjunction problem for instrumental theories and show
how mathematical instrumentalism can overcome it.

1. SORTING OUT THE LANGUAGE

In “To Save the Phenomena” (1975, pp. 41-69) van Fraassen argues
that instrumentalism as it is usually formulated does not successfully
eliminate the apparent reference by theories to unobservable entities.
Although his objection is technically correct, I think that the difficulty
he raises is easily fixed. This fix is important to a proper treatment of
instrumentalism, so I will discuss it in some detail.

The standard formulation of instrumentalism attempts to circumvent
claims that a theory appears to make about dubious theoretical things by
dividing the vocabulary of the theory into two classes of terms, terms
that refer, and terms that merely function as an instrumental aid to the
logic. These classes are usually taken to consist only of names (individual
constants), function symbols, and predicate (including relation) symbols.
Logical terms (including the identity symbol), all variables and quanti-
fiers are counted among the non-instrumental vocabulary. Any sentence
that contains an instrumental (e.g. theoretical) term is itself instrumental,
and not to be taken literally. (Such sentences either make fictitious claims
or are taken to be meaningless.) Only sentences with no occurrences of
instrumental vocabulary purport to be true. For the instrumentalist, then,
a theory T is only about its non-instrumental subtheory — the set of non-
instrumental sentences that 7" logically implies. The rest of the theory is
simply a tool to aid in the deduction of non-instrumental consequences.
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Indeed, instrumentalists often appeal to the fact that if T' is an axioma-
tizable first order theory, then the “tool” may in principle be dispensed
with entirely and replaced with a Craigian re-axiomatization of the non-
instrumental subtheory.

Van Fraassen points out that this version of instrumentalism will not
work for most real scientific theories. He denotes the observational sub-
vocabulary of a theory 7' by ‘E’, and denotes the observational sub-
theory of T by “T'/E’ (T restricted to vocabulary E). He then argues
that the empirical import of a theory cannot be isolated in the syntactic
fashion employed by instrumentalists (1975, 54-55):

But any unobservable entity will differ from the observable ones in the way it systemat-
ically lacks observable characteristics. As long as we do not abjure negation, therefore,
we shall be able to state in the observable vocabulary (however conceived) that there
are unobservable entities, and, to some extent, what they are like. The quantum theory,
Copenhagen version, implies that there are things which sometimes have a position in
space, and sometimes have not. This consequence I have just stated without using a
single theoretical term. Newton’s theory implies that there is something (to wit, Abso-
lute Space) which neither has position nor occupies a volume. Such consequences are
by no stretch of the imagination about what there is in the observable world, nor about
what any observable thing is like. The reduced theory T/E is not a description of part
of the world described by T’; rather, T/E is, in a hobbled and hamstrung fashion, the
description by T' of everything.

I think that van Fraassen is right. The usual sorting of vocabulary into
observational and theoretical parts doesn’t do the job required by instru-
mentalists. But we can easily fix the problem by adapting a device
employed by Field (1980) for a somewhat different purpose.

In Science Without Numbers Field investigates the effect of adding
a mathematical theory S to a non-mathematical theory 7. He shows
that S + T is Conservative in the sense that it will only have non-
mathematical consequences that are already implied by T" alone. But in
stating this result one must take care not to run afoul of a problem that
is roughly the inverse of the difficulty raised by van Fraassen. The non-
mathematical theory T' might imply that everything has some physical
properties (e.g. spatial location) not shared by the mathematical things
posited by S; 7' may even rule out the existence of non-physical things
altogether. So, if one isn’t careful, § + T" might imply that the numbers
have spatial locations, or S + T may even be logically inconsistent.

Field avoids this problem by introducing a one-place predicate ‘M’,
where ‘Mz’ stands for ‘z is a mathematical entity’. Then, for a giv-
en non-mathematical theory T, he lets T* be the sentences of 1" with
all quantifiers relativized to thie negation of ‘M’, so that (z)P becomes
(z)(~ Mz D P) and (3z)P becomes (3z)(~ Mz & P). Similarly,
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quantified expressions about mathematical things take the form (z)(Mz D
--) and (3x)(Mz & ---). So, if T says that everything is located in

space-time, then T™ says that all non-mathematical things are located in

space-time, but is mute about the locations of mathematical things.

The same approach may be employed to mark off purported theoreti-
cal (or other undesirable) entities that differ systematically from observ-
able (or otherwise “desirable”) things in regard to the sorts of proper-
ties they have or lack. To see how the relativization of the quantifiers
solves the problem raised by van Fraassen, let ‘U’ be a new predicate
such that ‘Uz’ expresses ‘x is unobservable’. Let all quantifiers in T
and its logical consequences be appropriately relativized, and call the
resulting theory T'F. T is just a version of 7' that makes clear which
quantifiers are intended to range over observable things and which are
meant to range over unobservables. If van Fraassen is right about there
being systematic differences in the sorts of properties attributed by T
to unobservables, then the alteration in T required to generate T will
be easily accomplished; if there are no such systematic differences, then
the problem described by van Fraassen won’t arise, so no relativiza-
tion of quantifiers will be needed. (If 7" has a consequence containing
an expression of form (z)Pz and the instrumentalist really intends the
expression to say that all observable and unobservable things satisfy Pz,
then the corresponding relativized sentence in T+ will be the conjunction
((z)(Uz D Pz)&(z)(~ Uz D Pzx)).)

Now the theory with just the observational consequences of T+, which
the instrumentalist wants to endorse, may be obtained as follows. First,
take the subset of logical consequences of Tt in which all quantifiers are
relativized to ‘~ U’ and in which all other non-logical vocabulary (i.e.
all vocabulary other than the occurrences of ‘U’ in relativized quantifiers)
consists of observational vocabulary. Next, strip away all occurrences of
‘Uz O’ and ‘~ Uz&’ (and excess parentheses) from these sentences.
The resulting theory T is just the theory that the instrumentalist had in
mind. With regard to van Fraassen’s quantum mechanics example, T
will imply ‘(3z)(Uz&x sometimes has position &z sometimes has no
position)’, so T will not imply ‘(3z)(z sometimes has position &z
sometimes has no position)’.

2. A MANY-SORTED LANGUAGE AND ITS LOGIC

To overcome van Fraassen’s objection the instrumentalist must mark a
distinction between occurrences of quantifiers that play a merely instru-
mental role (or that range over “mere fictions”) and those that purport
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to range over real things. Sorted quantifiers provide an equivalent, but
more convenient way to mark this distinction than relativizing quanti-
fiers to a special predicate ‘U’. That is, one can replace all occurrences
of variables and quantifiers that play an instrumental role in the theo-
ry T with variables of one sort (say, subscripted occurrences of ‘u’);
and replace all other occurrences of variables, the purportedly referential
occurrences, with a second sort of variables (e.g. subscripted occurrences
of ‘v’). The result is an instrumentalist version of T stated in a 2-sorted
language containing 2 sorts of quantifiers. The instrumentalist already
supposes that the constant terms of the language (names, function sym-
bols, and predicate symbols) can be divided into two sorts, so she may
as well divide the variables (and quantifiers in which they occur) into
the same two sorts. The theory T% that results from sorting variables in
T is essentially equivalent to the theory Tt that results from the rel-
ativization of quantifiers in 7" to the special predicate ‘U’. (This is a
well known fact about the relationship between many-sorted languages
and the relativization of quantifiers in single sorted language (e.g., see
Wang, 1964).) Moreover, the subset of consequences of T# containing
only non-instrumental vocabulary is just the theory T described ear-
lier. Many-sorted languages with sorted quantifiers possess essentially
the same expressive power as one-sorted languages, but their use will
greatly simplify my treatment of instrumentalism. So, in this section I
will briefly describe the main features of some many-sorted languages
and their logics.

The n-sorted language L (for some positive integer n) consists of
the usual logical symbols (including the identity relation), and for each
sort k (an integer such that 0 < k¥ < m — 1), an infinite number of
individual variables, individual constants, m-ary function symbols, and
me-ary predicate symbols of sort k. If L is a second order language, it will
also contain m-ary predicate variables of each sort k. L contains universal
and existential quantifiers of each sort; (z) and (3z) are universal and
existential quantifier of the same sort (and order) as the variables z.
Well-formed formulas and sentences are built up from the symbols of L
in the usual way, with no special restrictions on sort (e.g. each m-ary
predicate symbol followed by m names and constants, no matter what
their sorts, is a formula).

For the purposes of this paper 2-sorted and 3-sorted languages will
suffice. Usually I will regard theories as couched in a 2-sorted language.
But when we consider the effects of combining the instrumental parts
of a pair of theories 17 and 75 it will sometimes be useful to employ a
3-sorted language common to the two theories. In this context I will take



370 JAMES HAWTHORNE

sort-0 non-logical constants, sort-0 variables, and sentences containing
only sort-0 vocabulary to be the non-instramental vocabulary, and I will
suppose that sort-0 vocabulary is common to 77 and T5. Sort-1 will be the
instrumental vocabulary for theory T}, and sort-2 will be the instrumental
vocabulary of T5.

When we focus on mathematical instrumentalism (and treat all non-
mathematical, theoretical terms realistically) a 2-sorted language will
suffice. Sort-0 will consist of the non-mathematical vocabulary, includ-
ing variables that range over the domain of non-mathematical things.
Sort-1 vocabulary will consist of mathematical terms (particularly the
set-theoretic vocabulary ‘@’ and ‘€’ and variables ranging over sets).
Mathematical vocabulary will also include predicate and function sym-
bols that relate mathematical things to non-mathematical things (e.g. the
“mass of” function, which assigns numbers to bodies).

It is customary to specify the notion of logical consequence for a
language in set-theoretic terms, in terms of interpretations or models.
Ultimately this approach should be unsatisfactory to the mathematical
instrumentalist, for it characterizes the notion of logical consequence in
terms of a mathematical theory that the instrumentalist takes to consist
either of meaningless symbols or terms refering to fictions. Furthermore,
if the set-theoretic semantics is to apply to the instrumental part of the
formal language in the same way that it applies to the rest of the language,
then the intended domain of discourse for an interpretation must contain
fictitious objects to which instrumental terms in the language “refer.” If
the instrumentalist is to avoid these difficulties, he will have to specify the
logical consequence relation in an alternative fashion. One way might be
to define logical consequence in terms of syntactic deduction rules; but
this can only work for first order logic (since for logics of higher orders
semantic consequence outruns any notion of consequence that may be
captured by sound deduction rules). Field (1989, 1992) avoids the diffi-
culties in another way. He develops a modal logic for the logical necessity
and logical possibility operators and shows how the relevant metalog-
ical results from standard semantics can be represented and proved in
the modal logic. Thus, the mathematical instrumentalists may appeal to
metalogical results without invoking mathematics.

In the remainder of this section I will briefly specify the notion of
logical consequence for many-sorted languages in the usual set-theoretic
way. This should provide a fairly familiar setting to aid the reader in
understanding the many-sorted logic and its application to instrumental-
ism. In a later section I will show how to restate and prove the principal
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claims I will make in support of mathematical instrumentalism using
only the resources of Field’s modal metalogic.®

An interpretation of any n-sorted language employs n non-empty,
disjoint domains (disjoint because no object is both observable and unob-
servable; no object is both mathematical and non-mathematical). Given
any such n-tuple of domains (Dy, Dy,...,Dy_1), let D = U?;OI D;.D
is the super-domain that contains all members of each sort. An interpreta-
tion then consists of an assignment of an object of sort &k to each individ-
ual constant of sort k, a function from D™ to Dy, to each m-ary function
symbol of sort k, and a subset of D™ to each m-ary predicate symbol
(of any sort). Thus, observable things are allowed to satisfy expressions
for “unobservable properties”, and “unobservable things” are permitted
to “possess properties” that count as observable (e.g. spatial location in
van Fraassen’s example). Of course a given theory may explicitly deny
that the things of sort & satisfy a given expression () simply by invoking
the sentence (z) ~ Qz with a variable = of sort k.

Individual variables are assigned objects by functions that assign to
each variable of sort k an object from Dj. Satisfaction and truth under
an interpretation behave as usual. In particular, when z is an individual
variable of sort k and Pz is a formula with z free, a value assignment
a to variables satisfies () Pz (satisfies (3z)Pz) just in case for every
assignment (some assignment) J that differs at most from « in the mem-
ber of Dy it assigns to z, (3 satisfies Pz.

When considering mathematical instrumentalism I will resort to a 2-
sorted language in which sort O contains all of the non-mathematical
vocabulary and sort 1 contains the mathematical language (which I will
suppose can all be defined in set-theoretic terms). The semantics will be
the same as that just described for any n-sorted language, but with two
emendations. First, in the case of the scientific instrumentalist’s distinc-
tion between, for example, observational and non-observational terms
we have permitted predicates in the observational vocabulary to apply to
unobservables. However, mathematical instrumentalists need not count
mathematical things within the extensions of non-mathematical predi-
cates; so we will treat sort-0 predicate and function symbols applied
to sort-1 terms as ill-formed. Secondly, Field (1980, 1989) advocates
mathematical instrumentalism for both first order and second order lan-
guages, and I will follow suit. Hence, in the context of the discussion
of mathematical instrumentalism the only emendations required in the
previously specified semantics are these: the language will be 2-sorted;
interpretations only assign subsets of Dg* (rather than of D™) to m-ary
sort-0 predicates, and only assign functions from DJ® to Dy to m-ary
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sort-0 function symbols; each assignment « to variables assigns a sub-
set of D' to m-ary sort-0 predicate variables and assigns a subset of
D™ = (DyU D)™ to m-ary sort-1 predicate variables. Then, as is usual
for second order quantifiers, when X™ is a predicate variable of sort k
and P(X™) is a formula with X™ free, an assignment a to variables
satisfies (X™)P(X™) (satisfies (3X™)P(X™)) just in case for every
assignment (some assignment) [ that differs at most from « in the sub-
set it assigns to X™ (from Dg* for X™ of sort 0, or from D™ for X™
of sort 1), 3 satisfies P(X™).

In the explication of mathematical instrumentalism an intended inter-
pretation will have a sort-0 domain Dy that contains only non-sets. Dy
is the set of physical things that the theory is about. The intended sort-
1 domain D; contains (fictitious) platonistic elements that are the sets,
sets of sets, etc., built up from Dy. A natural way to build the intended
sort-1 domain D) is this: let D(0) be Dy; if £ is any ordinal number,
let D(£ + 1) be the union of D(£) with the set of all subsets of D(£);
if A is a limit ordinal, let D(\) be the union of all sets D(£) such that
€ < A; this recursive definition leads to a set D(+y) where + is a strongly
inaccessible ordinal greater than w; finally let the sort-2 domain D; be
D(v) — Do.

When we treat mathematical instrumentalism with a 2-sorted lan-
guage, the sort-1 mathematical relation symbol ‘€’ is to be interpreted
on the whole super-domain D = Dy U Dy, as are all other predicates
and function symbols that connect non-mathematical things with num-
bers and sets (e.g. the “mass of” function). This is not a special emen-
dation to our general treatment of predicate and function symbols for
n-sorted languages. The only special emendation of the earlier treatment
that mathematical instrumentalism requires is the restriction of the sort-0
predicate and function terms to the sort-O0 domain.

The notions of logical truth and logical consequence for an n-sorted
languages L may then be defined in terms of interpretations of L in
the usual way. If L is first order, logical consequence is recursively
axiomatizable by the usual axioms and inference rules except that: (1)
universal specification requires the insertion of a name of the same sort
as the variable for which it is substituted; (2) universal generalization
from Pc to (z) Pz will be legitimate under the usual conditions provided
that z is a variable of the same sort as the constant ¢; (3) if = and y
are variables of different sorts, then (z)(y) ~ y = z is a logical truth,
Indeed, the first order logic of an n-sorted language is equivalent to the
logic of a single sorted language in which each quantifier is relativized to
one of n distinct predicates ‘S;’, and in which the following sentences are
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treated as (logical) axioms: (z)(Soz V - -V Sp_12); (z) ~ (Siz & Sjz)
(for each distinct ¢ and j); (3z)S;z (for each ¢); and an axiom of from
S;c for each name ¢ (which specifies the sort of c).

Use of a many-sorted language simplifies the description of the solu-
tion offered in the previous section to the problem raised by van Fraassen.
For a given theory T the scientific instrumentalist will not only want to
divide the constant terms of T”s language into observational and theo-
retical terms. She should also specify two sorts of variable: one sort to
range over observable things, the other sort to be part of the instrumen-
tal (theoretical) vocabulary. Next the instrumentalist must decide which
occurrences of quantifiers in 7" are supposed to range over observable
things and which purport to range over unobservables, and should replace
each occurrence with the right sort of variable. (If some sentence or sub-
formula of a sentence is really supposed to assert that everything of either
sort satisfies formula Pz, then occurrences of (z)Px should be replaced
with the conjunction ((y)Py & (2)Pz)), where y is of one sort and z
is of the other.) Call this sorted version of T the theory T*. Now it is
easy for the instrumentalist to specify which of the consequences of T*
she believes. She believes the observational consequences of T# — the
consequences that involve only observational vocabulary, including only
observational variables. Supplied with appropriate sorts of quantifiers,
van Fraassen’s quantum mechanics example merely says that there are
unobservable things that sometimes have a position in space and some-
times have no position. The occurrence of quantifiers of the sort ‘there
are unobservable things such that ...” within a sentence of a theory clearly
marks the sentence as instrumental.

3. THEORIES IN TWO-SORTED LANGUAGES

Even the most committed scientific realist may grant that a theory he
believes to be completely true can be enhanced by the addition of con-
venient fictions. The additional syntax may permit shortcuts in the com-
putation of truths from truths, and a fictitious ontology tied to this syntax
may offer conceptual shortcuts that aid in the modeling of complex phys-
ical systems. So, let us put aside for now disputes over which pieces of
syntax are mere tools. Let us suppose that a community of philosophi-
cally like-minded scientists can distinguish merely instrumental terms in
a given theory from those terms they intend to be referential, and that
they can distinguish quantifiers they intend to range over real things from
the instrumental sort. Let Lg represent the vocabulary that the communi-
ty understands realistically. A scientific theory 7' may be stated wholly
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in the realist vocabulary Ly, or the language of T may contain some
additional instrumental vocabulary, vocabulary of some sort other than
sort-0. ‘

I will call any collection of sentences (in a given n-sorted language) a
theory; and for any theory T, its language L7 will, by convention, consist
of all vocabulary that actually occurs in 7" together with all vocabulary in
Ly, the sort-0 part of the language. A theory T may be axiomatizable, but
I will not generally assume so. Neither will I assume that T is logically
closed. (So I'm not using the term ‘theory’ to mean a logically closed
set of sentences, as logicians usually do. Nothing I will say hangs on this
terminological difference; I will explicitly mark cases where logical clo-
sure is indicated.) The convention that theories have all of L in common
is merely a convenience — any theory that lacks part of Ly can easily
be extended to include it; and the non-instrumental vocabularies of all
theories can certainly be pooled into one common vocabulary. Theories
may, however, differ with regard to their instrumental vocabularies, and
it will prove useful to keep their instrumental vocabularies distinct.

Several definitions will facilitate the investigation of the logical prop-
erties of instrumental theories.

DEFINITION 1 (The Logical Closure and Logical Equivalence of The-
ories).

(1.1) |T'} is the (semantic) logical closure of T (i.e. the set of logical
consequences of 1) under Lt U Ly (the vocabulary occurring in
T together with all vocabulary in Lyg).

(1.2) For any language L, |T|1, is the set of those sentences in L U Ly
that are in the (semantic) logical closure of T under the language
LULrU Ly.

(1.3) Let L; and L, be the languages of 7} and T5. Then, by definition,
T is (semantically) logically equivalent to T, (abbreviated T} ~
D) iff |Ti|r,uL, = |T2|0,0L,-

It will be convenient in comparing the contents of instrumental theories
to compare their logical closures under the vocabulary occurring in T’
together with all of the non-instrumental vocabulary in Ly. We will have
no need to restrict attention to any sub-vocabulary of Ly; so the definition
of |T'| offered above will be more useful than taking the logical closure
of T under just the vocabulary that occurs in it.

We will sometimes want to treat theories that differ in instrumental
vocabulary. Thus, ‘|T'|;’ can represent the logical closure of T under a
possibly larger vocabulary L U Lg that contains LU Lg. Later it will be
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useful to consider the combination of two theories T and 75 that have
only the vocabulary of Lo in common. Their instrumental parts will be
peculiar to each of them. So, although T} and T will each have a 2-sorted
language, when we conjoin them we will move to a 3-sorted language
where sort-0 is the vocabulary of their common non-instrumental parts,
sort-1 is the instrumental vocabulary of T}, and sort-2 is the instrumental
vocabulary of T». Then |Ti|r,uL, is the logical closure of T} under the
3-sorted language L; U Ly U Lo. The definition of the expression ‘|T'|1’
applies also when L contains a sub-vocabulary of L U Ly. In that case,
|T|L is the result of first generating all logical consequences of T in the
joint vocabulary of L U LT U Lo and then throwing away all sentences
not in L U Lyg.

The sole purpose of the instrumental part of a theory T is to help
specify the non-instrumental sub-theory |T'|r,,. The next definition coins
some useful terminology in this regard.

DEFINITION 2 (Literal Parts of Instrumental Theories).

(2.1) Define (T) = |T|r,. (T) is the literal component of theory T

(2.2) Call any set of sentences with only vocabulary in Lo literal.

(2.3) T is called trivially instrumental if |T| = |(T)|L; otherwise, T" in
non-trivially instrumental.

For any theory T, (T') is called a literal theory because it contains only
vocabulary in Lg; it is the subtheory of T that is to be taken literally.
Sentences in (T') represent the ontologically respectable consequences of
an instrumental theory. Notice that all literal theories count as trivially
instrumental, since literal theories contain only non-instrumental vocab-
ulary. More generally, if the logical closure under vocabulary L7 U Lg
of the literal subtheory (T') gives back all of |T'|, then the instrumen-
tal vocabulary of T' must play a completely superfluous role in T. In
that case each sentence of T that employs instrumental vocabulary will
either be a logical truth or logically equivalent to a sentence containing
no instrumental vocabulary. Although such a theory is not literal, it is
logically equivalent to it’s literal subtheory (T), ie. T ~ (T). In that
case we call T trivially instrumental. If T is not logically equivalent to
(T), T will be called non-trivially instrumental.

Suppose a literal theory T5 is extended by adding new sentences. The
extended theory might be stated in an expanded vocabulary containing
instrumental terms and quantifiers not in 75. The extended theory T is
called an Lg-extension of T5. Whereas T, is wholly in Lo, the broader
theory 77 may not be.
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DEFINITION 3 (Extensions of Theories in Lg).

(3.1) Ty is a (semantic) Lo-extension of T, iff T; is literal and |T3| C
(Th).

(3.2) Ty is a (semantically) conservative Ly-extension of T iff T} is an
Ly-extension of T3 and (T1) C |T3] (thus, |T3| = (T})).

(3.3) T} is a (semantically) non-conservative Lo-extension of T5 iff T}
is an Lo-extension of T3, and (T1) ¢ |13 (thus, |T2| C (T})).

Ty is a conservative Lg-extension of T, just when T} has exactly the
consequences in the literal language Lo that 75> has. If 7] is a non-
conservative Lo-extension of T3, it contains 75 plus additional conse-
quences in Lo. Notice that T} is a conservative Lo-extension of (T})
and only of (77). That T} is a conservative Lo-extension of (T}) follows
from |(T1)| = (T}); that T} is a conservative Lg-extension of no other
logically closed theory follows from the definition of conservative Ly-
extension, since if T} is a conservative Lg-extension of T3, then 75 is
literal and |T5| = (T}).

For any given theory T couched in a 2-sorted language (whether first
or second order), if the sorts correctly mark the non-instrumental/instru-
mental distinction, then (T') is just the part of T that is supposed to be
taken literally. If T is first order and has a decidable set of axioms, then
(T) will also be recursively axiomatizable, as an obvious extension of
Craig’s Theorem shows.

THEOREM 1 (Craig’s Theorem). If a first order theory |T| is recursive-
ly axiomatizable, then so is (T').

Instrumentalists often appeal to Craig’s theorem in support of the idea
that the instrumental part of a theory can in principle be jettisoned. The
Craigian axiomatization of (T') is not pretty, and it is surely beyond.
our ability to make practical use of it. But this observation simply rein-
forces the appeal of the instrumental version of the theory. In princi-
ple, then, theories in first order logic need only employ instrumental
vocabulary to tidy things up. For second order theories the instrumental
component of the theory can assist in the specification of logical con-
sequences that may not be captured by any recognizable axiomatization
in the non-instrumental vocabulary. Even when there is a decidable set
of second order axioms that semantically captures |T'|, the intended non-
instrumental subtheory (T') may not be specifiable even semantically
by a decidable set of axioms in the non-instrumental vocabulary. Thus,
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for second order languages the instrument may be required in order to
completely express the theory.

Good scientific theories are hard to come by. If the use of avowedly
instrumental devices aids the scientist in expressing those components
of theories that he takes literally and believes may be true, then I see
no reason to deny him their help. Scientists should be permitted all of
the logical tools they can muster, including the use of instrumental bits
of syntax or reference to convenient fictions. But when two theories that
contain avowedly instrumental parts are used in conjungtion the theorist
should be willing to take certain precautions, as the next section will
make clear.

4, INSTRUMENTALISM AND THE CONJUNCTION OBJECTION

Suppose some scientific theory 77 has a purely instrumental (perhaps
fictitinous) component and that we have come to believe that its non-
instrumental subtheory (T7) is true. Consider, for instance, the case where
the instrumental theory T is a bit of “honest ad hocery” constructed for
the sole purpose of enhancing the computability of consequences for
some highly supported theory, T', about which we are realists. If 77} is
finely tuned to represent 1" precisely, then the set of non-instrumental
consequences of 77 should coincide with the logical closure of T (i.e.
(Ty) = |T); so T} will be a conservative Lo-extension of T'. If an
“alternative” to 7T, say T3, is also designed as a mere computational tool
for T, then it too should be a conservative Lgy-extension of T'. In this
situation there need be no debate about which theory, T} or T3, is best.
They may each have advantages for modeling different kinds of physical
systems to which T applies. But whatever the advantages of T} and 73 in
various contexts, their instrumental parts are either false or meaningless,
and the instrumentalist knows them to be so. Thus, the instrumentalist has
no reason to believe anything that either 7| or 73 might imply beyond
what T asserts.

Now suppose that another instrumental theory 75 is developed to cav-
er a different range of physical phenomena than 77 and 73, and suppose
that the evidence leads us to believe that its non-instrumental part (75) is
true. Normally we are warranted in believing the conjunction of two the-
ories that we believe to be true; at least we are warranted in investigating
their conjunction with some reasonable hope that it is true. In particular,
the theory (T}) U (T3) (which is logically equivalent to (T3) U (T3)) will
usually have new non-instrumental consequences not implied by either
(Ty) or (T) separately, and it is perfectly reasonable to expect these new
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consequences to be in agreement with observations. Consider, however,
the direct conjunction of the instrumental theories, 7} U T5. Generally
the new non-instrumental consequences of (T} UT») will exceed those
of (T1) U (T3). But, insofar as the instrumentalist believes that the instru-
mental parts of T} and T, are false or meaningless, she has absolutely
no basis on which to expect consequences in excess of [(T}) U (T3)| to
be true. Indeed, (T3 U T3) (and an infinite number of other instrumental
theories which, like T3, agree with (T})) may differ radically in excess
consequences from (T U T3), (whereas, (T3) U (T3) ~ (T}) U (T)).
If T; has no better tie to reality than a host of alternative instruments,
then there is no reason to think that its excess non-instrumental conse-
quences have the least chance of being true. (It would, for instance, be
ludicrous to spend large sums of research money in the hope of veri-
fying excess consequences of (T} U T), especially in cases where the
proposed experiment is unlikely to yield any useful information should
(T1 UT>) be false.) Thus, realists argue, to the extent that one believes the
excess consequences of (T) UT;) rather than simply the consequences of
(T1)U(T3), to that extent one treats these theories realistically rather than
instrumentally — as though they were true rather than merely empirically
adequate.

The following theorem and corollary establish that all non-trivially
instrumental theories carry excess non-instrumental import that may show
up when they are conjoined with other instrumental theories. This is the
basis for the version of the conjunction argument presented above.

THEOREM 2 (Conjunctive Equivalence is Logical Equivalence). If T}
is non-trivially instrumental, (T\) is (semantically) incomplete, and
T3 % T, then for some finite non-trivially instrumental theory T» that is
(semantically) consistent with both Ty and T3, (T3 UTy) # (T UT3).

Richard Boyd (1973) draws on a version of Theorem 2 to argue that only
logically equivalent theories are really empirically equivalent, empirically
equivalent under conjunction with all possible auxiliary theories. The
theorem says that if 7} is an instrumental theory that leaves some non-
instrumental assertions undetermined, then for any theory T that differs
at all from T in its logical implications there is a possible auxiliary
theory T, that in conjunction with T3 yields different non-instrumental
consequences than the conjunction of 75 with T}. Theorem 2 implies the
following corollary.

COROLLARY (Non-conservativeness of Conjoint Instrumental Theo-
ries). If Ty is non-trivially instrumental and (T}) is (semantically) incom-
plete, then there is a finite non-trivially instrumental theory T, that is
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(semantically) consistent with T\ such that T, UT) is a (semantically)
non-conservative Lo-extension of (T1) U (T5).3

So, when T} and T3 are distinct instrumental theories that agree on non-
instrumental claims, they will yield non-equivalent conjoint theories (i.e.
|T3UT3| ¢ |T1 UT3|) which will both be non-conservative Lo-extensions
of a common non-instrumental subtheory (i.e. (T3) U (T}) =~ (Th) U(T7)).
The instrumentalist may have good reason to expect that the conjoint
theory (T1) U (T3) is true, but only the realist about T} and T should
have any reason to believe that the excess consequences in (T} U T3) are
true (rather than, say, those of (T3 U T3), or merely the consequences of
(Th) U (T2)).

There is one important special case in which the conjunction of
instrumental theories implies precisely the same non-instrumental conse-
quences as the conjunction of the non-instrumental subtheories. Suppose
each of the two instrumental theories 77 and 15 are 2-sorted, but that
they have only sort-0 in common. That is, suppose that the two theories
can be construed as employing a common 3-sorted language, where T}
is stated solely in terms of sort-0 and sort-1, and 75 is stated solely in
terms of sort-0 and sort-2, so that L1, N Ly, C Ly. If the language of
the theories is first order, the following theorem applies.

THEOREM 3 (Conservativeness Under Conjunction for Theories with
Distinct Instrumental Parts). For first order languages, if Ly, NLy C
Lo, then T\ UT; is a conservative Ly-extension of (M) U (1) (e,
(T1) U(T2)| = (T UT3)).°

If the instrumental language employed by two theories is kept separate
by sorting, and the only language that they share is about purportedly
real things, then the theories may be used conjointly without exceeding
the implications of their true subtheories. Indeed, if (T3) = (T}) and
Lz,N Ly, C Lo, then (T3 UT) = (T1 UT3),'0 and both are conservative
Ly-extensions of (T1) U (T3).

Suppose an instrumentalist wants to conjoin theories that were devel-
oped to account for disparate parts of the physical realm, but which have
some instrumental vocabulary in common. And suppose she also wants
to continue to take advantage of the instrumental features of these theo-
ries, and yet wishes to avoid unwarranted excess consequences which are
mere artifacts of how the instruments fit together. Theorem 3 suggests
the following strategy: before conjoining theories replace all common
instrumental vocabulary (including variables) with new vocabulary that
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is distinct for each theory. Then Theorem 3 guarantees that the only new
consequences that the conjunction will imply are those that are already
consequences of the conjunction of their non-instrumental parts. Thus,
one need not give up the convenience of the instrument in order to avoid
unwarranted consequences. Since the instrumental vocabulary is merely
a tool, the instrumentalist should have no qualms about making these
syntactic alterations. The practicing scientist who knowingly employs
convenient fictions (e.g. for computational or heuristic purposes) should
be happy to forego consequences that are mere artifacts of those fictions,
consequences that do not flow from the part of the theory that she takes
to be true.

There is one important exception to the recommendation that the
instrumental parts of theories should be kept syntactically distinct. Almost
all instrumentalists will maintain that the mathematical parts of theories
are part of the instrumental component. And although one could rela-
bel the mathematical parts of two instrumental theories so that each has
its own distinct vocabulary for numbers and sets, this tactic would be
exceedingly unnatural. As it turns out, mathematical instrumentalists can
beat the conjunction problem without going to such extremes.

5. MATHEMATICAL INSTRUMENTALISM BEATS THE CONJUNCTION OBJECTION

Mathematical instrumentalism is more tenable than scientific instrumen-
talism on two counts. First, for a given scientific theory it is usually rel-
atively easy to distinguish the occurrences of quantifiers and non-logical
vocabulary that belong to mathematics from those that purport to refer
only to a non-mathematical realm. By contrast, scientific instrumentalists
generally have a much harder time finding a principled way of distin-
guishing the “observable” (or otherwise “empirically kosher”) parts of
the vocabulary of a given scientific theory from the purely instrumental
part. Secondly, although the conjunction objection establishes that tru-
ly instrumental scientific theories should not be conjoined (unless they
share no instrumental vocabulary), the conjunction objection does not
apply to mathematical instruments. For, if a mathematically endowed
scientific theory is properly fleshed our with qualitative relations (e.g.
various betweenness and congruence relations) that reflect the physical
import of the mathematical component of the theory (e.g. a distance func-
tion, a mass density function, a gravitational potential function), then the
theory will not contain excess non-mathematical content — no excess con-
sequences can emerge when such a theory is conjoined with other such
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mathematically endowed theories. The point of the present section is to
establish this claim.

I will treat mathematical instrumentalism in the context of 2-sorted
languages, as described in Section 2. The non-logical vocabulary and the
quantifiers are divided into the non-mathematical (sort-0) sort and the
mathematical (sort-1) sort. The language may either be first or second
order. All definitions in Section 3 remain as stated, but now Ly (the sort-0
vocabulary) encompasses all and only the non-mathematical part of the
language. *(T')’ now represents the result of taking the (semantic) logical
closure of T' and throwing away all sentences containing mathematical
vocabulary.

Various scientific theories may employ somewhat different parts of
mathematics. A given theory might, for example, employ only the axioms
for real numbers together with functions that map parts of the world to
numbers. But since all standard mathematical theories can be constructed
(or emulated) within set theory, it is reasonable to suppose that all of the
mathematics that a scientific theory employs may be subsumed under the
usual set-theoretic definitions (or emulations) of mathematical terms.

If set theory is to be of any use to a scientific theory it will have
to be an applied set theory, a set theory in which there is a set of the
purportedly real things (i.e. urelements). Also, for any description (open
sentence) in the non-mathematical vocabulary there should be a set of
all the (n-tuples of) real things that satisfy it. For definiteness let applied
ZFC (applied ZF with the axiom of choice) be the set theory in which
the mathematics of the sciences is couched. In applied first order ZFC all
instances of the separation and replacement axiom schemata, including
those applied to expressions containing non-mathematical vocabulary, are
axioms. I will use the expression ‘Sf,’ to refer to ZFC applied the sort-
0 vocabulary. In the context of first order scientific theories ‘St,” will
represent first order applied ZFC (see Montague 1965 and Suppes 1960
for the technical details); in the context of second order scientific theories
‘St,” will designate second order applied ZFC (see Montague 1965). Set-
theoretic vocabulary and quantifiers over sets are of sort-1; sort-0 contains
quantifiers over non-sets, second order quantifiers over properties and
relations among non-sets, and all other non-mathematical vocabulary.

In Science Without Numbers Field (1980) proved that the conjunc-
tion of applied set theory (either first or second order) with any non-
mathematical theory (of the same order) yields a semantically conser-
vative extension of the non-mathematical theory. We may state Field’s
Conservativeness theorem for set theory in terms of the 2-sorted language
as follows:
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THEOREM 4 (Conservativeness of Set Theory). (T) U SL, is a conser-
vative Lo-extension of (T).

Here T is either first or second order, and the set theory is of the same
order as T. If T' is non-mathematical, then (T') is just |T'| (the semantic
logical closure of T) and the theorem says that (I'U Sp,,) is a conserva-
tive Lo-extension of T. When T' is a mathematical scientific theory the
Conservativeness theorem does not apply to it directly, but only to its
non-mathematical subtheory (T).

Scientific theories are usually mathematically endowed from incep-
tion. The exercise of first stripping scientific theories of their native
mathematics and then (re)introducing set theory into the remaining non-
mathematical theory may appear to be pointless. So Theorem 4 may seem
to have little or no interesting implications for real scientific theories. But
in Science Without Numbers Field finds significant work for set-theoretic
Conservativeness to do.

Field constructs a reasonably attractive non-mathematical axiomatiza-
tion for a theory N that is intended to capture all of the non-mathematical
consequences of a standard mathematical version of second order New-
tonian gravitation theory, P. In both P and N, as Field expresses them
in (1980), the second order quantifiers range only over arbitrary regions
of space-time. Field then uses the Conservativeness of set theory togeth-
er with a Representation theorem to prove that N does indeed capture
all of the non-mathematical consequences of P, i.e. |[N| = (P). In “On
Conservativeness and Incompleteness” (1989, Ch. 4) Field shows how to
get a similar result for a first order version of mathematical Newtonian
gravitation theory, Py . He constructs a reasonably attractive axioma-
tization for a non-mathematical first order theory Ny, and proves that
|No| = (P5). In a moment we will see how set-theoretic Conservative-
ness theorem and the Representation theorems work together to prove
that N (INy) captures precisely the non-mathematical part of P (Py)-

For my purposes the precise details of Field’s Representation theo-
rems are not important. What is important is that when a representation
theorem of this kind holds, it establishes the following logical relation-
ship, which Tl call ‘Rep’, between a mathematical theory T, and a
non-mathematical theory 7>.

DEFINITION 4 (Representation Condition).

Rep(T) : T) iff (1) T is an Lo-extention of T, and
(2) ‘T1| - |T2 U SL()l'
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In order for Rep(7] : T3) to hold, the first clause of the Representation
Condition requires that every sentence in T} is a non-mathematical logical
consequences of Tj (i.e. |T2| C (T})). The second clause is much more
substantive. It requires that adding applied set theory to 75 yields all of
the consequences of the mathematical version of scientific theory Tj.

For a given pair of theories T} and T3, Rep(T : T») is a very strong
claim. It does not derive from the Conservativeness of set theory, but
(when it holds) must be proved in its own right for individual pairs of
theories. Field’s Representation theorems show that Rep(P : N ) holds
for the second order versions of Newtonian gravitation theory described
above, and that Rep(Fy : Np) holds for the first order version. Thus,
IN| € |P| C INUSL,| and |No| C |Py| € [NoUSp,| (Where ‘St,” rep-
resents applied set theory of the appropriate order for each case). Field’s
Conservativeness theorem for set theory implies that (N U S1,) = |N|
and (No U Sr,) = |Np|. Combining the Representation and Conserva-
tiveness theorems then yields (P) = |N| and (Py) = |[Np| —ie. Pisa
conservative Lg-extension of N, and Fy is a conservative Ly-extension
of N().

The conservative extension results just stated are only of interest
because they show that N and Ny provide attractive axiomatizations of
the non-mathematical parts (P) and (P;) of the mathematical theories P
and Py, respectively. If we simply wanted to find some non-mathematical
theory of which P is a conservative extension, attractive or not, (P) is
always ready to hand, and Field’s result are irrelevant to the issue. For,
it is already perfectly obvious that P is a conservative Lg-extension of
(P). Indeed, in the case of the recursively axiomatizable first order the-
ory Fy , we even know that (Fy") is recursively axiomatizable (without
appeal to Np) via Craig’s theorem. So it seems that the whole point of
Field’s version of mathematical instrumentalism, its only advantage over
the old fashioned kind (e.g. relying on Craig’s theorem) is this: given
an arbitrary scientific theory, T, we generally will not know whether its
non-mathematical subtheory (T') is nicely axiomatizable; but whenever
a nice collection of axioms N conjoined with applied set theory Sy,
reproduces the original theory T, we can infer that the non-mathematical
subtheory of T is nicely axiomatizable by N. Field’s approach, how-
ever, can be enlisted to do much more for the cause of mathematical
instrumentalism than provide a way to prove that some theories are nice
axiomatizations of the non-mathematical parts of others.

Let us put aside the issue of whether the non-instrumental part (T)
of a theory T' has a nice axiomatization, and let’s just consider what the
relation Rep(T : (T')), when it holds, implies about 7. Why should we
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care about whether Rep(T : (T)) holds? After all, T is automatically
a conservative Lo-extension of (T). So what is to be gained when the
Representation Condition holds for 77 To understand the importance of
Rep(T : (T')), suppose that it fails for some theory T Indeed, we need
not look far to find an example of such a theory. Let Pp be the first
order platonistic version of Newtonian gravitation theory P gotten by
replacing each second order axiom of P with an axiom schema (see Field,
1980, Ch. 9; 1989, Ch. 4). Although Field established that Rep(P : N )
holds, Shapiro (1983) proved that Field’s first order version Ny of the
second order non-mathematical Newtonian theory N does not satisfy
Rep(P, : No). And Field (1989, p. 133) observes that a similar argument
shows that there is no “natural” non-mathematical subtheory of Fp for
which a Representation theorem holds. But, what is more important for
our purposes, Rep(Py : (Po)) does not hold either. Applying set theory
to (Py) does not reproduce all of the mathematical-physical implications
of P().

Why does Rep(Py : (Po)) fail? Because the mathematical part of
P, connects up mathematical things with physical things in a way that
implies more about the world than would result from simply applying set
theory to (P,).!! And although this extra connection between the mathe-
matical and the physical does not show up directly in (Po), it can show up
when P, is conjoined with other mathematical theories. Field only regains
a Representation theorem for a weaker version of first order Newtonian
gravitation theory, the theory P; mentioned earlier. Rep(Py : (Fy))
does hold; and (P; ) turns out to be the nicely axiomatizable theory No
mentioned above. (Although F,™ is not as strong as Py, Py is an intu-
itively plausible version of first order Newtonian gravitation theory; it
is precisely the sort of mathematical theory that Burgess (1984) shows
is a conservative extension of a synthetic subtheory.) Thus, although T'
is always an Lg-extension of (T'), the other claim that ‘Rep(T : (T))’
makes about T, that [T} C |(T') U Sg,|, is far from trivial.

The real payoff of Rep(T : (T')), when it holds, is that it establishes
the non-mathematical part of T as sufficiently fleshed out that no extra
connections between the mathematical and the physical are coded into
the formalism of 7. So no excess non-mathematical consequences can
emerge when T is conjoined with other fleshed out theories. The follow-
ing theorem established this claim.

THEOREM 5 (Conservativeness Under Conjunction for Representable
Theories). If Rep(T) : N1) and Rep(T : N,), then Ti UT; is a conser-
vative Lg-extension of N1 U N,.12
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Theorem 5 tells us that the non-mathematical subtheory of the conjunc-
tion of two theories (T7 UT3) has precisely the (semantic) consequences
of the conjunction of each of their non-mathematical parts |N; U N|,
provided only that each respective pair of theories satisfies the Repre-
sentation Condition. Here each N; may be nicely axiomatizable or not.
In any case, Rep(7; : N;) guarantees that |N;| = (T;) (see the first full
paragraph after Definition 4).

Conservation under conjunction, as expressed by Theorem 5, lends
credence to the physicalist contention that the mathematics employed
in science can, and should, function as a mere instrument. Scientif-
ic instrumentalism cannot generally attain a similar conservation under
conjunction result unless the instrumental languages of the theories to
be conjoined share no instrumental vocabulary (and Theorem 3 applies).
Theorem 5 suggests that the physicalist should strive to develop theories
for which the Representation Condition is satisfied. Then she may rest
assured that the theory insinuates no spooky non-physical connection by
which the mathematical realm influences the physical.

Theorem 5 may give some comfort to scientific instrumentalists, too.
The scientific instrumentalist should want to inhibit the generation of
excess non-instrumental consequences when theories are conjoined (since
they are mere artifacts of the particular instruments being combined).
Theorems 3 and 5 together recommend some constraints that will ensure
that excess consequences will not flow from the instrumental parts of
his theories. Suppose two first order theories 77 and 75 each satisfy a
Representation Condition (i.e. Rep(7] : (T1)) and Rep(T% : (T»)) hold).
And suppose that 77 and 73 also have non-mathematical instrumental
terms and quantifiers, but have none in common. Then Theorems 3 and
5 together imply that the conjunction of the two theories will entail only
non-instrumental consequences entailed by the conjunction of their non-
instrumental subtheories.!3> So, when preparing to conjoin theories T}
and 75 for which Rep(T} : (T1)) and Rep(75 : (1)) hold, one may beat
the conjunction problem merely by ensuring that the non-mathematical
parts of the instrumental vocabularies are kept distinct.

6. MATHEMATICAL INSTRUMENTALISM THE CONJUNCTION OBJECTION IN MODAL
METALOGIC

The Conservativeness of set theory (Theorem 4) and Conservativeness
Under Conjunction for Representable Theories (Theorem 5) rely on mod-
el theory for their proofs. The notion of logical consequence they employ
is defined in the usual set-theoretic way in terms of set-theoretic inter-
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pretations of a formal language. So if a mathematical instrumentalist
appeals to these theorems in support of her views, she invokes a theory
of the logical consequence relation that she must ultimately believe to
be untrue. Has the mathematical instrumentalist any reason to believe
metalogical claims, including claims about conservativeness, derived as
they are from set-theoretic semantics?

Field deals with this kind of problem by reformulating metalogic in a
way that does not draw on set theory. Field introduces a modal operator
for logical truth that provides a way to represent the logical consequence
relation without presupposing set theory (see Field, 1989, Ch. 3; 1992).
He then shows how important metalogical results on which a mathemati-
cal instrumentalist would like to draw can be reproduced in the resulting
modal metalogic. In particular, Field represents the Conservativeness of
set theory (Theorem 4) modally. In this section I will show how to
secure a version of the Conservativeness Under Conjunction theorem
(Theorem 5) in modal metalogic.

To capture the notion of logical consequence without appealing to
set theory Field introduces a modal operator ‘C7" for logical necessity
into the object language (either first or second order) in which theories
are expressed, and he sets down axioms for it. These axioms cannot,
of course, be complete; but neither is set theory a complete recursively
axiomatizable theory. The axioms for the logical necessity operator are
those for quantified S-5 together with an anti-essentialist axiom — i.e. an
axiom which implies that each formula OP (where P may have « free)
is logically equivalent to O(z) P. And Field introduces several additional
axioms that are intuitively plausible for logical necessity.

Field (1992) represents the claim that set theory is conservative as
a sentence schema for sentences in the language of modal metalogic.
He labels the schema ‘(C#)’; schema (C$) in the following thesis is
equivalent to (C#) (but adapted to many-sorted logic). I will call the
claim that all instances of (C$) hold ‘Thesis (C$)’. The thesis asserts a
modal version of the Conservativeness of set theory (Theorem 4).14

THESIS (C$) (Modal Version of the Conservativeness of Set Theory).
Let H and A be any sentences of Lo, and let SS be any conjunction of
a finite number of the axioms of the set theory SL,- All instances of the
following schema hold:

(C$) O((SS&H) > A) D O(H D A).

For first order logic Sr,, has an axiom schema, and so an infinite number
of (potential) axioms. ‘SS’ represents any finite conjunction of these
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axioms. For second order logic Sr,, has a finite list of axioms, so we
may simply let S'S be their conjunction.

In order to capture the Conservativeness Under Conjunction theorem
in modal metalogic we must first state modal versions of the notions
conservative Lo-extension and Rep(T) : T5).

DEFINITION 5 (Extensions of Theories in Lg for Modal Metalogic).
(4.1) T\ is a modal Lg-extension of T) iff

(1) T3 is a decidable list of sentences (axioms) in Ly and 7} is a
decidable list of sentences (axioms) in a 2-sorted language that
includes Ly as one sort, and

(2) for each axiom H of T; there is a conjunction K of axioms of
Ty such that O(K D> H).

(4.2) T\ is a modal conservative Ly-extension of T iff

(1) Ty is a modal Ly-extension of 75, and

(2) for all sentences A in Ly and any conjunction K of axioms of
Ty, if O(K D A), then there is a sentence H, a conjunction of
axioms of T, such that O(H D A).

If we are to avoid using set theory in the specification of logic, then
we can no longer think of theories as arbitrary sets of sentences. But
no useful scientific theory will be just an arbitrary set of sentences. We
now may think of theories as specified by some list of axioms. A theory
may have either a finite or a (potentially) infinite list of axioms, perhaps
specified by axiom schemata. At most we need only require that there
is some effective way to decide whether any given sentence is an axiom
of the theory.

Given any two theories T' and N specified in terms of a decidable
list of axioms, the previous definition says that for T to be a modal
conservative Ly-extension of N, each axiom H of N must be necessitated
by some conjunction K of axioms of T' (i.e. O(K D H)), and every L
sentence that is necessitated by a finite conjunction of T”s axioms must
also be necessitated by some finite conjunction of N’s axioms. So, for
any list of axioms N, St + N is a modal conservative Ly-extension of N
(by Thesis (C$)). (When theories 2 and R have infinite lists of axioms
let ‘Q + R’ denote the theory resulting from alternating between their
lists of axioms.)

The modal version of the Representation Condition (Definition 4) runs
as follows:
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DEFINITION 6 (Modal Representation Condition). M-Rep(T : N) iff

(1) T is a modal Lo-extension of N, and

(2) for each axiom K of T there is a sentence H formed from a con-
junction of axioms of N and a conjunction S5’ of axioms of the set
theory S, such that O((SS & H) D K).

If T is an axiomatized first order theory, then clause 1 of the condition
is always satisfied for the N that is the Craigian axiomatization of the
Lo part of T. Even so, clause 2 will not always hold for a Craigian N
(recall the discussion of Py in Section 5).

As with Rep(T} : T) in Section 5, M-Rep(T' : N) makes a sub-
stantive claim. It claims that the mathematical part of 7' does not con-
nect up mathematical things with physical things in a way that implies
more about the world than would result from simply adding set theo-
ry to its non-mathematical subtheory N. When M-Rep(T : N) holds,
the non-mathematical part of T is sufficiently fleshed out that no excess
non-mathematical consequences (due to extra connections between the
mathematical and the physical) can emerge when other mathematical the-
ories are conjoined with 7'. The next theorem establishes this claim.

THEOREM 6 (Modal Version of Conservativeness Under Conjunction).
If M-Rep(T} : Ny) and M-Rep(7 : N,), then Ty + T is a modal con-
servative Lg-extension of N1 + N, B

Thus, when theories satisfy the Modal Representation Condition the
mathematical instrumentalist is entitled to believe that their mathemat-
ical parts are merely instrumental and carry no hidden excess content
about the physical world that may emerge under conjunction with other
(auxiliary) theories.

7. CONCLUSION

Instrumentalism is a view about language, logic, and ontology, but it is
usually motivated by epistemological concerns, by views about how we
assign meanings to words and how we can come to know truths about
the things to which our words refer. The mathematical instrumentalist
need not eschew everything that philosophers have called abstract. He
need not be a nominalist. He may, for instance, hold that there are a host
of natural physical kinds and relations instantiated by physical objects,
and that we refer to them and know truths about them through the causal
influences of their physical instances.
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One reason often cited by mathematical instrumentalists for denying
the existence of pure mathematical objects like sets and numbers is that
mathematical things do not participate in the physical world (whereas
natural kinds do). Mathematical things, if they exist, are not only far
removed from our senses, but, being non-physical, they can have no
causal influence on us. Hence, no physicalist theory of reference can tie
words to set-theoretic objects. And even if sets and numbers exist and
we can somehow refer to them, still they can have no causal influence
on, nor any physical relationship to the physical world. And if no causal
or other physical relationship applies, then the physical world must be
completely autonomous from the mathematical realm,!® so:

(1) there is no way for physical beings like us to come to know anything
about them;

(2) physical theories should be autonomous in principle from mathe-
matical terms — i.e. the non-mathematical parts of a true physical
theory should capture all of its physical content.

And indeed theories are autonomous from mathematics in principle when
the Rep relations hold.

A Representation theorem for a mathematically endowed theory estab-
lishes that the theory satisfies a Rep relation, and this in turn guarantees
that all of its non-mathematical content is explicitly expressed by its non-
mathematical sentences. When the Rep condition holds the mathematics
employed in a theory harbors no excess hidden physical content coded
into the mathematical sentences. One may safely conjoin the mathemati-
cal versions of a pair of theories (when Rep(7] : (T})) and Rep(T5 : (T3))
hold) without fear that unintended, unsupported, excess physical content
will emerge. Thus, the mathematical terms in such theories do indeed
play a purely instrumental role as part of a convenient systematizing
scheme.

If a scientific instrumentalist sincerely maintains that the theoretical
component of a theory is just a useful tool that reflects reality no bet-
ter than observationally equivalent instruments, then she should consider
any excess observational consequences that are produced when theories
are conjoined to be mere artifacts of the instruments she happens to have
at hand. She should give no more credence to these excess observation-
al consequences than to the alternative excess consequences produced
by conjoining different instrumental representations of observationally
equivalent theories. If theoretical expressions in scientific theories are
supposed to be merely instrumental, then it seem reasonable to insist
that they should be as merely instrumental as mathematical expressions
turn out to be when Rep relations holds.
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The argument I have offered for the superiority of mathematical instru-
mentalism over the more usual kind of scientific instrumentalism draws
on semantic logical concepts to make the case. Commenting on Field’s
work in Science Without Numbers, some philosophers (e.g. Shapiro,
1983, 1993; and Hellman, 1989) have called into question the appropri-
ateness of using semantic logical notions to carry out the instrumentalist
project. More generally, these philosophers argue that Field’s approach
fails on the following grounds: (1) the semantic notions of logical conse-
quence and conservativeness are inappropriate for a defense of nominal-
ism; (2) although mathematics is proof-theoretically conservative for first
order logic, it is not so for second order logic; (3) Field’s Representa-
tion theorem for Newtonian gravitation theory holds for the second order
version of the theory, but not for its first order counterpart. Thus, they
conclude, the required proof-theoretic version of set-theoretic Conserva-
tiveness cannot be combined with an appropriate Representation theorem
to support Field’s claim that the mathematical part of the Newtonian the-
ory is purely instrumental. I will briefly address each of these points and
the attendant issue of whether mathematical instrumentalism succeeds in
overcoming the so-called Quine—Putnam indispensability argument — the
argument that scientists should be committed to the existence of mathe-
matical things because mathematics is indispensable to the sciences.

First, I too think that Field’s approach to mathematical instrumen-
talism fails as a convincing defense of nominalism. As 1 see it the
so-called “nominalistic” physics is committed to natural physical kinds
and relations (e.g. is-a-region, has-mass-density-between, is-congruent-
to) whether or not it quantifies over them. But the real worry raised by
those who criticize Field for using semantic notions is not nominalism
per se, but whether a mathematical instrumentalist can use a semantic
notion of logical consequence in making the case that mathematics may
be treated as a fiction. Doesn’t the semantic notion of logical consequence
depend on mathematics (i.e. set theory) for its definition?

Of course, when the logic involved is first order all results in Sec-
tions 4 and 5 can be restated and proved in proof-theoretic terms. But I
think that even the is-provable-from relation does not provide the appro-
priate concept of logical consequence. Deduction would be a mere syn-
tactic game were it not thought to soundly reflect the conception of
logical consequence as the relation of truth preservation.

Although it has become common practice to treat the (semantic) log-
ical consequence relation as defined in terms of set theory, I think this
is a mistake. The set-theoretic “definitions” of logical consequence and
logical consistency serve only to model (i.e. emulate) these notions, not
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ultimately to define them. If set theory provided the fundamental defini-
tions of logical consistency and logical consequence, then to be a logical
consequence of the axioms and definitions of set theory is just to satisfy
the set-theoretic definition of logical consequence. Is the logical rela-
tionship that holds between set-theoretic theorems and the axioms just
an additional relationship between sets? Does the assertion that a set-
theoretic theorem C is a logical consequence of set-theoretic axioms B
amount to the claim that every (set-theoretically defined) model M of
B is a model of C? If so (and if the assertion is true), then presumably
the model-theoretic claim is itself a logical consequence of the axioms
of set theory — i.e. in every model M’ of the axioms of set theory, every
model M of B in the model M’ is a model of C. And presumably this
claim about models of models of set theory is in turn a logical con-
sequence of the set-theoretic axioms. And if this iteration effect for a
set-theoretic “definition” of semantic logical consequence isn’t troubling
enough, there is a related quandary about how the assertion that set the-
ory itself is logically consistent is to be understood? Does it mean that
there is a set-theoretic model of the set-theoretic axioms (a domain con-
taining all sets or all classes)? When we consider the question of whether
the axioms of a set theory are logically consistent, are we simply raising
a question about the truth of a (logically?) stronger set-theoretic claim
about what sets exist, as the set-theoretic “semantic” definition of logical
consistency implies?!’

It seems to me that logical consistency and logical consequence are
Jundamental semantic logical concepts which, rather than presuppose
mathematics, are logically prior to it; mathematics presupposes logic
rather than defines it. Clearly for most purposes the mathematical instru-
mentalist can reason in accord with these logical concepts without any
appeal to truths of model theory. And when required, the mathemati-
cal instrumentalist can also reason about logical concepts without any
appeal to mathematical things. Field shows how in (1989, Ch. 3), where
he represents the logical concepts in terms of modal operators. This pro-
vides the mathematical instrumentalist with a modal version of metalogic,
which I adapted to my purpose in Section 6.

The main philosophical idea behind modal metalogic is that we have
pre-set-theoretic intuitions about the semantic concepts of logical consis-
tency and logical consequence — i.e. logically possible truth and logically
guaranteed truth preservation. For most purposes we need not formalize
these notions, but merely restrict our deductive inferences to obey rules
that accord with them. When it becomes useful to reason about the log-
ical notions we need not move to a “definition” of them in terms of set
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theory. Rather, we may represent them directly in the object language
in terms of modal operators, and write down intuitively plausible truths
about them as axioms for the modal metalogic. From these axioms we
can deduce truths about these logical notions in terms of the modal oper-
ators using intuitively sound inference rules that reflect our concept of
logical consistency and consequence as they apply to the modal sen-
tences themselves. Of course we cannot completely axiomatize modal
metalogic, but we cannot completely axiomatize the set-theoretic notion
of logical consistency either. (And just as some of our intuitions about
the truths of set theory have been subject to revision, so it is conceivable
that some intuitively plausible principles about logical consequence and
logical consistency may need revision.)

The modal versions of the main results, Section 6, establish that
mathematical instrumentalism can overcome the conjunction objection,
and establish this in a manner that does not presuppose the existence
of mathematical things. The mathematical instrumentalist can employ
semantic logical notions to justify the belief that mathematics is merely
instrumental without any reliance on set-theoretic semantics. In light of
the modal approach to metalogic the second objection commonly raised
against mathematical instrumentalism shifts to the issue of whether the
modal semantic conservativeness of set theory is the right kind of con-
servativeness for the purposes of the mathematical instrumentalist. For
first order logic, applied set theory is both modally (semantically) con-
servative and proof-theoretically conservative. Applied set theory adds
neither new consequences to a non-mathematical theory, nor makes addi-
tional consequences provable. Thus, at least for first order theories the
mathematics used by a theory T is indeed dispensable in principle when
M-Rep(T : N) holds for an axiomatized version NV of (T).

The modal semantic conservativeness theorem also holds for second
order logic. It shows that applied set theory adds no new (semantic) logi-
cal consequences to a non-mathematical theory. However, adding applied
set theory can supplement the deductive power of a second order theory
so that consequences that were not provable without the mathematics
become provable with its aid. This might seem like a remarkable gift
_ the same set of logical consequences, and more of them provable —
but this is really no different than introducing additional logically sound
deduction rules to the necessarily incomplete set of rules of a given
deduction system for second order logic.

I think the above considerations show that at least for first order the-
ories, when M-Rep holds for a theory the mathematical instrumentalist
successfully circumvents the Quine-Putnam argument; mathematics may
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be practically indispensible, but is not needed by science in principle. (If
we were cognitively more powerful we might get along quit well with-
out using any mathematics at all with first order theories.) Does modal
semantic conservativeness together with M-Rep (when it holds) suffice
to mitigate the Quine-Putnam argument applied to second order theories?
It seems to me that it does. For, when M-Rep holds for a second order
theory, the theory does not need mathematics in order to say (via logical
consequence) what is true. Rather, the mathematics is only needed to
assist us in computing consequences that the theory already implies. So
(when M-Rep holds) one can believe that the theory is true without being
in any way committed to mathematical things — one can express the the-
ory completely non-mathematically in a way that maintains in tact all of
its semantic logical consequences. And because one knows that using the
syntax of set theory for deducing consequences is (modally) semantically
conservative, one is free to employ mathematics for deduction, knowing
full well that whatever one deduces was already a consequence of the
theory that one believes. The use of mathematics commits one to no
more than the existence of a (modal) sematically conservative syntactic
device.

Finally, as to the issue of whether the appropriate Representation
theorems hold — for the second order mathematical version of Newtonian
gravitation theory P and Field’s non-mathematical version of it N, M-
Rep(P : N) holds, so there is no problem. (Notice, too, that since I
am not defending nominalism, the second order version of N, which
only quantifies over regions, should be unobjectionable.) Regarding the
first order versions of Newtonian gravitation theory — the mathematical
version Py is too strong for Rep(Fy : (Fp)) to hold; but the weaker
formulation of Fy that Field calls Py has much to recommend it over
Py (recall the discussion in Section 5 above). Field argues persuasively
in (1989, Ch. 4) that P, is all of Newtonian gravitation theory that a
scientist should want. For one thing, Py is a very plausible rendition of
a first order scientific theory, as evidenced by the fact that it is precisely
the kind of mathematical scientific theory suggested independently by
Burgess (1984). Furthermore, the theory F; appears to capture all but
extremely arcane consequences of Py. Py lacks only those physical
consequences of Py that derive from the way in which Py connects up
physical things to arcane properties of the real numbers, mathematical
properties that are provable in full first order set theory but not provable
in the first order theory of collections of quadruples of real numbers
(see Field 1989, Ch. 4). In addition, M-Rep(PO" : Np) holds for the
nicely axiomatizable first order version Ny of Field’s non-mathematical
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second order theory N. Thus, the physicalist should have no qualms
about choosing P, over P as a first order rendition of his mathematical
physics.

There is of course no guarantee in advance that for each of our best
true scientific theories T', there will be a non-mathematical theory 7" such
that M-Rep(T : T") holds. Physicalism is a contingent thesis. Although
the physicalist believes that for true physical theories the M-Rep relation
will indeed hold, he should always be willing to back this belief regarding
a given, well supported scientific theory with a clear statement of a non-
mathematical version of the theory, and with a Representation theorem.
If we should ever become convinced that some mathematically endowed
scientific theory T is wholly true but that no Representation result holds
for T, then I think we may indeed have good reason to believe in the
existence of mathematical things, and to believe that the world is not
entirely physical after all.!8

NOTES

! The physicalist might also entertain the prospect of defining away the theory’s math-
ematical vocabulary in terms for just physical things and properties. But this logicist
strategy has little chance of succeeding for our best current scientific theories.

2 1 will provide a proof of this claim in Section 4.

3 1 will use the term ‘mathematical theory’ as shorthand for ‘mathematically endowed
scientific theory’; when referring to a theory of pure mathematics I'll say ‘pure mathe-
matical theory’.

4 Logicians sometimes employ the term ‘extension’ in a syntactic, proof-theoretic way.
That is, T’ is a syntactic extension of T just in case every sentence deducible from T is
deducible from T" (in some specified deduction system). In this paper a semantic reading
of the term ‘extension’ will be more useful: 7" is a (semantic) extension of T just in
case every (semantic) logical consequence of T is a logical consequence of T'. (Boolos
and Jeffrey, 1989, pp. 105-107, 174, 243-244 employ only the semantic reading.) Terms
like ‘logical consequence’ and ‘extension’ will always have the semantic sense in this
paper.

5 The reader should not construe my defense of mathematical instrumentalism as a
defense of nominalism. There is enough that is mysterious about mathematical things (e.g.
how can they possibly influence the physical?) to warrant reservations about their reality
without calling into question the reality of natural physical properties. So, although I will
draw heavily on formal results Field proves in Science without Numbers — where Field
employs this work in defense of nominalism — I will only address the more moderate
position that mathematics is instrumental. Indeed, Field emphasizes the defense of math-
ematical instrumentalism and de-emphasizes nominalism in his (1989). I will discuss this
issue a bit more fully toward the end of the paper.

5 Field (1980, 1989) discusses mathematical instrumentalism in terms of both proof-
theoretic and semantic notions. Some philosophers have argued that Field’s use of the
semantic notions of logical consequence and conservativeness are inappropriate for a
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defense of mathematical instrumentalism. I ask the reader to suspend judgement about
such issues until after the formal results have been presented. I will discuss these issues
in the concluding section of the paper.

7 Proof. Suppose T} is non-trivially instrumental and that (T}) is incomplete. Suppose
for every finite 7% consistent with both 7y and T3, (T3 U T3) =~ (T1 U T3). Clearly
(T3) = (Th) (i.e. let T» be a tautology). So to prove T3 =~ T} we only need show that
any consequence C; of T not in (T}) is in |73, and any consequence C3 of T3 not in
(T3> is in IT]I.

Let C| be a consequence of T} not in (T}), and let O be a sentence of Ly with neither
O nor ~ O in (T}}. Neither (C1 D> O) nor (Ct D~ O)isin|T}|. But (TYU{(C\ > O)})
contains O; (T, U {(C\ D~ O)}) contains ~ O. So, (T3 U {(C\ > O)}) contains O;
(T3 U {(C1 D~ O)}) contains ~ O. Then T3 entails both ({(C; D O) D O) and
((C1 D~ 0) D~ 0). Thus, T3 entails C|.

Let C; be a consequence of T3 not in (T3). The previous argument establishes that
there is such a C3, namely Cj; so T3 is non-trivially instrumental. Since (T3) = (T1), (T3)
must be incomplete too. An argument just like the preceding one (with the subscripts ‘1’
and ‘3’ switched) establishes that T entails Cj3.

% Just substitute ‘(T1)’ for ‘T3’ in Theorem 2.

® Proof. First, a careful examination of a proof of the Craig Interpolation Theorem
(see, e.g., Boolos and Jeffrey, 1989, Ch. 23) shows that it applies to the logic of many-
sorted languages specified in Section 2. That is, if A and C are sentences of an n-sorted
language in which sorts don’t overlap, and A logically entails C, then there is a sentence
B containing only individual constants, function and predicate symbols shared by A and
C, and containing only quantifiers of the sorts shared by A and C, such that A logically
entails B and B logically entails C.

Now assume that L7, NLt, C Ly and let O be a sentence in (T1UT3); we show that
O is in |{(T1) U (T3)| as follows. O is of sort-0 and is logically entailed by T} U7%. From
the compactness of first order logic it follows that there are a pair of sentences C; and
C, entailed by T} and T3, respectively, such that (C1&C,) logically entails O. Then C;
entails (Cy D O). So there is a sort-0 sentence P entailed by C) and entailing (C; D O)
(since the latter sentences have only Ly vocabulary and quantifiers in common). But then
C, must entail (P D O). Thus, P is in (T1), and (P > O) is in (T2). So, O is in the
logical closure of (T) U (T3); this establishes that (T U T3) C |(T1) U (T3)|. Clearly
[{Th) U {T2)| C {T1 U T3) holds, since (T}) and (T») are each entailed by (T1 U T3).

Y Since (T3 UTh) = {T3) U (T)| = |(T) U(T3)| = (T UTh).

! What Py has that (P))US1,, lacks is the mereological completeness schema that Field
calls (Cp): for any non-empty ser of entities (e.g. of space-time regions) there is an entity
u that is their mereological sum. The weaker theory P, only implies the schema (Cy): if
(3x)Fz, then there is an entity u that is the mereological sum of the entities y such that
Fy (formula F and variables x and y are in Ly). Indeed, |Fy] C [{P; ) U Sz, U (Cp)).
See (Field 1989, Ch. 4) for details.

2 Proof. Suppose Rep(Ti : N1) and Rep(T: : N»). (|Ni| U |N2|) C (|Ti| U |T2|) €
(|N1 U SL()[ U [Nz U SL()') C |(N1 U Nz) u SL0|; S0 |N1 W] Nz] - (Tl UTz) C ((N1 U
N2) U SL,). And (N1 U N2) U Sp, is a conservative Ly-extension of (N} U N,), so
{(N1UN2)U SL,) = |Ni U Na|. Thus, [Ny UN;| = (Th UT).

'3 Notice that the ‘Ly’ in Theorem 3 represents just the non-instrumental part of the
vocabulary; the ‘Lq’ of Theorem 5 may be taken to represent the Ly of Theorem 3 tak-
en together with all of the non-mathematical instrumental vocabulary. Each of the two
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theories 7} and 7T should properly be 3-sorted, each with a distinct non-mathematical
instrumental component. When the theories are combined the entire language becomes
4-sorted: sort-0 is their common non-instrumental language, sort-4 is their common math-
ematical vocabulary, and sort-1 and sort-2 are the non-mathematical instrumental vocab-
ularies unique to 7} and T3, respectively.

14 Thesis (C#) is labeled as a ‘thesis’ rather than a ‘theorem’ because although (C#)
may be derived from intuitively plausible axioms for the modal logic of logical necessity,
(C#) may itself be used as an axiom for this logic (and one of the other axioms can then
be derived). See Field (1992).

15 Proof. Suppose M-Rep(7} : Ni) and M-Rep(Tz : N2). Ti and T3 are modal Lo-
extension of N, and N, respectively. So for any axiom H of N + N, there is a
conjunction K of axioms of T\ + T such that (K O H). Thus, T1 + T is a modal Ly-
extension of Ni+ N,. Now let A be in Ly, and K and K> be finite conjunctions of axioms
from T} and T3, respectively. Suppose O((K1&K2) D A). Then [LI(K) D (K2 D A)).
M-Rep(T; : N1) implies that, for a conjunction Hy of axioms of N and a conjunction
SS of axioms of Sr,, O((SS&H) D K); then O((SS&H:) D (K2 D A)); so
O(K; > ((SS&H)) D A)). M-Rep(T> : N,) implies that, for a conjunction H,
of axioms of N and a conjunction SS’ of axioms of Sr,, O((SS'&H;) D K3); so
O((SS'&H2) D ((SS&H,) D A)). Thus, ((SS&SS")&(H1&H:)) D A). Therefore,
O((H & H>) D A) (by (C$)), where (H&H,) is a conjunction of axioms of Ny+Na.

16 See Benacerraf (1973) and Field (1989, 18-30) for arguments of this sort.

17 See Field’s discussion in (1989, pp. 30-38 and Ch. 3). Field claims that the logical
consequence relation is neither a proof-theoretic nor a semantic notion, but rather is a
primitive logical notion. By calling it a primitive Field means that logical consequence
does not get its meaning from a definition. I agree, but I still consider logical consequence
to be a semantic notion (like truth and reference). Set-theoretic “semantics” only emulates
genuine semantic concepts.

1% 1 am greatful to Chris Swoyer, Hartry Field, and an anonymous referee for insightful
comments and suggestions.
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