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1. Introduction 

 In a penetrating investigation of the relationship between belief and quantitative degrees of 

confidence (or degrees of belief) Richard Foley (1992) suggests the following thesis: 

... it is epistemically rational for us to believe a proposition just in case it is 

epistemically rational for us to have a sufficiently high degree of confidence in it, 

sufficiently high to make our attitude towards it one of belief. 

Foley goes on to suggest that rational belief may be just rational degree of confidence above 

some threshold level that the agent deems sufficient for belief. He finds hints of this view in 

Locke’s discussion of probability and degrees of assent, so he calls it the Lockean Thesis.
1
  

 The Lockean Thesis has important implications for the logic of belief. Most prominently, it 

implies that even a logically ideal agent whose degrees of confidence satisfy the axioms of 

probability theory may quite rationally believe each of a large body of propositions that are 

jointly inconsistent. For example, an agent may legitimately believe that on each given occasion 

her well-maintained car will start, but nevertheless believe that she will eventually encounter a 

                                                 

1
 Foley cites Locke’s An Essay Concerning Human Understanding, (1975), Book IV, Chapters 

xv and xvi. Foley discusses the thesis further in his (1993). 
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dead battery.
2
 Some epistemologists have strongly resisted the idea that such beliefs can be 

jointly rationally coherent. They maintain that rationality, as a normative standard, demands 

consistency among all of the agent’s beliefs – that upon finding such an inconsistency, the 

rational agent must modify her beliefs. The advocates of consistent belief allow that a real agent 

may legitimately fall short of such an ideal, but the legitimacy of this short-fall is only 

sanctioned, they maintain, by the mitigating circumstance of her limited cognitive abilities – in 

particular by an her lack of the kind of logical omniscience one would need in order to compute 

enough of the logical consequences of believed propositions to uncover the inconsistencies. But 

if the Lockean Thesis is right, the logic of belief itself permits a certain degree of inconsistency 

across the range of an agent’s beliefs, even for idealized, logically omniscient agents.
3
 

                                                 

2
 This is an instance of the preface paradox. In (Hawthorne and Bovens, 1999) we explored 

implications of the Lockean Thesis for the preface and lottery paradoxes in some detail. I’ll more 

fully articulate the logic underlying some of the main ideas of the earlier paper, but my treatment 

here will be self-contained. 

3
 Closely related is the issue of whether knowledge should be subject to logical closure – i.e. 

whether a rational agent is committed to knowing those propositions he recognizes to be 

logically entailed by the other propositions he claims to know. (See John Hawthorne’s (2004) for 

an insightful treatment of this matter.) This issue is, however, somewhat distinct from the issue 

of whether an agent may legitimately maintain inconsistent collections of beliefs. For, knowledge 

requires more than rational belief – e.g. it requires truth. So one might well maintain that 

everything an agent claims to know should be jointly consistent (if not, then closure must be 

rejected!), and yet hold that an agent may legitimately believe each of some jointly inconsistent 
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 So we are faced with two competing paradigms concerning the nature of rational belief. I 

don’t intend to directly engage this controversy here.
4
 My purpose, rather, is to spell out a 

qualitative logic of belief that I think provides a more compelling model of coherent belief than 

the quantitative logic based on probabilistic degrees of confidence. I’ll show that this qualitative 

logic fits the Lockean Thesis extremely well. More specifically, this logic will draw on two 

qualitative doxastic primitives: the relation of comparative confidence (i.e. the agent is at least as 

confident that A as that B) and a predicate for belief (i.e. the agent believes that A). It turns out 

that this qualitative model of belief and confidence shares many of the benefits associated with 

the probabilistic model of degrees of confidence. For, given any such comparative confidence 

relation and associated belief predicate, there will be a probability function and associated 

threshold that models them in such a way that belief satisfies the Lockean Thesis. 

 

2. The Ideal Agents and the Qualitative Lockean Thesis 

 The Lockean Thesis is clearly not intended as a description of how real human agents form 

beliefs. For one thing, real agents don’t often assign numerical degrees of confidence to 

propositions. And even when they do, their probabilistic confidence levels may fail to 

consistently link up with belief in the way the Lockean Thesis recommends. Indeed, real agents 

                                                                                                                                                             

collection of propositions that he doesn’t claim to know. 

4
 I recommend David Christensen’s (2004) excellent treatment of these issues. Whereas 

Christensen draws on the logic of numerical probabilities in developing his view, I’ll show how 

to get much the same logic of belief from a more natural (but related) logical base. So the present 

paper might be read as offering a friendly amendment to Christensen’s account.  
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are naturally pretty bad at probabilistic reasoning – they often fail miserably at even simple 

deductive reasoning. So clearly the Lockean Thesis is intended as an idealized model of belief, a 

kind of normative model, somewhat on a par with the (competing) normative model according to 

which an agent is supposed to maintain logically consistent beliefs. But even as a normative 

model, the Lockean Thesis may seem rather problematic, because the model of probabilistic 

coherence it depends on seems like quite a stretch for real agents to even approximate. For, 

although we seldom measure our doxastic attitudes in probabilistic degrees, the Lockean Thesis 

seems to insist that rationality requires us to attempt to do so – to assign propositions weights 

consistent with the axioms of probability theory. Such a norm seems much too demanding as a 

guide to rationality? 

 To see the point more clearly, think about the alternative logical consistency norm. It’s 

proponents describe an ideally rational agent as maintaining a logically consistent bundle of 

beliefs. Here the ideal agent is a component of the normative model that real agents are supposed 

to attempt to emulate, to the best of their abilities, to the extent that it is practical to do so. They 

are supposed to follow the normative ideal by being on guard against inconsistencies that may 

arise among their beliefs, revising beliefs as needed to better approximate the ideal. If instead we 

take probabilistic coherence as a normative model, how is the analogous account supposed to go? 

Perhaps something like this: Real agents should try to emulate the ideal agent of the model (to 

the best of their abilities) by attempting to assign probabilistically coherent numerical weights to 

propositions; they should then believe just those propositions that fall above some numerical 

threshold for belief appropriate to the context, and should revise probabilistic weights and beliefs 

as needed to better approximate the ideal. 

 The problem is that this kind of account of how probabilistic coherence should function as a 
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normative guide seems pretty far-fetched as a guide for real human agents. It would have them 

try to emulate the normative standard by actually constructing numerical probability measures of 

their belief strengths as a matter of course. Real agents seldom do anything like this. Perhaps 

there are good reasons why they should try.
5
 But a more natural model of confidence and belief 

might carry more authority as a normative ideal. 

 As an alternative to the quantitative model of coherent belief, I will spell out a more 

compelling qualitative logic of belief and confidence. I’ll then show that probabilistic measures 

of confidence lie just below the surface of this qualitative logic. Thus, we may accrue many of 

the benefits of the probabilistic model without the constant commitment to the arduous task of 

assigning numerical weights to propositions. 

 A very natural qualitative version of the Lockean Thesis will better fit the qualitative doxastic 

logic I’ll be investigating. Here it is: 

                                                 

5
 There are, of course, arguments to the contrary. Dutch book arguments attempt to show that if 

an agent’s levels of confidence cannot be numerically modeled in accord with the usual 

probabilistic axioms, she will be open to accepting bets that are sure to result in net losses. And 

the friends of rational choice theory argue that an agent’s preferences can be rationally coherent 

only if his levels of confidence may be represented by a probability function. The import of such 

arguments is somewhat controversial (though I find the depragmatized versions in Joyce (1999) 

and Christensen (2004) pretty compelling). In any case, the present paper will offer a separate 

(but somewhat related) depragmatized way to the existence of an underlying probabilistic 

representation. So let’s put the usual arguments for probabilistic coherence aside. 
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Qualitative Lockean Thesis: An agent is epistemically warranted in believing a 

proposition just in case she is epistemically warranted in having a sufficiently high grade 

of confidence in it, sufficiently high to make her attitude towards it one of belief. 

 This qualitative version of the thesis draws on the natural fact that we believe some claims 

more strongly than others – that our confidence in claims comes in relative strengths or grades, 

even when it is not measured in numerical degrees. For instance, an agent may (warrantedly) 

believe that F without being certain that F. Certainty is a higher grade of confidence than mere 

belief. Also, an agent may believe both F and G, but be more confident that F than that G. Belief 

and confidence may be graded in this way without being measured on a numerical scale. 

 I will describe a logic for ‘α believes that B’ and for ‘α is at least as confident that B as that 

C ’ (i.e. ‘α believes B at least as strongly as C ’) that ties the belief predicate and the confidence 

relation together by way of this Qualitative Lockean Thesis. In particular, I will show how two 

specific rules of this logic tie belief to confidence in a way that is intimately connected to the 

preface and lottery paradoxes. It will turn out that any confidence relation and associated belief 

predicate that satisfies the rules of this logic can be modeled by a probability function together 

with a numerical threshold level for belief – where the threshold level depends quite explicitly on 

how the qualitative logic treats cases that have the logical structure of preface and lottery 

paradoxes.
6
 In effect what I’ll show is that probability supplies a kind of formal representation 

that models the qualitative logic of belief and confidence. The qualitative semantic rules for the 

logic of belief and confidence turn out to be sound and complete with respect to this probabilistic 

                                                 

6
 Henry Kyburg first discussed the lottery paradox in his (Kyburg, 1961). Also see Kyburg’s 

(1970). The preface paradox originates with David Makinson (1965). 
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model theory. 

 How good might this qualitative account of belief and confidence be at replacing the onerous 

requirements of probabilistic coherence? Let’s step through the account of what the normative 

ideal recommends for real agents one more time, applying it to the qualitative model. The idea 

goes like this: Real agents should try to emulate the ideal agents of the model (to the best of their 

abilities) by being on guard against incoherent comparative confidence rankings (e.g. against 

being simultaneously more confident that A than that B and more confident that B than that A), 

and against related incoherent beliefs (e.g. against believing both A and not-A); and they should 

revise their beliefs and comparative confidence rankings as needed to better approximate this 

ideal. The plausibility of this kind of account will, of course, largely depend on how reasonable 

the proposed coherence constraints on confidence and belief turn out to be. To the extent that this 

account succeeds, it inherits whatever benefits derive from the usual probabilistic model of 

doxastic coherence, while avoiding much of the baggage that attends the numerical precision of 

the probabilistic model. Thus, it should provide a much more compelling normative model of 

qualitative confidence and belief. 

 

3. The Logic of Comparative Confidence 

 Let’s formally represent an agent α’s comparative confidence relation among propositions (at 

a given moment) by a binary relation ‘≥α’ between statements.
7
 Intuitively ‘A ≥α B’ may be read 

                                                 

7
 The syntax of the logic I’ll be describing employs sentences which, for a given assignment of 

meanings, become statements that express propositions, as is usual in a formal logic. So from 

this point on I’ll speak in terms of sentences and statements. On this usage, to say that an agent 
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in any one of several ways: ‘α is at least as confident that A as that B’, or ‘α believes A at least as 

strongly as she believes B’, or ‘A is at least as plausible for α as is B’. For the sake of 

definiteness I will generally employ the first of these readings, but you may choose your favorite 

comparative doxastic notion of this sort. The following formal treatment of ≥α should fit any such 

reading equally well. Furthermore, I invite you to read ‘A ≥α B’ as saying “α is warranted in 

being at least as confident that A as that B” (or “α is justified in believing A as strongly as B), if 

you take that to be the better way of understanding of the important doxastic notion whose logic 

needs to be articulated. 

 One comment about the qualifying term ‘warranted’ (or ‘justified’) in the context of the 

discussion of confidence and belief. I am about to specify logical rules for ‘≥α’ (and later for 

‘believes that’) – e.g., one such rule will specify that ‘is at least as confident as’ should be 

transitive: if A ≥α B and B ≥α C, then A ≥α C. Read without the qualifying term ‘warranted’, this 

rule says, “if α is at least as confident that A as that B, and α is at least as confident that B as that 

C, then α is at least as confident that A as that C.” Read this way, α is clearly supposed to be a 

logically ideal agent. In that case you may, if you wish, presume that the ideal agent is warranted 

in all of her comparative confidence assessments and beliefs. Then, to the extent that the logic is 

compelling, real agents are supposed to attempt to live up to this logical ideal as best they can. 

Alternatively, if you want to think of α as a realistic agent, the qualifier ‘warranted’ may be 

employed throughout, and takes on the extra duty of indicating a logical norm for real agents. For 

example, the transitivity rule is then read this way: “if α is warranted in being at least as 

confident that A as that B, and α is warranted in being at least as confident that B as that C, then 

                                                                                                                                                             

believes statement S just means that she believes the proposition expressed by statement S. 
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α is warranted in being at least as confident that A as that C.” In any case, for simplicity I’ll 

usually suppress ‘warranted’ in the following discussion. But feel free to read it in throughout, if 

you find the norms on these doxastic notions to be more plausible when expressed that way. 

 In this section I will specify the logic of the confidence relation. Closely associated with it is 

the certainty predicate ‘Certα[A]’ (read “α is certain that A”). Certainty is easily definable from 

comparative confidence. To be certain that A is to be at least as confident that A as that a simple 

tautology of form ‘(A∨¬A)’ holds – i.e., by definition, ‘Certα[A]’ will just mean ‘A ≥α (A∨¬A)’.  

For now we stick strictly to confidence and certainty. We will pick up belief in a later section. 

3.1 The Rudimentary Confidence Relations 

 To see that we can spell out the logic of belief and confidence in a completely rigorous way, 

let’s define confidence relations as semantic relations between object language sentences of a 

language L for predicate logic with identity. A weaker language would do – e.g. a language for 

propositional logic. But then you might wonder whether for some reason the following approach 

wouldn’t work for a stronger language. So, for the sake of definiteness, I’ll directly employ the 

stronger language. Indeed, the logic of belief and confidence presented here should work just fine 

for any object language together with it’s associated logic – e.g. for your favorite modal logic. 

Furthermore, I appeal to a formal language only because it helps provide a well understood 

formal model of the main idea. The object language could just as well be a natural language, 

provided that the notion of deductive logical entailment is well defined there. 

 So, a confidence relation ≥α is a semantic relation between sentences of a language. The 

following semantic rules (or axioms) seem to fit the intuitive reading of this notion quite well. 

Definition 1: Rudimentary Confidence Relations: Given a language L for predicate logic 

with identity, the rudimentary confidence relations on L are just those relations ≥α that satisfy 
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the following rules (where ‘|= A’ say that A is a logical truth of L): 

First, define ‘Certα[A]’ (read ‘α is (warranted in being) certain that A’) as A ≥α (A∨¬A); 

 For all sentences A, B, C, D, of L, 

1.  it’s never the case that ¬(A∨¬A) ≥α (A∨¬A)    (nontriviality); 

2. B ≥α ¬(A∨¬A)            (minimality); 

3.  A ≥α A               (reflexivity); 

4.  if A ≥α B and B ≥α C, then A ≥α C        (transitivity); 

5.1  if Certα[C≡D] and A ≥α C, then A ≥α D      (right equivalence); 

5.2  if Certα[C≡D] and C ≥α B, then D ≥α B      (left equivalence); 

6.1  if for some E, Certα[¬(A·E)], Certα[¬(B·E)], and 

  (A∨E) ≥α (B∨E), then A ≥α B         (subtractivity); 

6.2  if A ≥α B, then for all G such that  

  Certα[¬(A·G)] and Certα[¬(B·G)], (A∨G) ≥α (B∨G)  (additivity); 

7.  if |= A, then Certα[A]           (tautological certainty). 

Also, define ‘A ≈α B’ (read “α is equally confident in A and B”) as ‘A ≥α B and B ≥α A’; 

define ‘A >α B’ (read “α is more confident in A than in B”),  as ‘A ≥α B and not B ≥α A’; 

and define A ~α B (read “α’s comparative confidence that A as compared to B is 

indeterminate”), as ‘not A ≥α B and not B ≥α A’. 

These rules are a weakened version of the axioms for qualitative probability (sometimes called 

comparative probability).
8
 From these axioms together with some definitions one can prove a 

                                                 

8
 For a standard treatment of the qualitative probability relations see (Savage, 1972). The axioms 
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number of intuitively plausible things about comparative confidence. For example, the following 

relationships follow immediately from the definitions together with transitivity and reflexivity 

(but draw on none of the other rules): (i) for any two statements, either A >α B or B >α A or A ≈α 

B or A ~α B; (ii) A ≥α B just in case either A >α B or A ≈α B; (iii) ‘>α’ is transitive and 

asymmetric, and ‘≈α’ is an equivalence relation (i.e. transitive, symmetric, and reflexive); (iv) 

whenever two statements are considered equally plausible by α (i.e. whenever A ≈α B) they share 

precisely the same confidence relations (≥α , >α , ≈α, and ~α) to all other statements. The following 

claims are also easily derived
9
: (v) if Certα[A], then, for all B, A ≥α B ≥α ¬A and (B·A) ≈α B ≈α 

(B∨¬A); (vi) if Certα[B⊃A], then A ≥α B; (vii) if A ≥α B then ¬B ≥α ¬A. 

 Let’s look briefly at each rule for the rudimentary confidence relations to see how plausible it 

is as a constraint on comparative confidence – i.e., to see how well it fits our intuitions about 

comparative confidence. Rules 1 and 2 are obvious constraints on the notion of comparative 

                                                                                                                                                             

given here are weaker in that they only require confidence relations to be partial preorders (i.e. 

reflexive and transitive), whereas such relations are usually specified to be total preorders (i.e. 

complete and transitive). Also, the present axioms have been adapted to apply to sentences of a 

language, whereas Savage’s version applies to sets of states or sets of possible worlds. Although 

that approach is formally somewhat simpler, it tends to hide important philosophical issues, such 

as the issue of the logical omniscience of the agent. Notice that our approach only draws on the 

notion of logical truth in rule 7. The other rules are quite independent of this notion. This will 

permit us to more easily contemplate how the rules may apply to logically more realistic agents.    

9
 The derivations of these draw on rule 7 only to get certainty for some very simple tautologies – 

e.g. |= A ≡ ((A·B)∨(A·¬B)), and |= ¬((A·B)·(A·¬B)). 
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confidence. Rule 2, minimality, just says that every statement B should garner at least as much 

confidence as a simple contradiction of form ¬(A∨¬A). The agent should have no confidence at 

all in such simple contradictions – they lay at the bottom of the confidence ordering. Given the 

definition of ‘>α’, rule (1), nontriviality, taken together with minimality is equivalent to 

‘(A∨¬A) >α ¬(A∨¬A)’, which says that the agent is (warranted in being) more confident in any 

simple tautology of form (A∨¬A) than in the simple contradiction gotten by taking its negation. 

If this rule failed, the agent’s “confidence ordering” would indeed be trivial. Indeed, given the 

remaining rules, the agent would be equally confident in every statement.
10

 

 Rule 3, reflexivity, merely requires that the agent find each statement to be at least as 

plausible as itself. This should be uncontroversial. 

 Rule 4, transitivity, is more interesting, but should not really be controversial. It says that 

whenever α is (warranted in being) at least as confident that A as that B, and is (warranted in 

being) at least as confident that B as that C, then α is (warranted in being) at least as confident 

that A as that C. This rule seems unassailable as a principle of comparative confidence. Ideal 

agents follow it, and it seems perfectly reasonable to expect real agents to try to conform to it. 

 All of the rules up to this point should be uncontroversial. Indeed, of all the rules for the 

rudimentary confidence relations, I only expect there to be any significant concern over 

tautological certainty (rule 7), which seems to require a kind of logical omniscience. We’ll get to 

that. But none of the rules described thus far require anything we wouldn’t naturally expect of 

real rational agents.  

                                                 

10
 Because, if ¬(A∨¬A) ≥α (A∨¬A), from certainty in some very simple tautologies it follows 

that for each B and C, B ≥α ¬(A∨¬A) ≥α (A∨¬A) ≥α C; thus B ≥α C, and similarly C ≥α B.  
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 The usual axioms for qualitative probability are stronger than the rules presented here. In 

place of reflexivity, the usual axiom include an axiom of complete comparison, which says that 

for any pair of sentences A and B, the agent is either at least as confident that A as that B, or she 

is at least as confident that B as that A: 

  3*.  A ≥α B or B ≥α A (completeness, a.k.a. totality or comparability). 

Completeness says that the agent can make a determinate confidence comparison between any 

two statements. This rule is rather controversial, so I’ve not made it a necessary constraint on the 

rudimentary confidence relations. However, I will argue in a bit that the rudimentary confidence 

relations should always be extendable to confidence relations that satisfy completeness. More 

about this later. 

 Notice that completeness would supersede reflexivity, since completeness implies ‘A ≥α A or 

A ≥α A’ – i.e. A ≥α A. When any binary relation is both reflexive and transitive it is called a 

preorder (alternatively, a quasi-order). Adding completeness to transitivity yields a total 

preorder.
11

 Where completeness is present, the relationship of confidence ambiguity, ‘A ~α B’, 

                                                 

11
 Terminology about order relations can be confusing because usage is not uniform. By a 

‘(weak) preorder’ I mean a reflexive and transitive relation. The term ‘weak partial order’ is often 

used this way too, but is also often used to mean a reflexive, transitive, and antisymmetric 

relation. (Antisymmetry says, ‘if A ≥ B and B ≥ A, then A = B’, where ‘=’ is the identity relation, 

not just the equivalence we’ve denoted by ‘≈’.) Applied to statements, antisymmetry would be 

too strong. It would mean that whenever α is equally confidence that A as that B (i.e. whenever A 

≈α B), A and B must be the same statement, or at least be logically equivalent statements. The 

term ‘(weak) total preorder’ means a preorder that also satisfies completeness. The term ‘weak 
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will be vacuous; there is never ambiguity in confidence comparisons between two statements. I’ll 

discuss completeness more a bit later. For now, suffice it to say that the rudimentary confidence 

relations are not required to satisfy it. 

 Rules 5, substitutivity of equivalences (left and right), make good sense. The two parts 

together say that whenever an agent is certain that statements X and Y are materially equivalent 

(i.e. certain that they agree in truth value), then all of her comparative confidence judgments 

involving Y should agree with those involving X. 

 The two rules 6 taken together say that incompatible disjuncts (added or subtracted) should 

make no difference to the comparative confidence in statements. To see the idea behind rule 6.1, 

subtractivity, consider a case where the agent is certain that some statement E is incompatible 

with each of two statements A and B. (There will always be such an E – e.g. the simple 

contradiction (C·¬C).) If the agent is at least as confident that (A∨E) as that (B∨E), then 

intuitively, she should be at least as confident that A as that B. The removal of the “disjunctively 

tacked on” incompatible claim E should have no effect on the agent’s comparative confidence 

with respect to A and B. 

 Furthermore, whenever the agent considers a statement G to be incompatible with the truth of 

A and with the truth of B, her relative confidence in the disjunctions, (A∨G) as compared to 

(B∨G), should agree with her relative confidence in A as compared to B. Only the agent’s 

confidence in A as compared to B should matter. Disjunctively tacking on the incompatible claim 

G should have no influence on her assessment. This is just what rule 6.2, additivity, says. Both 

                                                                                                                                                             

order’ is often used this way too, but is also often used to mean that the relation is antisymmetric 

as well. (The weak/strict distinction picks out the difference between ≥ and >.) 
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subtractivity and additivity are substantive rules. But both are completely reasonable constraints 

on an agent’s comparative confidence assessments. 

 I’ll soon suggest two additional rules that I think a more complete account of the notion of 

comparative confidence should satisfy. But all of the rules for the rudimentary relations appear to 

be sound, reasonable constraints on comparative confidence. I think that rule 7, tautological 

certainty, is the only constraint stated so far that should raise any controversy. It says that if a 

sentence is logically true, the ideal agent will be certain that it’s true – i.e. as confident in it as in 

a simple tautology of form ‘(A∨¬A)’. It thereby recommends that when a real agent attempts to 

assess her comparative confidence in some given pair of statements, she should (to the extent that 

it’s practical for her to do so) seek to discover whether they are logically true, and should become 

certain of those she discovers to be so. The ideal agent always succeeds, and the real agent is 

supposed to attempt it, to the extent that it’s practical to do so. Put this way the rule sounds pretty 

innocuous. Rules of this kind are common in epistemic and doxastic logics. How problematic is 

it as component of a normative guide? 

 First let’s be clear that failure to be sufficiently logically talented does not, on this account, 

warrant calling the real agent irrational – it only implies that she is less than ideally rational. But 

some will argue that this ideal is too far beyond our real abilities to count as an appropriate 

doxastic norm. Let’s pause to think a bit more about this, and about the kind of norm we are 

trying to explicate. 

 Notice that we might easily replace rule 7 by a weaker version. We might, for example, 

characterize a broader class of confidence relations by reading ‘|= A’ as ‘A is a logical truth of 

the sentential logic of L’. In that case the agent need not be certain of even the simplest predicate 

logic tautologies. However, even the computation of propositional logic tautologies is in general 
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NP hard, and so in many cases outstrips the practical abilities of real agents. Perhaps a better 

alternative would be to only require certainty for some easily computable class of logical truths – 

e.g., read ‘|= A’ as “A is a logical truth computable via a truth tree consisting of no more than 16 

branches”; or perhaps read it as “the number of computation steps needed to determine the 

logical truth of A is bounded by a (specified) polynomial of the number of terms in A”. Some 

such weaker rule, which together with the other rules characterizes a broader class of rudimentary 

confidence relations, might well provide a more realistic normative constrain on the comparative 

confidence assessments of real agents. 

 The full development of a less demanding doxastic logic that better fits the abilities of real 

agents would certainly be welcomed. But even if/when we have such a logic available, the more 

demanding ideal we are exploring here will continue to have an important normative role to play. 

To see the point imagine that such a real-agent-friendly logic of confidence and belief has been 

worked out, and consider some collection Γ of confidence relationships (between statements) or 

beliefs that this logic endorses as rationally coherent for real agents.
12

 Wouldn’t we still want to 

know whether the realistic coherence of Γ arises only because of the limited logical abilities of 

the agents we are modeling? Wouldn’t we want to know whether a somewhat more demanding 

real-agent logic, suited to somewhat more logically adept agents, would pronounce a different 

verdict on the coherence of Γ, perhaps assessing this collection as rationally incoherently for the 

                                                 

12
 Suppose, for example, that this logic endorses as rationally coherent, beliefs like those that 

take the form of the preface-paradox – where an agent believes each of a number of claims, S1 

through Sn (e.g. where Si says that page i of her book is free of error) and she also believes 

¬(S1·...·Sn) (e.g. that not all pages of her n page book are error free). 
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more adept? That is, wouldn’t we still want to know whether the assessment of Γ as coherent 

results only from the limited deductive abilities of real agents, or whether such confidence 

relations and beliefs would continue to count as jointly coherent, regardless of limitations? Only 

a normative ideal that doesn’t model deductive-logical limitations can answer these questions.
13

 

 There will always be some cognitive differences among real people. Some will be more 

logically adept than others, and the more adept reasoners should count as better reasoners for it. 

And it seems unlikely that there is a plausible way to draw a firm line to indicate where “good 

enough reasoning” ends. That is, it seems doubtful that we can develop a logic of real reasoning 

that would warrant the following kind of claim: “Reasoning that reaches the logical depth 

articulated by this logic is as good as we can plausibly want a real reasoner to be, and any actual 

agent who recognizes more logical truths than that will just not count as any better at 

maintaining belief coherence.” The point is that no matter how successful a real-agent logic is at 

describing plausible norms, if the norm falls short of tautological certainty, there may always be 

some agents who exceed the norm to some extent, and they should count as better for it. Thus, 

although the ideal of tautological certainty may be an unattainable standard for a real agent, it 

nevertheless provides a kind of least upper bound on classes of rationally coherent comparative 

confidence relations. 

 It turns out that any relation that satisfies rules 1-7 behaves a lot like comparisons of 

probabilistic degrees of confidence. That is, each of these relations is probabilistically sound in 

the following sense: 

                                                 

13
 Indeed, later we will see that the logic we are investigating here, ideal as it is, affirms the 

rational coherence of preface-like and lottery-like beliefs, even for logically ideal agents. 
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Given any probability function Pγ (that satisfies the usual probability axioms),
14

 the relation 

≥γ defined as “A ≥γ B just when Pγ[A] ≥ Pγ[B]” satisfies rules 1-7. 

Thus, if an agent were to have a probabilistic confidence function that provides a numerical 

measure of her degree of confidence in various statements, this function would automatically 

give rise to a rudimentary confidence relation for her. However, some confidence relations that 

satisfy 1-7 cannot be represented by any probability function – i.e. rules 1-7 are not 

probabilistically complete. Two additional rules will place enough of a restriction on the 

rudimentary confidence relations to close this gap. 

3.2 The Completed Confidence Relations 

 Rudimentary confidence relations allow for the possibility that an agent cannot determine a 

definite confidence comparison between some pairs of statements. When this happens, the 

confidence relation is incomplete – i.e. for some A and B, neither A >α B, nor A ≈α B, nor B >α 

A. Real agents may well be unable to assess their comparative confidence in some pairs of 

statements. Nevertheless, there is a perfectly legitimate role for completeness
15

 to play as a 

normative guide. I’ll argue that a reasonable additional constraint on comparative confidence is 

this: an agents comparative confidence relation should in principle be consistently extendable to 

a relation that compares all statements. For, if no such consistent extension is even possible, then 

the agent’s definite confidence relationships must be implicitly incoherent.  

                                                 

14
 Here are the usual axioms for probabilities on sentences of a formal language L. For all R and 

S: (i) P[S] ≥ 0; (ii) if |= S, then P[S] = 1; (iii) if |= ¬(R·S), then P[R∨S] = P[R] + P[S]. 

15
 This notion of completeness should not be confused with the notion of probabilistic 

completeness for a confidence relation described at the end of the previous subsection.  
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 To see this, suppose that A ~α B, and suppose that no extension of her definite confidence 

relations (>α and ≈α) to any definite relationship between A and B would yield a confidence 

relation consistent with rules 1-7. That means that her definite confidence relationships imply on 

their own (from rules 1-7) that A ~α B must hold – because no definite confidence relationship 

between A and B is coherently possible, given her other definite confidence relationships. The 

agent maintains coherence only by refusing to commit to a definite relationship between A and 

B. Thus, in such a case, the agent’s inability to assess a determinate confidence relationship 

between A and B is not merely a matter of it “being a hard case”. Rather, her refusal to make an 

assessment is forced upon her. It is her only way to stave off explicit incoherence among her 

other determinate comparative confidence assessments. This seems a really poor reason for an 

agent to maintain indeterminateness. Rather, we should recommend that when a real agent 

discovers such implicit incoherence, she should revise her confidence relation to eliminate it. Her 

revised confidence relation might well leave the relationship between A and B indeterminate – 

but this should no longer be due to the incoherence of the possibility of placing a definite 

confidence relationship between them. 

 Thus, insofar as the rules for the rudimentary confidence relations seem reasonable as a 

normative standard, it also makes good sense to add the normative condition that a coherent 

rudimentary confidence relation should be extendable to a complete rudimentary confidence 

relation, a relation that satisfies rule 3*. (I’ll show how to handle this formally in a moment.) 

There will often be lots of possible ways to extend a given vague or indeterminate confidence 

relation, many different ways to fill in the gaps. I am not claiming that the agent should be 

willing to embrace some particular such extension of her confidence relation, but only that some 

such extension should be consistent with the confidence orderings she does have. 
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  Let’s now restrict the class of rudimentary confidence relations to those that satisfy an 

additional two-part rule that draws on completeablity together with one additional condition. The 

most efficient way to introduce this additional rule is to first state it as part of a definition. 

Definition 2: Properly Extendable Rudimentary Confidence Relations: Let us say that a 

rudimentary confidence relation ≥α on language L is properly extendable just in case there is 

a rudimentary confidence relation ≥β on some language L
+
 an extension of L that agrees with 

the determinate part of ≥α (i.e., whenever A ≈α B, A ≈β B; and whenever A >α B, A >β B) on 

the shared language L, and also satisfies the following rule for all sentences of L
+
: 

 (X) (i) (completeness): either A ≥β B or B ≥β A; and 

(ii) (separating equiplausible partitions): If A >β B, then, for some integer n, there 

are n sentences S1, ..., Sn that β takes to be mutually incompatible (i.e., 

Certβ[¬(Si · Sj)] for i ≠ j), and jointly exhaustive (i.e., Certβ[S1 ∨...∨ Sn]) and 

in all of which β is equally confident (i.e. Si ≈β Sj for each i, j), such that for 

each of them, Sk, A >β (B∨Sk). 

(Any set of sentences {S1, ..., Sn} such that Certβ[¬(Si · Sj)] and Certβ[S1 ∨...∨ Sn] is 

called an n-ary equiplausible partition for β.) 

The ‘X’ here stands for ‘eXtendable’. The idea is that when a confidence relation is rationally 

coherent, there should in principle be some complete extension that includes partitions of the 

“space of possibilities”, where the parts of the partition Sk are, in β’s estimation, equally 

plausible, but where there are so many alternatives that β can have very little confidence in any 

one of them. Indeed, for any statement A in which β has more confidence than another statement 

B, there is some large enough such partition that her confidence in each partition statement must 

be so trifling that she remains more confident in A than she is in the disjunction of any one of 
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them with B. (This implies that the partition is fine-grained enough that at least one disjunction 

B∨Sk must separate A from B in that A >β (B∨Sk) >β B.)  

 More concretely, consider some particular pair of statements A and B, where β is more 

confident that A than that B, and where ≥β is a complete rudimentary confidence relation. 

Suppose there is a fair lottery consisting of a very large number of tickets, n, and let ‘Si’ say that 

ticket i will win. Further suppose that with regard to this lottery, β is certain of its fairness (i.e. Si 

≈β Sj for every pair of tickets i and j), she is certain that no two tickets can win, and she is certain 

that at least one will win. Then rule X will be satisfied for the statements A and B provided that 

the lottery consists of so many tickets (i.e. n is so large) that β remains more confident in A than 

in the disjunction of B any one claim Si asserting that a specific ticket will win. To satisfy rule X 

we need only suppose that for each pair of sentences A and B such that A >β B, there is such a 

lottery, or that there is some similar partition into extremely implausible possibilities (e.g. let 

each Si describe one of the n = 2
m

 possible sequences of heads and tails in an extremely long 

sequence of tosses of a fair coin). 

 That explains rule X. But what if there are no such lotteries, nor any similar large 

equiplausible partitions for an agent to draw on in order to satisfy rule X? I have yet to explain 

the notion of being properly extendable, and that notion is designed to deal with this problem. 

According to the definition, the agent β who possesses a “properly extended” confidence relation 

has a rich enough collection of equiplausible partitions at hand to satisfy rule X for all sentences 

A and B. But in general an agent α may not be so fortunate. For example, α may not think that 

there are any such lotteries, or any such events that can play the role of the needed partitions of 

her “confidence space”. Nevertheless, α’s comparative confidence relation will have much the 

same structure as β’s, provided that α’s confidence relation could be gotten by starting with β’s, 
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and then throwing away all of those partitions that aren’t available to α (e.g. because the relevant 

statements about them are not expressed in α’s language). In that case, although α herself doesn’t 

satisfy rule X, her confidence relation is properly extendable to a relation that does.
16

 Indeed, 

when ≥α is properly extendable, there will usually be many possible ways (many possible βs) that 

extend α’s confidence relation so as to satisfy rule X. 

                                                 

16
 To put it another way, α may think that there are no fair lotteries (or similar chance events) 

anywhere on earth. Thus, rule X does not apply to her directly. But suppose that α’s language 

could in principle be extended so that it contains additional statements that describe some new 

possible chance events (they needn’t be real or actual) not previously contemplated by α, and not 

previously expressible by α’s language. (Perhaps in order to describe these events α would have 

to be in some new referential relationship she is not presently in. E.g. suppose there is some 

newly discovered, just named star, Zeta-prime, and suppose someone suggests that a culture on 

one of its planets runs lotteries of the appropriate kind, the “Zeta-prime lotteries”.) Now, for α’s 

confidence relation to be properly extendable, it only need be logically possible that some 

(perhaps extremely foolish) agent β, who agrees with α as far as α’s language goes, satisfies rule 

X by employing the newly expressible statements. Notice that we do not require α herself to be 

willing to extend her own confidence relation so as to satisfy rule X. E.g., when α’s language is 

extended to describe these new (possible) lotteries, α herself might extend her own confidence 

relation to express certainty that the suggested lotteries don’t really exist (or she may think they 

exist, but take them to be biased). How α would extend her own confidence relation is not in any 

way at issue. All that matters for our purposes is that her confidence relation could in principle 

coherently (with rules 1-7) be extended to satisfy rule X for some logically possible agent β. 
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 Now we are ready to supplement rules 1-7 with this additional rule. Here is how to do that: 

Definition 3: Confidence Relations: Given a language L for predicate logic, the (fully 

refined) confidence relations ≥α on L are just the rudimentary confidence relations (those that 

satisfy rules 1-7) that are also properly extendable. 

To recap, rule X is satisfied by a relation ≥α provided it can be extended to a complete relation ≥β 

on a language that describes, for example, enough fair single-winner lotteries that whenever 

A >β B, there is some lottery with so many tickets that disjoining with B any claim Si that says 

“ticket i will win” leaves A >β (B∨Si). 

 Every probabilistic degree of confidence function behaves like a (fully refined) confidence 

relation – i.e. the rules for confidence relations are probabilistically sound in the following sense: 

Theorem 1: Probabilistic Soundness of the confidence relations: Let Pα be any probability 

function (that satisfies the usual axioms). Define a relation ≥α as follows: A ≥α B just 

when Pα[A] ≥ Pα[B]. Then ≥α satisfies rules 1-7 and is properly extendable to a relation 

that also satisfies rule X. 

Conversely, every confidence relation can be modeled or represented by a probabilistic degree of 

confidence function: 

Theorem 2: Probabilistic Representation of the confidence relations: For each relation ≥α 

that satisfies rules 1-7 and is properly extendable, there is a probability function Pα that 

models ≥α as follows:  

(1) if Pα[A] > Pα[B], then A >α B or A ~α B;  

(2) if Pα[A] = Pα[B], then A ≈α B or A ~α B.  

Furthermore, if ≥α itself satisfies rule X (rather than merely being properly extendable to 

a rule X satisfier), then Pα is unique and Pα[A] ≥ Pα[B] if and only if  A ≥α B. 
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Notice that, taken together, (1) and (2) imply the following:  

(3) if A >α B, then Pα[A] > Pα[B];  

(4) if A ≈α B, then Pα[A] = Pα[B].  

And this further implies that 

(5) if A ~α B, then for each C and D such that C >α A >α D and C >α B >α D,  

both Pα[C] > Pα[A] > Pα[D] and Pα[C] > Pα[B] > Pα[D]. 

That is, whenever A ~α B, the representing probabilities must either be equal, or lie relatively 

close together – i.e. both lie below the smallest representing probability for any statement C in 

which α is determinately more confident (i.e. such that both C >α A and C >α B) and both lie 

above the largest representing probability for any statement D in which α is determinately less 

confident (i.e. such that both A >α D and B >α D). 

 Thus, probabilistic degree of confidence functions simply provide a way of modeling 

qualitative confidence relations on a convenient numerical scale. The probabilistic model will not 

usually be unique. There may be lots of ways to model a given confidence relation 

probabilistically. However, in the presence of equiplausible partitions, the amount of wiggle 

room decreases, and disappears altogether for those confidence relations that themselves satisfy 

the conditions of rule X. 

*** 

 The probabilistic model of a refined confidence relation will not usually be unique. There 

will usually be lots of ways to model a given confidence relation probabilistically – because there 

will usually be lots of ways to extend a given confidence relation to a complete-equiplausibly-

partitioned relation. So in general each comparative confidence relation is represented by a set of 

representing probability functions. 
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 A common objection to “probabilism” (the view that belief-strengths should be 

probabilistically coherent) is that the probabilistic model is overly precise, even as a model of 

ideally rational agents. Proponents of probabilism often respond by suggesting that, to the extent 

that vagueness in belief strength is reasonable, it may be represented by sets of degree-of-belief 

functions that cover the reasonable range of numerical imprecision. Critics reply that this move is 

(at best) highly questionable – it gets the cart before the horse. Probabilism first represents agents 

as having overly precise belief strengths, and then tries to back off of this defect by taking the 

agent to actually be a whole chorus of overly precise agents. 

 “Qualitative probabilism” not only side-steps this apparent difficulty -- it entirely resolves (or 

dissolves) this issue. In the first place, qualitative probabilism doesn’t suppose that the agent has 

numerical degrees of belief – it doesn’t even suppose that the agent can determine definite 

confidence-comparisons between all pairs of statements. Secondly, the Representation 

Theorem(s) show how confidence relations give rise to sets of degree-of-belief functions that 

reflect whatever imprecision is already in the ideal agent’s confidence relation. We may model 

the agent with any one of these (overly precise) functions, keeping in mind that the quantitative 

function is only one of a number of equally good numerical representations. So, for qualitative 

probabilism, the appeal to sets of representing probability functions is a natural consequence of 

the incompleteness (or indeterminateness) of the ideal agent’s relative confidence relation – 

rather than a desperate move to add indefiniteness back into a model that was overly precise from 

the start. 

 

4. The Integration of Confidence and Belief 

Now let’s introduce the notion of belief and tie it to the confidence relation in accord with the 
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Qualitative Lockean Thesis. I’ll represent belief as a semantic predicate, Belα[S], that intuitively 

says, “α believes that S”, or “α is warranted in believing that S”.  

 Clearly whenever α is certain of a claim, she should also believe it. Thus, the following rule: 

 (8) If Certα[A] then Belα[A]     (certainty-implies-belief). 

 Now, the obvious way to tie belief to confidence in accord with the Lockean Thesis is to 

introduce the following rule: 

 (9) If A ≥α B and Belα[B], then Belα[A]  (basic confidence-belief relation). 

This rule guarantees that there is a confidence relation threshold for belief. For, given any 

statement that α believes, whenever α is at least as confident in another statement R as she is in 

that believed statement, she must believe (or be warranted in believing) R as well. And given any 

statement that α fails to believe, whenever α is at least as confident in it as she is in another 

statement S, she must fail to believe S as well.
17

 

 Taking into account the probabilistic modelability of the confidence relations, guaranteed by 

Theorem 2, rule (9) also implies that the quantitative version of the Lockean Thesis is satisfied. 

That is, for each confidence relation ≥α and associated belief predicate Belα (satisfying rules (8) 

and (9)), there is at least one probability function Pα and at least one threshold level q such that 

one of the following conditions is satisfied: 

                                                 

17
 However, this does not imply that there must be a “threshold statement”. Their may well be an 

infinite sequence of statements with descending confidence levels for α, R1 >α R2 >α ... >α Rn > 

..., all of which α believes. And there could also be another infinite sequence of statements with 

ascending confidence levels for α, S1 <α S2 <α ... <α Sn, ..., all of which α fails to believe. (I.e., for 

countable sets of sentences there need be no greatest lower bound or least upper bound sentence.) 
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(i) for any sentence S, Belα[S] just in case Pα[S] ≥ q, or 

(ii) for any sentence S, Belα[S] just in case Pα[S] > q.
18

 

Furthermore, if the confidence relation ≥α itself satisfies rule X, then Pα and q must be unique. 

4.1 The Preface and the n-Bounded Belief Logics 

 We are not yet done with articulating the logic of belief. The present rules don’t require the 

belief threshold to be at any specific level. They don’t even imply that the probabilistic threshold 

q that models belief for a given confidence relation has to be above 1/2; q may even be 0, and 

every statement may be believed. So to characterize the logic of belief above some reasonable 

level of confidence, we’ll need additional rules. I’ll first describe these rules formally, and then 

I’ll explain them more intuitively in terms of how they capture features of the preface paradox. 

 The following rule seems reasonable: 

(1/2): if Certα[A∨B], then not Belα[¬A] or not Belα[¬B]). 

That is, if the agent is certain of a disjunction of two statements, then she may believe the 

negation of at most one of the disjuncts.  

 There are several things worth mentioning about this rule. First, in the case where B just is A, 

the rule says that if the agent is certain of A, then she cannot believe ¬A. Second, taking B to be 

¬A, the rule implies that the agent cannot believe both a statement and its negation. Furthermore, 

the (1/2) rule is probabilistically sound: for any probability function Pα and any specific threshold 

value q > 1/2, the corresponding confidence relation ≥α and belief predicate Belα, defined as ‘A 

                                                 

18
 The sequence of probabilities associated with the sequence of statements in the previous note, 

P[R1] > P[R2] > ... >α P[Rn] > ..., is bounded below (by 0 at least), so has a greatest lower bound, 

call it q. 
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≥α B iff Pα[A] ≥ Pα[B], and Belα[C] iff Pα[C] ≥ q > 1/2’, satisfies all of the previous rules, 

including the (1/2) rule. 

 Now consider a rule that is somewhat stronger than the (1/2) rule: 

(2/3): if Certα[A∨B∨C], then not Belα[¬A] or not Belα[¬B] or not Belα[¬C]). 

According to this rule, if the agent is certain of a disjunction of three statements, then she may 

believe the negations of at most two of the disjuncts. But this rule doesn’t bar her from believing 

the negations of each of a larger number of claims for which the disjunction is certain. Notice 

that the (1/2) rule is a special case of the (2/3) rule – the case where C just is B. So the (2/3) rule 

implies the (1/2) rule. Also, in the case where C is ¬(A∨B), Certα[A∨B∨C] must hold because 

(A∨B∨C) is a tautology. In that case the (2/3) rule says that the agent must fail to believe one of 

the claims ¬A or ¬B or (A∨B) (i.e. ¬¬(A∨B)). Furthermore, the (2/3) rule is probabilistically 

sound: for any probability function Pα and any specific threshold value q > 2/3, the corresponding 

confidence relation ≥α and belief predicate Belα, defined as ‘A ≥α B iff Pα[A] ≥ Pα[B], and 

Belα[C] iff Pα[C] ≥ q > 2/3’, satisfies all the previous rules together with the (2/3) rule. 

 More generally, consider the following ((n-1)/n) rule for any fixed n ≥ 2: 

((n-1)/n): if Certα[A1∨...∨An], then not Belα[¬A1] or ... or not Belα[¬An]). 

According to this rule, if the agent is certain of a disjunction of n statements, then she may 

believe the negations of at most n-1 of the disjuncts. But this rule doesn’t bar her from believing 

each of a larger number of statements for which the disjunction is certain. Notice that for any m < 

n, the ((m-1)/m) rule is a special case of the ((n-1)/n) rule. So the ((n-1)/n) rule implies all 

((m-1)/m) rules for n > m ≥ 2. Furthermore, the ((n-1)/n) rule is probabilistically sound in that, 

given any probability function Pα and any specific threshold value q > (n-1)/n, the corresponding 
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confidence relation ≥α and belief predicate Belα, defined as ‘A ≥α B iff Pα[A] ≥ Pα[B], and 

Belα[C] iff Pα[C] ≥ q > (n-1)/n’, satisfies all of the previous rules together with the ((n-1)/n) rule. 

 Let’s say that any confidence relation ≥α together with the associated belief predicate Belα 

that satisfy rules 1-9 and the ((n-1)/n) rule (for a given value of n) satisfies an n-bounded belief 

logic. Clearly the n-bounded belief logics form a nested hierarchy; each confidence-belief pair 

that satisfies an n-bounded logic satisfies all m-bounded logics for all m < n. Whenever an agent 

whose confidence-belief pair satisfies an n-bounded logic is certain of a disjunction of n 

statements, she may believe the negations of at most n-1 of the disjuncts. However it remains 

possible for such agents to believe the negations of each of a larger number of statements and yet 

be certain of their disjunction. The preface “paradox” illustrates this aspect of an n-bounded 

logic quite well. 

 Suppose that an agent writes a book consisting of k-1 pages. When the book is completed, 

she has checked each page, and believes it to be error free. Let Ei say there is an error on page i. 

Then we may represent the agent’s doxastic state about her book as follows: Belα[¬E1], ..., 

Belα[¬Ek-1]. On the other hand, given the length of the book and the difficulty of the subject, the 

agent also believes that there is an error on at least one page: Belα[E1∨...∨Ek-1]. (And she may 

well say in the preface of her book that there is bound to be an error somewhere – thus the name 

of this paradox.) 

 One might think that such a collection of beliefs is incoherent on its face – that real agents 

maintain such collections of beliefs only because real agents fall short of logical omniscience. 

Indeed, if an agent is warranted in believing the conjunction of any two beliefs, and if she holds 

preface-like beliefs, as just described, then she must also be warranted in believing a pretty 

simple logical contradiction. For, she is warranted in believing (¬E1·¬E2), and then warranted in 
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believing (¬E1·¬E2·¬E3), and then ..., and then warranted in believing (¬E1·¬E2·...·¬Ek-1), and 

then warranted in believing (¬E1·¬E2·...·¬En-1·(E1∨E2∨ ...∨Ek-1)). So, if the correct logic of belief 

warrants belief in the conjunction of beliefs, and if believing simple contradictions is a doxastic 

failure of the agent, then preface-like beliefs can only be due to an agent’s logical fallibility, her 

inability to see that her beliefs imply that she should believe a contradiction, which should in turn 

force her to give up at least one of those beliefs. 

 The confidence-belief logic I’ve been articulating puts the preface paradox in a different 

light. If belief behaves like certainty, like probability 1, then the conjunction rule for beliefs 

should indeed hold. However, the confidence-belief logic we’ve been investigating permits belief 

to behave like probability above a threshold q < 1. It allows that the agent may well believe two 

statements without believing their conjunction, just as happens with probabilities, where it may 

well be that Pα[A] ≥ q and Pα[B] ≥ q while Pα[A·B] < q. Similarly, according to the confidence-

belief logic, the agent is not required to believe the conjunction of individual beliefs. So the kind 

of doxastic state associated with the preface “paradox” is permissible. However, there are still 

important constraints on such collections of beliefs. The ((n-1)/n) rule is one such constraint. 

 It will turn out that the confidence-belief logic is probabilistically modelable – that for each 

confidence-belief pair, there is a probability function and a threshold level that models it. Given 

that fact, it should be no surprise that the confidence-belief logic behaves like probability-above-

a-threshold with regard to conjunctions of beliefs. For, whenever a confidence-belief pair is 

modelable by a probability function Pα at a threshold level q, if q > (n-1)/n, then the ((n-1)/n) rule 

must hold.
19

 

                                                 

19
 To see this, let [≥α, Belα] be a belief-confidence pair that is probabilistically modelable at some 
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 To see what this means for the logic of belief, suppose, for example, that the agent’s 

confidence-belief pair behaves like probability with a belief bound q just a bit over 9/10. Then 

she must satisfy the (9/10) rule: 

(9/10): if Certα[A1∨...∨A10], then not (Belα[¬A1] and ... and Belα[¬A10]) 

She is certain of tautologies, so in the preface paradox case we’ve been discussing for any k page 

book, Certα[E1∨...∨Ek∨ ¬(E1∨...∨Ek)] always holds. Now, according to the (9/10) rule, if the 

number of pages in her book is k ≤ 9, she cannot be in the doxastic state associated with the 

preface paradox – i.e. she cannot (Belα[¬E1] and Belα[¬E2] and ... and Belα[¬E9] and 

Belα[E1∨...∨E9]).
20

 However, provided that her book contains k > 9 pages, the 10-bounded logic 

of confidence-belief pairs (associated with the (9/10) rule) permits her to be in a doxastic state 

like that of the preface paradox – she may Belα[¬E1] and Belα[¬E2] and ... and Belα[¬E9] and 

                                                                                                                                                             

threshold level q > (n-1)/n. So, Belα[A] holds just when Pα[A] ≥ q; and A ≥α B just when Pα[A] ≥ 

Pα[B]. Suppose that Certα[A1∨...∨An]. We show that not Belα[¬Ai] for at least one of the Ai. 

Certα[A1∨...∨An] implies that Pα[A1∨...∨An] = 1 (since Certα[A] holds just when A ≥α (A∨¬A)). 

Thus, 1 = Pα[A1∨...∨An] ≤ Pα[A1] +...+ Pα[An] = (1- Pα[¬An]) +...+ (1 - Pα[¬An]) = n - (Pα[¬A1] 

+...+Pα[¬An]). So Pα[¬A1] +...+Pα[¬An] ≤ (n - 1). Now, if for each Ai, Pα[¬Ai] ≥ q > (n-1)/n, 

then we would have n-1 = n·((n-1)/n) < n·q ≤ Pα[¬A1] +...+Pα[¬An] ≤ (n-1) – contradiction! 

Thus, Pα[¬Ai] < q for at least one of the Ai – i.e. not Belα[¬Ai] for at least one of the Ai. This 

establishes the probabilistic soundness of rule ((n-1)/n) for all thresholds q > n-1/n. 

20
 Here E1 through E9 are A1 through A9, respectively, of the (9/10) rule. And in this example A10 

of the (9/10) rule corresponds to ¬(E1∨...∨E9). 
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Belα[E1∨...∨E9]. But, of course, the logic doesn’t require her to be in such a state. 

 More generally, any given n-bounded logic permits its confidence-belief pairs to satisfy each 

of {Certα[A1∨...∨Ak], Belα[¬A1], ..., Belα[¬Ak]} (for some agents α and statements Ai) when k > 

n, but absolutely forbids this (for all agents α and statements Ai) when k ≤ n. This behavior is 

characteristic of any confidence-belief logic that arises from a probability function with a belief 

bound just above (n-1)/n. 

4.2 The Lottery and the (n+1)*-Bounded Belief Logics 

 The rules described thus far characterize lower bounds, (n-1)/n, on the confidence threshold 

required for belief. A further hierarchy of rules characterizes upper bounds on the belief 

modeling confidence thresholds. I’ll first describe these rules formally, and then explain them 

more intuitively in terms of how they capture features of a version of the lottery paradox. 

 Consider the following rule: 

(2/3)*: if Certα[¬(A·B)] and Certα[¬(A·C)] and Certα[¬(B·C)], then Belα[¬A] or 

Belα[¬B] or Belα[¬C]. 

This rule says that if the agent is certain that no two of the three statements A, B, and C is true, 

then she should also believe the negation of at least one of them. This rule is probabilistically 

sound in that, given any probability function Pα and any specific threshold value q ≤ 2/3, the 

corresponding confidence relation ≥α and belief predicate Belα, defined as ‘A ≥α B iff Pα[A] ≥ 

Pα[B], and Belα[C] iff Pα[C] ≥ q, where q ≤ 2/3’, satisfies all of the previous rules together with 

the (2/3) rule. If the agent’s threshold for belief is no higher than 2/3, then she has to believe that 

at least one of a mutually exclusive triple is false.
21

 

                                                 

21
 For, suppose Pα models the [≥α, Belα] pair with a threshold for belief q ≤ 2/3. For mutually 
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 More generally, consider the following (n/(n+1))* rule for any fixed n ≥ 2: 

(n/(n+1))*: for any n+1 sentences S1, ..., Sn+1, if for pairs (i ≠ j), Certα[¬(Si·Sj)], then 

Belα[¬S1] or Belα[¬S2] or ... or Belα[¬Sn+1]. 

This rule is probabilistically sound in that, given any probability function Pα and any specific 

threshold value q ≤ n/(n+1), the corresponding confidence relation ≥α and belief predicate Belα, 

defined as ‘A ≥α B iff Pα[A] ≥ Pα[B], and Belα[C] iff Pα[C] ≥ q, where q ≤ n/(n+1)’, satisfies all 

of the previous rules together with the (n/(n+1)) rule.
22

 

 According to this rule, if the agent is certain that at most one of the n+1 statements is true, 

then she must believe the negation of at least one of them. But notice that when the (n/(n+1))* 

rule holds for a confidence-belief pair, the agent is permitted to withhold belief for the negations 

of fewer than n+1 mutually exclusive statements. The rule only comes into play when collections 

of n+1 or more mutually exclusive statements are concerned – and then it requires belief for the 

negation of at least one of them. 

 Let’s say that any confidence relation ≥α together with associated belief predicate Belα that 

satisfies rules 1-7 and the (n/(n+1))* rule (for a given value of n) satisfies an (n+1)*-bounded 

                                                                                                                                                             

exclusive A, B, and C we have 1 ≥ Pα[A∨B∨C] = Pα[A] + Pα[B] + Pα[C] = (1-Pα[¬A]) + (1-

Pα[¬B]) + (1-Pα[¬C]) = 3 - (Pα[¬A] + Pα[¬B] + Pα[¬C]), which entails that Pα[¬A] + Pα[¬B] + 

Pα[¬C] ≥ 2. So at least one of Pα[¬A], Pα[¬B], or Pα[¬C] must be at least as great as 2/3 ≥ q 

(since if each of these three probabilities is less than 2/3, their sum must be less than 2); so at 

least one of ¬A, ¬B, and ¬C must be believed. 

22
  A probabilistic argument similar to that in the previous note shows the soundness of this rule. 
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belief logic. A version of the lottery “paradox” illustrates the central features of an (n+1)*-

bounded logic quite well. 

 Lotteries come in a variety of forms. Some are designed to guarantee at least one winner. 

Some are designed to permit at most one winner. And, of course, some lotteries have both 

features. Lotteries are usually designed to give each ticket the same chance of winning. But for 

the purposes of illustrating the (n/(n+1))* rule we need not suppose this. Indeed, for our purposes 

we need only consider lotteries that are exclusive – where no two tickets can win. I’ll call such 

lotteries ‘exclusive lotteries’. (These lotteries may also guarantee at least one winner – but for our 

purposes we need not assume that they do). 

 Let ‘Wi’ stand for the statement that ticket i will win, and suppose an agent α is certain that 

no two tickets can win this particular lottery – i.e. for each pair, i ≠ j, Certα[¬(Wi·Wj)]. Let’s say 

that α is in an m-ticket optimistic state just in case: 

for some collection of at least m tickets (which may be arbitrarily labeled as 

‘ticket 1’, ..., ‘ticket m’), α deems it genuinely possible that W1 (i.e. not 

Belα[¬W1]), and ..., and α deems it genuinely possible that Wm (i.e. not 

Belα[¬Wm]). 

Consider an agent α whose confidence relation and belief predicate is modeled by a probability 

function with an explicit threshold value q for belief. Suppose q = .99. It is easy to see how α 

might come to be in an m-ticket optimistic state if the exclusive lottery has relatively few tickets. 

For instance, in a lottery with three tickets, she might believe that ticket A has a .40 chance of 

winning, that ticket B has a .30 chance of winning, and that ticket C has a .20 chance of winning, 

leaving a .10 chance that none of the tickets will win. Then, for any given ticket i, α does not 

believe that ticket i will not win, since, for each i, her degree of confidence in ¬Wi is smaller 
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than q = .99. Hence, she is in a 3-ticket optimistic state with respect to the 3-ticket lottery. 

However, for larger and larger lotteries exclusivity will force her to assign lower and lower 

degrees of confidence to at least some of the Wi. For a sufficiently large lottery, a lottery of 100 

or more tickets, her degree of confidence in ¬Wi must come to exceed q = .99 for at least one 

ticket i. Thus, she must believe ¬Wi for at least one ticket i. (If, in addition, she is equally 

confident regarding the possibility of each ticket winning – i.e. if Wi ≈α Wj for each i and j – then 

she must believe of each ticket that it will not win.) 

 The point is that when the quantitative Lockean Thesis holds for α at a threshold level q (or 

higher) for belief, then the following rule is sound for any value of m ≥ 1/(1-q): 

(n/(n+1))*:  if for each i ≠ j, Certα[¬(Wi · Wj)], then Belα[¬W1] or ... or Belα[¬Wm]. 

This is just the (n/(n+1))* rule stated another way. (Using a bit of algebra to calculate q in terms 

of m, the above condition holds just when q ≤  (m-1)/m. Then, substituting n +1 for m, the above 

rule is just the (n/(n+1))* rule for n+1 statements.) However, for each value of m < 1/(1-q), m-

ticket optimistic states remain rationally coherent for α. For then the belief threshold q is above 

(m-1)/m, and the agent may well remain optimistic about the possibility of each of the m tickets 

winning – i.e. it may well be that not Belα[¬W1] and ... and not Belα[¬Wm]. 

 Notice that for each given value of n, the (n/(n+1))* rule is perfectly compatible with the 

((n-1)/n) rule described in the previous section. However the starred and unstarred rules don’t fit 

together at all well when the starred rule takes a fractional value equal to or smaller than the 

unstarred rule. To see why, consider a confidence-belief relation that has, for a given n, both the 

rules (n/(n+1))* and (n/(n+1)). These two rules together would say this: 

for any n+1 sentences S1, ..., Sn+1, 

 if Certα[S1∨...∨Sn+1] and for pair (each i ≠ j), Certα[¬(Si · Sj)], then Belα[¬Si] for at 
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least one Si and not Belα[¬Sj] for at least one Sj. 

Such a rule would rule out the possibility of a partition (i.e. a mutually exclusive and exhaustive 

set of statements Si) for which the agent is equally confident in each (i.e. where for each i and j, 

Si ≈α Sj). That is, for such an agent, in cases where exactly one ticket is certain to win, no n+1 

ticket lottery could possibly be fair (could possibly permit equal confidence in each ticket’s 

winning). The logic alone would rule that out! Similarly, the starred rule cannot have a lower 

fractional value than the unstarred rule, for the same reason. Thus, the tightest bounds on belief 

thresholds that properly fits these n-bounded rules corresponds to those confidence-belief logics 

that have both an ((n-1)/n) rule and an (n/(n+1))* rule.
23

 

 

5. The Logic of Belief 

 Let’s now pull together the rules studied in the previous sections to form one grand logic of 

confidence and belief. Here is how to do that formally: 

Definition 4: the Rudimentary n-Level Confidence-Belief Pairs: Given a language L for 

predicate logic, the rudimentary n-level confidence-belief pairs on L are just the pairs [≥α, 

Belα] consisting of a rudimentary confidence relations and a belief predicate that together 

satisfy the following rules: 

(8) if Certα[A] then Belα[A]; 

(9) If A ≥α B and Belα[B], then Belα[A]; 

                                                 

23
 See (Hawthorne, 1999, 2007) and (Hawthorne and Makinson, 2007) for a related treatment of 

the logics of classes of nonmonotonic conditionals that behave like conditional probabilities 

above a threshold. Rules very similar to the ((n-1)/n) and (n/(n+1))* rules apply there. 
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 Level n rules (for fixed n ≥ 2):  

 (10) for any n sentences S1, ..., Sn, 

  if Certα[S1 ∨ S2 ∨...∨ Sn], then not (Belα[¬S1] and Belα[¬S2] and ... and Belα[¬Sn]); 

 (11) for any n+1 sentences S1, ..., Sn+1, 

  if for each i ≠ j, Certα[¬(Si · Sj)], then Belα[¬S1] or Belα[¬S2] or ... or Belα[¬Sn+1]. 

The rules for the rudimentary n-level confidence-belief pairs are probabilistically sound in the 

sense that for any probability function Pα and any specific threshold level q > 1/2 such that 

n/(n+1) ≥ q > (n-1)/n, the corresponding relation ≥α and belief predicate Belα (defined as A ≥α B 

iff Pα[A] ≥ Pα[B], and Belα[C] iff Pα[C] ≥ q) must satisfy rules 1-7 and 8-11. However, as with 

the rudimentary confidence relations, some confidence-belief pairs are not constrained enough by 

these rules to be modelable by a probability function. But that is easy to fix using precisely the 

same kind of rule that worked for selecting the (refined) confidence relations from the 

rudimentary ones.  

Definition 5: the Properly Extendable Rudimentary n-Level Confidence-Belief Pairs:  

Let us say that a rudimentary n-level confidence-belief pair [≥α, Belα] on a language L is 

properly extendable just in case there is a rudimentary confidence-belief pair [≥β, Belβ] on 

some language L
+
 an extension of L that agrees with the determinate part of ≥α and Belα (i.e. 

whenever A ≈α B, A ≈β B; whenever A >α B, A >β B; and whenever Belα[C], Belβ[C]) on the 

shared language L, and also satisfies the following rule for all sentences of L
+
: 

 (XX) (i) (completeness): Either A ≥β B or B ≥β A; and 

(ii) (separating equiplausible partitions): If A >β B, then, for some (large enough) 

n, there are n sentences S1, ..., Sn that β takes to be are mutually incompatible 
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(i.e., Certβ[¬(Si · Sj)] for i ≠ j), and jointly exhaustive (i.e., Certβ[S1 ∨...∨ Sn], 

where β is equally confident in each (i.e. Si ≈β Sj for each i, j), such that for 

each of them, A >β (B∨Sk). 

This is exactly like Definition 2 for properly extendable rudimentary confidence relations, but 

adds to it that the extended belief predicate agrees with the belief predicate on the sentences in 

the shared language L. 

 Now we may specify the (refined) n-level confidence-belief pairs in the obvious way. 

Definition 6: the n-Level Confidence-Belief Pairs: Given a language L for predicate logic, 

the (refined) n-level confidence-belief pairs on L are just the rudimentary n-level confidence-

belief pairs [≥α, Belα] on L that are properly extendable. 

 The logic of the n-level confidence belief pairs is sound and complete with respect to 

probability functions and corresponding belief thresholds. 

Theorem 3: Probabilistic Soundness for n-level confidence-belief pairs: Let Pα be any 

probability function (that satisfies the usual axioms). Define the relation ≥α as follows: A 

≥α B just when Pα[A] ≥ Pα[B]. And for any q ≥ 1/2, define Belα in terms of threshold level 

q in any one of the following ways: 

  (i) q = (n-1)/n for fixed n ≥ 2, and for all S, Belα[S] just when Pα[S] > q, or 

  (ii) n/(n+1) > q > (n-1)/n for fixed n ≥ 2, and for all S, Belα[S] just when Pα[S] ≥ q, or 

  (iii) n/(n+1) > q > (n-1)/n for fixed n ≥ 2, and for all S, Belα[S] just when Pα[S] > q, or 

  (iv) q = (n-1)/n for fixed n ≥ 3, and for all S, Belα[S] just when Pα[S] ≥ q. 

 Then the pair [≥α, Belα] satisfies rules 1-9 and the level n versions of rules (10) and (11). 
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Theorem 4: Probabilistic Completeness for n-level confidence-belief pairs: For each n-level 

confidence-belief pair [≥α, Belα] (i.e. each pair satisfying Definition 6), there is a 

probability function Pα and a threshold q that models ≥α and Belα as follows: for all 

sentences A and B, (1) if Pα[A] > Pα[B], then A >α B or A ~α B; (2) if Pα[A] = Pα[B], then 

A ≈α B or A ~α B; and one of the following clauses holds: 

  (i) q = (n-1)/n for fixed n ≥ 2, and Pα[S] > q just when Belα[S], or 

  (ii) n/(n+1) > q > (n-1)/n for fixed n ≥ 2, and Pα[S] ≥ q just when Belα[S], or 

  (iii) n/(n+1) > q > (n-1)/n for fixed n ≥ 2, and Pα[S] > q just when Belα[S], or 

  (iv) q = (n-1)/n for fixed n ≥ 3, and Pα[S] ≥ q just when Belα[S]. 

  Furthermore, if ≥α itself satisfies rule X, then Pα and q are unique. 

 

 Theorem 4 shows us precisely how the Qualitative Lockean Thesis is satisfied. It tells us that 

each confidence relation and belief predicate that satisfies the n-level rules (10) and (11) (for a 

specific value of n) may be modeled by a probability function and a suitable threshold level q in 

the range between n/(n+1) and (n-1)/n (as specified by one of (i)-(iv)). Furthermore, at the end of 

section 3 we saw that any given probabilistic model may be overly precise, specifying definite 

relative confidence relationships that go beyond those the agent is willing to accept. This point 

continues to hold for probabilistic models with thresholds of confidence and belief. Thus, an 

agent’s confidence-belief pair may be better represented (or modeled) by a set of probability-

function–threshold-level pairs that capture the agent’s incomplete (indefinite) assessment of 

comparative confidence relationships among some statements. 

 

6.  Concluding Remarks 
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 A qualitative logic of confidence and belief fits well with the Lockean Thesis. This logic is 

based in the logic of the at least as confident as relation (i.e., in the logic of qualitative 

probability) extended to accommodate a qualitative belief threshold. It turns out that this logic 

may be effectively modeled by quantitative probability functions together with numerical 

thresholds for belief. Thus, for this logic, the Qualitative Lockean Thesis is recapitulated in an 

underlying quantitative model that satisfies the Quantitative Lockean Thesis.  

 The version of qualitative probabilism associated with the Qualitative Lockean Thesis 

needn’t suppose that the agent has anything like precise numerical degrees of belief. Indeed, it 

doesn’t even suppose that the agent can determine definite confidence-comparisons between all 

pairs of statements. Rather, the Representation Theorems show how a qualitative confidence 

relation and corresponding belief predicate may give rise to a set of degree-of-belief functions 

and associated numerical thresholds, where the set reflects whatever imprecision is already in the 

ideal agent’s qualitative confidence relation and qualitative belief predicate. We may model the 

agent with any one of these (overly precise) functions and numerical thresholds, keeping in mind 

that the quantitative function is only one of a number of equally good numerical representations. 

So, for qualitative probabilism, the appeal to sets of representing probability functions is a 

natural consequence of the incompleteness (or indeterminateness) of the ideal agent’s relative 

confidence relation – rather than merely a device for adding indefiniteness back into a quantative 

model that was overly precise from the start. 

 I’ll now conclude with a few words about how this logic of confidence and belief may be 

further extended and developed. 

 The logic presented here only provides a static model of confidence and belief. A dynamic 

model would add an account of confidence/belief updating – an account of the logic of an agent’s 
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transitions from one confidence/belief model to another based on the impact of evidence. The 

deep connection with probability makes it relatively easy to see how standard accounts of 

probabilistic belief dynamics – e.g., Bayesian updating, and Jeffrey Updating – may be adapted 

to qualitative confidence and belief. Since an agent’s qualitative confidence-relation/belief-

predicate pair can be modeled as a set of probability functions with numerical belief thresholds, 

schemes for updating quantitative degrees of confidence suggest approaches to updating 

qualitative confidence and belief as well. 

 One way in which real belief may be more subtle than the model of belief captured by the 

Lockean Thesis as explored thus far is that real belief seems to have a contextual element. The 

level of confidence an agent must have in order for a statement to qualify as believed may depend 

on various features of the context, such as the subject matter and the associated doxastic 

standards relevant to a given topic, situation, or conversation. The logic investigated here is 

easily extended to handle at least some facets of this context-sensitivity of belief. To see how, 

consider the following modification of the Lockean Thesis: 

Contextual Qualitative Lockean Thesis: An agent is epistemically warranted in believing a 

statement in a context ψ just in case she is epistemically warranted in having a sufficiently 

high grade of confidence in the statement – sufficiently high to make her attitude towards it 

one of belief in context ψ. 

The idea is that rather than represent the doxastic state of an agent α by a single confidence/belief 

pair, we may represent it as a confidence relation together with a list of belief predicates, [≥α, 

Belα
φ
, Belα

ψ
, ..., Belα

χ
], where each belief predicate Belα

ψ
 is associated with a specific kind of 

context ψ, where each pair [≥α, Belα
ψ
] constitutes an n-level Confidence/Belief pair (as specified 

in Definition 6) appropriate to the context. Then we simply specify that α believes S in context ψ 
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(Belα[S] in context ψ) just when Belα
ψ
[S] holds.

24
 

 Variations on this approach may be employed to represent additional subtleties. For example 

perhaps only certain kinds of statements (e.g. those about a specific subject matter) are 

“doxastically relevant or appropriate” for a given context. We may model this by restricting the 

contextually sensitive predicate Belα
ψ
 to only those statements considered relevant or appropriate 

in the context. Thus, although Q ≥α R and Belα
ψ
[R] holds, α may fail to believe Q in context ψ 

because this context itself excludes Q from consideration. (E.g., relative to the context we form a 

new confidence relation ≥α
ψ
 by dropping context-irrelevant statements like Q from the full 

confidence relation ≥α. We may then characterize the belief predicate Belα
ψ
 appropriate to the 

context so as to satisfy Definition 6 for the confidence/belief pair [≥α
ψ
, Belα

ψ
].) Thus, the 

qualitative logic of confidence and belief that attends the Qualitative Lockean Thesis should be 

sufficiently flexible to represent a range of additional features of confidence and belief.
25
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