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An inductive logic is a system of evidential support that extends deductive logic to less
-than-certain inferences. For valid deductive arguments the premises logically entail
the conclusion, where the entailment means that the truth of the premises provides a 
guarantee of the truth of the conclusion. Similarly, in a good inductive argument the 
premises should provide some degree of support for the conclusion, where such 
support means that the truth of the premises indicates with some degree of strength that 
the conclusion is true. Presumably, if the logic of good inductive arguments is to be of 
any real value, the measure of support it articulates should meet the following 
condition: 

Criterion of Adequacy (CoA):
As evidence accumulates, the degree to which the collection of true 
evidence statements comes to support a hypothesis, as measured by the 
logic, should tend to indicate that false hypotheses are probably false and 
that true hypotheses are probably true. 

This article will focus on the kind of the approach to inductive logic most widely 
studied by philosophers and logicians in recent years. These logics employ conditional 
probability functions to represent measures of the degree to which evidence statements 
support hypotheses. This kind of approach usually draws on Bayes' theorem, which is a 
theorem of probability theory, to articulate how the implications of hypotheses about 
evidence claims influences the degree to which hypotheses are supported by those 
evidence claims. We will examine the extent to which this kind of logic may pass 
muster as an adequate logic of evidential support, especially in regard to the testing of 
scientific hypotheses. In particular, we will see how such a logic may be shown to 
satisfy the Criterion of Adequacy.
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Sections 1 through 3 present all of the main ideas behind the probabilistic logic of 
evidential support. For most readers these three sections will suffice to provide an 
adequate understanding of the subject. Those readers who want to know more about 
how the logic applies when the implications of hypotheses about evidence claims
(called likelihoods) are vague or imprecise may, after reading sections 1-3, skip down 
to section 6.

Sections 4 and 5 are for the more advanced reader who wants a detailed understanding 
of some telling results about how this logic may bring about convergence to the truth. 
These results show that the Criterion of Adequacy is indeed satisfied — that as 
evidence accumulates, false hypotheses will very probably come to have evidential 
support values (as measured by their posterior probabilities) that approach 0; and as 
this happens, a true hypothesis will very probably acquire evidential support values (as 
measured by their posterior probabilities) that approach 1.
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1. Inductive Arguments

Let us begin by considering examples of the kinds of arguments an inductive logic 
should explicate. Consider the following two arguments:

Example 1.. Every raven in a random sample of 3200 ravens is black. 
This strongly supports the hypothesis that all ravens are black. 
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Example 2. 62 percent of voters in a random sample of 400 registered 
voters (polled on February 20, 2004) said that they favor John Kerry over 
George W. Bush for President in the 2004 Presidential election. This 
supports with a probability of at least .95 the hypothesis that between 57 
percent and 67 percent of all registered voters favor Kerry over Bush for 
President (at or around the time the poll was taken).

An argument of this kind is often called an induction by enumeration of cases. We may 
represent the logical form of such arguments semi-formally as follows:

Premise: In random sample S consisting of n members of population B, the 
proportion of members that have attribute A is r. 

Therefore, with degree of support p,

Conclusion: The proportion of all members of B that have attribute A is 
between r�q and r+q (i.e., is within margin of errorq of r).

Let's lay out this argument more formally. The Premise breaks down into three 
separate premises:[1]

Semi-formalization Formalization
Premise 1 The frequency (or proportion) of members 

with attribute A among the members of S is 
r.

F[A,S] = r

Premise 2 S is a random sample of B with respect to 
whether or not its members have A

Rnd[S,B,A]

Premise 3 Sample S has exactly n members Size[S] = n
Therefore with degree of support p ========{p
Conclusion The proportion of all members of B that 

have attribute A is between r�q and r+q (i.e. 
is within margin of errorq of r)

F[A,B] = r± q

Any inductive logic that encompasses such arguments should address two challenges. 
(1) It should tell us which enumerative inductive arguments should count as good
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inductive arguments rather than as inductive fallacies. In particular, it should tell us 
how to determine the appropriate degree p to which such premises inductively support
the conclusion, for a given margin of error q. (2) It should demonstrably satisfy the 
CoA. That is, it should be provable (as a metatheorem) that if a conclusion expressing 
the approximate proportion for an attribute in a population is true, then it is very likely 
that sufficiently numerous random samples of the population will provide true 
premises for good inductive arguments that confer degrees of support p approaching 1 
for that true conclusion — where, on pain of triviality, these sufficiently numerous
samples are only a tiny fraction of a large population. Later we will see how a 
probabilistic inductive logic may meet these two challenges.

Enumerative induction is rather limited in scope. This form of induction is only 
applicable to the support of claims involving simple universal conditionals (i.e., claims 
of form ‘All Bs are As’) and claims about the proportion of an attribute in a population 
(i.e., ‘The frequency of As among the Bs is r’). And it applies only when the evidence 
for such claims consists of instances of Bs observed to be either As or non-As. 
However, many important empirical hypotheses are not reducible to this simple form, 
and the evidence for hypotheses is often not composed of simple instances. Consider, 
for example, the Newtonian Theory of Mechanics:

All objects remain at rest or in uniform motion unless acted upon by some 
external force. An object's acceleration (i.e., the rate at which its motion 
changes from rest or uniform motion) is in the same direction as the force 
exerted on it; and the rate at which the object accelerates due to a force is 
equal to the magnitude of the force divided by the object's mass. If an 
object exerts a force on another object, the second object exerts an equal 
amount of force on the first object, but in the opposite direction to the 
force exerted by the first object. 

The evidence for (and against) this theory is not gotten by examining a randomly 
selected subset of objects and the forces acting upon them. Rather, the theory is tested 
by calculating observable phenomena entailed by it in a wide variety of specific 
situations — ranging from simple collisions between small bodies to the trajectories of 
planets and comets — and then seeing whether those phenomena really occur. This 
approach to testing hypotheses and theories is ubiquitous, and should be captured by an 
adequate inductive logic.

5

Many less theoretical instances of inductive reasoning also fail to be captured by 
enumerative induction. Consider the kinds of inferences members of a jury are 
supposed to make based on the evidence presented at a murder trial. The inference to 
probable guilt or innocence is usually based on a patchwork of various sorts of 
evidence. It almost never involves consideration of a randomly selected sequences of 
past situations when people like the accused committed similar murders. Or, consider 
how a doctor diagnoses her patient on the basis of his symptoms. Although the 
frequency of occurrence of various diseases when similar symptoms were present may 
play a role, this is clearly not the whole story. Diagnosticians commonly employ a 
form of hypothetical reasoning — e.g., if the patient has a brain tumor, would that 
account for all of his symptoms?; or are these symptoms more likely the result of a 
minor stroke?; or is there another possible cause? The point is that a full account of 
inductive logic should not be limited to enumerative induction, but should also 
explicate the logic of hypothetical reasoning through which hypotheses and theories 
are tested on the basis of their predictions about specific observations. In Section 3 we 
will see how a kind of probabilistic inductive logic called "Bayesian Confirmation 
Theory" captures such reasoning.

2. Inductive Logic and Inductive Probabilities

Probability, and the equivalent notion odds, are the oldest and best understood ways of 
representing partial belief and uncertain inference. Probability has been studied by 
mathematicians for over 350 years, but the concept is certainly much older. In recent 
times a number of other related representations of uncertainty have emerged. Many of 
these have found useful application in computer based artificial intelligence systems 
that perform inductive inferences in expert domains such as medical diagnosis. This 
article will explicate the representation of inductive inferences in terms of probability. 
A brief comparative description of some of the most prominent alternative 
representations may be found in the following supplementary document:

Some Prominent Approaches to the Represention of Uncertain Inferences. 
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2.1 The Historical Origins of Probabilistic Logic

The mathematical study of probability originated with Blaise Pascal and Pierre de 
Fermat in the mid-17th century. From that time through the early 19th century, as the 
mathematical theory continued to develop, the theory was primarily applied to the 
assessment of risk in games of chance and to drawing simple statistical inferences 
about characteristics of large populations — e.g., to compute appropriate life insurance 
premiums based on mortality rates. In the early 19th century Pierre de Laplace made 
further theoretical advances and showed how to apply probabilistic reasoning to a 
much wider range of scientific and practical problems. Since that time probability has 
become an indispensable tool in the sciences, business, and many other areas of 
modern life.

Throughout its development various researchers appear to have thought of probability 
as a kind of logic. But the first extended treatment of probability as an explicit part of 
logic was George Boole's The Laws of Thought (1854). John Venn followed two 
decades later with an alternative empirical frequentist account of probability in The 
Logic of Chance (1876). Not long after that the whole discipline of logic was 
transformed by new developments in deductive logic.

In the late 19th and early 20th century Frege, followed by Russell and Whitehead, 
showed how deductive logic could be represented in the kind of rigorous formal 
system we now call quantificational logic or predicate logic. For the first time 
logicians had a fully formal deductive logic powerful enough to represent all valid 
deductive arguments in mathematics and the sciences — a logic in which the validity 
of deductive arguments depends only on the logical structure of the sentences 
involved. This development spurred some logicians to attempt to apply a similar 
approach to inductive reasoning. The idea was to extend the deductive entailment 
relation to a notion of probabilistic entailment for cases where premises provide less 
than conclusive support for conclusions. These partial entailments are expressed in 
terms of conditional probabilities, probabilities of the form P[C | B] = r (read “the 
probability of C given B is r”), where P is a probability function, C is a conclusion 
sentence, B is a conjunction of premise sentences, and r is the probabilistic degree of 
support that B provides for C. Attempts to develop such a logic have varied widely in 
regard to precisely how the deductive model is emulated.

7

Some inductive logicians have tried to follow the deductive paradigm very closely by 
attempting to specify inductive support probabilities in terms of the syntactic structures 
of premise and conclusion sentences. In deductive logic the syntactic structure of the 
sentences involved completely determines whether premises logically entail a 
conclusion. So these logicians attempted to specify inductive support probabilities 
solely in terms of the syntactic structure of premise and conclusion sentences. In such a 
system each sentence confers a syntactically specified degree of support on each of the 
other sentences of the language. The inductive probabilities in such a system are 
logical in the sense that they depend on syntactic structure alone. This kind of 
conception was articulated to some extent by John Maynard Keynes in his Treatise on 
Probability (1921). Rudolf Carnap pursued this idea with greater rigor in his Logical 
Foundations of Probability (1950) and in several subsequent works (e.g., Carnap 
1952). (For details of Carnap's approach see the section on logical probability in the 
entry on interpretations of the probability calculus, in this Encyclopedia.)

In the inductive logics of Keynes and Carnap, Bayes' theorem, which is a theorem of 
probability theory, plays a central role in expressing how evidence comes to bear on 
hypotheses. (We'll examine Bayes' theorem later.) So, such approaches might well be 
called Bayesian logicist inductive logics. Other well-known Bayesian logicist attempts 
to develop a probabilistic inductive logic include (Jeffreys, 1939), (Jaynes, 1968), and 
(Rosenkrantz, 1981).

It is now generally held that the core idea of Bayesian logicism is fatally flawed — that 
syntactic logical structure cannot be the sole determiner of the degree to which 
premises inductively support conclusions. A crucial facet of the problem faced by 
Bayesian logicism involves how the logic is supposed to apply to scientific contexts 
where the conclusion sentence is some hypothesis or theory, and the premises are 
evidence claims. The difficulty is that in any probabilistic logic that satisfies the usual 
axioms for probabilities, the inductive support for a hypothesis must depend in part on 
its prior probability. This prior probability represents how plausible the hypothesis is 
supposed to be based on considerations other than the observational and experimental 
evidence (e.g. perhaps due to relevant plausibility arguments). A Bayesian logicist 
must tell us how to assign values to these pre-evidential prior probabilities of 
hypotheses, for each of the hypotheses or theories under consideration. Furthermore, 
this kind of Bayesian logicist must determine these prior probability values in a way 
that relies only on the syntactic logical structure of these hypotheses, perhaps based on 
some measure of their syntactic simplicities. There are severe technical problems with 
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getting this idea to work. Moreover, various kinds of examples seem to show that such 
an approach must assign intuitively quite unreasonable prior probabilities to 
hypotheses in specific cases (see the footnote cited near the end of section 3.2 for 
details). Furthermore, for this idea to apply to the evidential support of real scientific 
theories, scientists would have to formalize theories in a way that makes their relevant 
syntactic structures apparent, and then evaluate theeories solely on that syntactic basis 
(together with their syntactic relationships to evidence statements). Are we to evaluate 
alternative theories of gravitation (and alternative quantum theories) this way? This 
seems an extremely doubtful approach to the evaluation of real scientific theories and 
hypotheses. Thus, it seems that logical structure alone cannot suffice for the inductive 
evaluation of scientific hypotheses. (This issue will be treated in more detail in Section 
3, after we first see how probabilistic logics employ Bayes' theorem to represent the 
evidential support for hypotheses as a function of prior probabilities together with 
their evidential likelihoods.)

At about the time the Bayesian logicist idea was developing, an alternative conception 
of probabilistic inductive reasoning was also emerging. This approach is now generally 
referred to as the Bayesian subjectivist or personalist approach to inductive reasoning 
(see, e.g., Ramsey, 1926; De Finetti, 1937; Savage 1954; Edwards, Lindman, Savage, 
1963; Jeffrey, 1983, 1992; Howson, Urbach, 1993; Joyce 1999). It treats inductive 
probability as part of a larger normative theory of belief and action known as Bayesian 
decision theory. The principle idea is that the strength of an agent's desires for various 
possible outcomes should combine with her belief-strengths regarding claims about the 
world to produce optimally rational decisions. Bayesian subjectivists provide a logic 
that captures this idea, and they attempt to justify this logic by showing that in 
principle it leads to optimal decisions about which of various risky alternatives should 
be pursued. On the Bayesian subjectivist or personalist account of inductive 
probability, inductive probability functions represent the subjective (or personal) belief
-strengths of ideally rational agents, the kind of belief strengths that figure into rational 
decision making. (See the section on subjective probability in the entry on 
interpretations of the probability calculus, in this Encyclopedia.)

Elements of the logicist conception of inductive logic live on today as part of the 
general approach called Bayesian inductive logic. However, among philosophers and 
statisticians the term ‘Bayesian’ is now most closely associated with the subjectivist or 
personalist account of belief and decision. And the term ‘Bayesian inductive logic’ has 
come to carry the connotation of a logic that involves purely subjective probabilities. 
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This current usage is misleading since for inductive logics the Bayesian/non-Bayesian 
distinction should really hang on whether the logic gives Bayes' theorem a prominent 
role, or whether the logic largely eschews the use of Bayes' theorem in inductive 
inferences (as do the classical approaches to statistical inference developed by R. A. 
Fisher (1922) and by Neyman and Pearson (1967)). Indeed, any inductive logic that 
employs the same probability functions to represent both the probabilities of evidence 
claims due to hypotheses and the probabilities of hypotheses due to those evidence 
claims must be a Bayesian inductive logic in this broader sense; because Bayes' 
theorem follows directly from the axioms that each probability function must satisfy, 
and Bayes' theorem expresses a necessary connection between the probabilities of 
evidence claims due to hypotheses and the probabilities of hypotheses due to those 
evidence claims.

In this article the probabilistic inductive logic we will examine is a Bayesian inductive 
logic in the broader sense. This logic will not presuppose the subjectivist Bayesian 
theory of belief and decision, and will avoid the objectionable features of Bayesian 
logicism. Later we will see that there are good reasons to distinguish inductive 
probabilities from Bayesian degree-of-belief probabilities and from purely logical 
probabilities. So, the probabilistic logic articulated in this article will be presented in a 
way that depends on neither of these conceptions of what the probability functions are. 
However, this version of the logic will be general enough that it may be fitted to a 
Bayesian subjectivist or Bayesian logicist program, if one desires to do that.
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2.2 Probabilistic Logic: Axioms and Characteristics

All logics derive from the meanings of terms in sentences. What we now recognize as 
formal deductive logic rests on the meanings (i.e., the truth-functional properties) of 
the standard logical terms. These terms, and the symbols we will employ to represent 
them, are as follows: ‘not’, ‘~’; ‘and’, ‘·’; ‘or’, ‘�’; truth-functional ‘if-then’, ‘�’; ‘if 
and only if’, ‘�’; the quantifiers ‘all’, ‘�’, and ‘some’, ‘�’; and the identity relation, 
‘=’. The meanings of all other terms (i.e., names, and predicate and relational 
expressions) are permitted to “float free”. That is, the logic depends neither on their 
meanings nor on the truth-values of sentences containing them. It merely supposes that 
these other terms are meaningful, and that sentences containing them have truth-
values. Deductive logic then tells us that the logical structures of some sentences —
i.e., the syntactic arrangements of their logical terms — preclude them from being 
jointly true of any possible state of affairs. That is the notion of logical inconsistency. 
The notion of logical entailment is interdefinable with it. A collection of premise 
sentences logically entails a conclusion sentence just when the negation of the 
conclusion is logically inconsistent with those premises.

An inductive logic must, it seems, deviate from this paradigm in several significant 
ways. For one thing, logical entailment is an absolute, all-or-nothing relationship 
between sentences, whereas inductive support comes in degrees of strength. For 
another, although the notion of inductive support is analogous to the deductive notion 
of logical entailment, and is arguably an extension of it, there seems to be no inductive 
logic extension of the notion of logical inconsistency — at least none that is inter-
definable with inductive support in the way that logical inconsistency is inter-definable 
with logical entailment. That is, B logically entails A just when (B·~A) is logically 
inconsistent. However, it turns out that when the unconditional probability of (B·~A) is 
very nearly 0 (i.e., when (B·~A) is “nearly inconsistent”), the degree to which B
inductively supports A, P[A | B], may range anywhere between 0 and 1. 

Another notable difference is that when B logically entails A, adding a premise C
cannot undermine the entailment — i.e., (C·B) must entail A as well. This property of 
logical entailment is called monotonicity. But inductive support is nonmonotonic. In 
general, depending on what A, B, and C mean, adding a premise C to B may 
substantially raise the degree of support for A, or may substantially lower it, or may 
leave it completely unchanged — i.e., P[A | C·B] may have a value much larger than 
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P[A | B], or a much smaller value, or it may have the same, or nearly the same value as 
P[A | B].

In a formal treatment of probabilistic inductive logic, inductive support is represented 
by conditional probability functions defined on sentences of a formal language L. 
These conditional probability functions are constrained by certain rules or axioms that 
are sensitive to the meanings of the logical terms (i.e., ‘not’, ‘and’, ‘or’, etc., the 
quantifiers ‘all’ and ‘some’, and the identity relation). The axioms apply without 
regard for what the other terms of the language may mean. In essence the axioms 
specify a family of possible support functions, {P�, P�, … , P�, …} for a given 
language L. Although each support function satisfies these same axioms, the further 
issue of which among them provides an appropriate measure of inductive support is 
not settled by the axioms alone. That may depend on additional factors, such as the 
meanings of the non-logical terms in the language.

A good way to specify the rules or axioms of the logic of inductive support functions is 
as follows. Let L be a language for predicate logic with identity, and let ‘�’ be the 
standard logical entailment relation — i.e. the expression ‘B�A’ says “B logically 
entails A” and the expression ‘�A’ says “A is a tautology”. 

A support function is a function P� from pairs of sentences of L to real 
numbers between 0 and 1 that satisfies the following rules or axioms: 

1. P�[D | E] < 1 for at least one pair of sentences D and E. 

For all sentence A, B, and C, 

2. If B � A, then P�[A | B] =1; 
3. If � (B�C), then P�[A | B] = P�[A | C];
4. If C � ~(B·A), then P�[(A� B) | C] = P�[A | C] + P�[B | C] or 

P�[D | C] = 1 for every D;
5. P�[(A·B) | C] = P�[A | (B·C)] × P�[B | C].

This axiomatization takes conditional probability as basic, as seems appropriate for 
evidential support functions. These functions agree with the usual unconditional 
probability functions when the latter are defined — just let P�[A] = P�[A | (D�~D)].
However, these axioms permit conditional probabilities P�[A | C] to remain defined 
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even when condition statement C has probability 0 (i.e., even when P�[C | (D�~D)] = 
0).

Notice that conditional probability functions apply only to pairs of sentences, a 
conclusion sentence and a premise sentence. So in probabilistic inductive logic we 
represent finite collections of premises by conjoining them into a single sentence. 
Rather than say, ‘A is supported to degree r by the set of premises {B1, B2, B3,…,Bn}’, 
we say ‘A is supported to degree r by the premise (…((B1·B2)·B3)·…·Bn)’, and write 
this as ‘P[A | (…((B1·B2)·B3)·…·Bn)] = r’.

Let us briefly consider each axiom, 1-5, to see how plausible it is as a constraint on a 
quantitative measure of inductive support, and how it extends the notion of deductive 
entailment. First, notice that adopting an inductive support scale between 0 and 1 is 
merely a convenience. This scale is usual for probabilities; but any other scale might 
do as well.

Rule (1) is a non-triviality requirement. It says that at least one sentence must be 
supported by another to degree less than 1. We might instead have required that 
P�[(A·~A) | (A�~A)] < 1; but this turns out to be derivable from Rule (1) together with 
the other rules.

Each degree-of-support function P� on L measures support strength with numerical 
values between 0 and 1, with maximal support at 1. When B logically entail A, the 
support of A based on B is maximal. This is what Rule (2) asserts. It comports with the 
idea that an inductive support function is a generalization of the deductive entailment 
relation.

Rule (3) is equally obvious. It says that whenever B is logically equivalent to C, as 
premises each must provide precisely the same amount of support to every conclusion.

Rule (4) says that inductive support “adds up” in a plausible way. When C logically 
entails the incompatibility of A and B, the support C provides each separately must 
sum to the support it provides for their disjunction. The only exception is in cases 
where C acts like a contradiction and supports all sentences to degree 1.

To understand what Rule (5) says, think of a support function P� as describing a 
measure on possible worlds or possible states of affairs. ‘P�[C | D] = r’ says that the 
proportion of worlds in which C is true among those where D is true is r. Rule (5) then 
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says the following: if A is true in fraction r of worlds where B and C are true together, 
and if B (together with C) is true in proportion q of all the C-worlds, then A and B (and 
C) should be true together in fraction r of that proportion q of B (and C) worlds among 
the C-worlds.[2]

From these five rules all of the usual theorems of probability theory are easily derived. 
For example, logically equivalent sentences are always supported to the same degree: 
if C � (B�A), then P�[A | C] = P�[B | C]. The following generalizations of the Addition 
Rule (4) may be proved as well: 

P�[(A�B) | C] = P�[A | C] + P�[B | C] � P�[(A·B) | C]. 

If {B1, …, Bn} is any finite set of sentences such that for each pair Bi and 
Bj, C � ~(Bi·Bj) (i.e., the members of the set are mutually exclusive, given 
C), then 

P�[((B1� B2)�…�Bn) | C]  =   
n
	 
i=1

P�[Bi | C],  

unless P�[D | C] = 1 for every sentence D. 

If {B1, …, Bn, …} is any countably infinite set of sentences such that for 
each pair Bi and Bj, C � ~(Bi·Bj), then 

limn P�[((B1� B2)�…�Bn) | C]  =   


	 
i=1

P�[Bi | C],  

unless P�[D | C] = 1 for every sentence D.[3]

In the context of inductive logic it makes good sense to supplement the above rules 
with two additional rules. One is this:

6. If A is an axiom of set theory or any other piece of pure mathematics employed 
by the sciences, or if A is analytically truth (given the meanings of terms in L
associated with support function P�), then, for all C, P�[A | C] = 1.
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Stanford Encyclopedia of Philosophy James Hawthorne,  2011



The idea is that inductive logic is about evidential support for contingent claims. 
Nothing can count as empirical evidence against non-contingent truths. They should be 
maximally supported by all claims C.

One important respect in which inductive logic should follow the deductive paradigm 
is in not presupposing the truth-values of contingent sentences. No inductive support 
function P� should permit a tautological premise to assign degree of support 1 to a 
contingent claim — i.e., P�[C | (B�~B)] should always be less than 1 when C is 
contingent. For, the whole idea of inductive logic is to provide a measure of the extent 
to which contingent premise sentences indicate the likely truth-values of contingent 
conclusion sentences. This idea won't work properly if the truth-values of some 
contingent sentences are presupposed. Such presuppositions would make inductive 
logic enthymematic. It may hide significant premises in inductive support 
relationships.

However, it is common practice for probabilistic logicians to sweep provisionally 
accepted contingent claims under the rug by assigning them probability 1. This saves 
the trouble of repeatedly writing a given contingent sentence B as a premise, since 
P�[A | B·C] will just equal P�[A | C] whenever P�[B | C] = 1. Although this device is 
useful, such probability functions should be considered mere abbreviations of proper, 
logically explicit, non-enthymematic, inductive support functions. Thus, properly 
speaking, an inductive support function P�should not assign probability 1 to a sentence 
relative to all possible premises unless that sentence is either (i) logically true, or (ii) 
an axiom of set theory or some other piece of pure mathematics employed by the 
sciences, or (iii) unless according to the interpretation of the language that 
P�presupposes, the sentence is analytic, and so outside the realm of evidential support. 
Thus, we adopt the following version of the so-called “axiom of regularity”.

7. If, for all C, P�[A | C] = 1, then A is a logical truth or an axiom of set theory or 
some other piece of pure mathematics employed by the sciences, or A is 
analytically true (according to the meanings of the terms of L as represented in 
P�).

This is more a convention than an axiom. Taken together with (6) it tells us that a 
support function P� counts as non-contingently true just those sentences that it assigns 
probability 1 on every premise.

15

Some Bayesian logicists (e.g. Carnap) thought that inductive logic might be made to 
depend solely on the logical form of sentences, just like deductive logic. The idea was, 
effectively, to supplement axioms 1–7 with additional axioms that depend only on the 
logical structures of sentences, and to introduce enough such axioms to reduce the 
number of possible support functions to a single uniquely best confirmation function. It 
is now widely agreed that this project cannot be carried out in a plausible way. Perhaps 
there are additional rules that should be added to 1–7. But it is doubtful such rules can 
suffice to specify a single, uniquely qualified support function based only on logical 
structure. We will se why in Section 3, but only after first seeing how inductive 
probabilities capture the relationship between hypotheses and evidence.

2.3 Two Conceptions of Inductive Probability

Axioms 1–7 for conditional probability functions merely place formal constraints on 
what may properly count as a degree of support function. Each function P� satisfying 
these rules may be viewed as a possible way of applying the notion of inductive 
support to a language L that respects the meanings of the logical terms, much as each 
possible truth-value assignment for a language represents a possible way of assigning 
truth-values to its sentences in a way that respects the semantic rules expressing the 
meanings of the logical terms. The issue of which of the possible truth-value 
assignments to a language represents the actual truth or falsehood of its sentences 
depends on more than this — it depends on the meanings of the non-logical terms and 
on the state of the actual world. Similarly, the degree to which some sentences actually
support others in a fully meaningful language must rely on something more than 
merely satisfying the axioms for support functions. It must, at least, rely on what the 
sentences of the language mean, and perhaps on much more besides. But, what more? 
Various “interpretations of probability”, which offer accounts of how support functions 
are to be understood, may help by filling out our conception of what inductive support
is really about. There are two prominent views.

One reading is to take each P� as a measure on possible worlds, or possible states of 
affairs. The idea is that, given a fully meaningful language (and, perhaps relative to the 
inferential inclinations of a particular agent, �) ‘P�[A | B] = r’ says that among the 
worlds in which B is true, A is true in proportion r of them. There will generally not be 
a single privileged way to define such a measure on possible worlds. Rather, it may be 
that each of a number of functions P�, P�, P�, …, etc., satisfying the constraints 
imposed by axioms 1-7 can represent a viable measure of the inferential import of 
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propositions expressed by sentences of the language. This idea needs more fleshing 
out, of course. The next section will give some indication of how that might go.

Subjectivist Bayesians offer an alternative reading of the support functions. First, they 
usually take unconditional probability as basic, and they take conditional probabilities 
as defined in terms of them: the conditional probability ‘P�[A | B]’is defined as a ratio 
of unconditional probabilities, P�[A·B]/P�[B].Subjectivist Bayesians take each 
unconditional probability function P� to represent the belief-strengths or confidence-
strengths of an ideally rational agent, �. On this understanding ‘P�[A] =r’ says, “the 
strength of �'s belief (or confidence) that A is truth is r.” Subjectivist Bayesians usually 
tie such belief strengths to what the agent would be willing to bet on A turning out to 
be true. Roughly, the idea is this. Suppose that an ideally rational agent � would be 
willing to accept a wager that would yield (no less than) $u if A turns out to be true and 
would lose him $1 if A turns out to be false. Then, under reasonable assumptions about 
how much he desires money, it can be shown that his belief strength that A is true 
should be P�[A] = 1/(u+1). And it can further be shown that any function P� that 
expresses such betting-related belief-strengths on all statements in agent �'s language 
must satisfy axioms for unconditional probabilities analogous to axioms 1–5.[4]

Moreover, it can be shown that any function P� that satisfies these axioms is a possible 
rational belief function for some ideally rational agent �. These relationships between 
belief-strengths and the desirability of outcomes (e.g., gaining money or goods on bets) 
are at the core of subjectivist Bayesian decision theory. Subjectivist Bayesians usually 
take inductive probability to just be this notion of probabilistic belief-strength.

Undoubtedly real agents do believe some claims more strongly than others. And, 
arguably, the belief strengths of real agents can be measured on a probabilistic scale 
between 0 and 1, at least approximately. And clearly the inductive support of evidence 
for hypotheses should influence the strength of an agent's belief in those hypotheses. 
However, there is good reason for caution about viewing inductive support functions as 
Bayesian belief-strength functions, as we will see a bit later. So, perhaps an agent's 
support function is not simply identical to his belief function, and perhaps the 
relationship between inductive support and belief-strength is somewhat more 
complicated.

In any case, some account of what support functions are supposed to represent is 
clearly needed. The belief function account and the possible worlds account are two 
attempts to provide this. Let us put this interpretative issue aside for now. One may be 

17

able to get a better handle on what inductive support functions really are after one sees 
how the inductive logic that draws on them is supposed to work.

3. The Application of Inductive Probabilities to the 
Evaluation of Scientific Hypotheses

One of the most important applications of a formal inductive logic is to the 
confirmation or refutation of scientific hypotheses. The logic should explicate the 
notion of evidential support for all sorts of hypotheses, ranging from simple diagnostic 
claims (e.g., “the patient is infected with the HIV”) to scientific theories about the 
fundamental nature of the world, like quantum mechanics or the theory of relativity. 
We'll now look into how support functions (a.k.a. confirmation functions) represent the 
logic of hypothesis confirmation. This kind of inductive logic is often referred to as 
Bayesian Confirmation Theory.

Consider some exhaustive set of mutually incompatible hypotheses or theories about 
some subject matter, {h1, h2, …}. The set of alternatives may be very simple, e.g., 
{“the patient has HIV”, “the patient is free of HIV”}. Or, when the physician is trying 
to determine which among a range of diseases is causing the patient's symptoms, the 
alternative hypotheses may consist of a long list of possible diseases. For the 
cosmologist the alternatives may be a list of several alternative gravitational theories, 
or several versions of the “same theory“. Where inductive logic is concerned, even a 
slightly different version of a given theory will count as a distinct theory if it differs 
from the original in empirical import. (This should not be confused with the converse 
claim, which is the positivistic assertion that theories with the same empirical content 
are really the same theory. Inductive logic doesn't require you to buy that!)

In general there may be finitely or infinitely many such alternatives under 
consideration. They may all be considered at once, or they may be constructed and 
compared over a long historical period. One may even think of the set of alternative 
hypotheses as consisting of all logically possible alternatives expressible in a given 
language about a given subject matter — e.g., all possible theories of the origin and 
evolution of the universe expressible in English and mathematics. Although testing 
every possible alternative may pose practical challenges, it turns out that the logic 
works much the same way in the logically ideal case as it does in realistic cases.
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If the set of alternative hypotheses is finite, it may contain a catch-all hypothesis hK
that says that none of the other hypotheses are true (e.g., “none of the other known 
diseases is present”). When only some number u of explicit alternative hypotheses is 
under consideration, hK is just the sentence (~h1·…·~hu).

Evidence for scientific hypotheses consists of the results of specific experiments or 
observations. For a given experiment or observation, let ‘c’ represent a description of 
the relevant conditions under which it is performed, and let ‘e’ represent a description 
of the result, the evidential outcome of conditions c.

Scientific hypotheses often require the mediation of background knowledge and 
auxiliary hypotheses to help them express claims about evidence. Let ‘b’ represent all 
background and auxilliary hypothese not at issue in the assessment of the hypotheses 
hi, but that mediate their implications about evidence. In cases where a hypothesis is 
deductively related to evidence, either hi·b·c � e or hi·b·c �  ~e.

For example, hi might be the Newtonian Theory of Gravitation. A test of the theory 
might involve a condition statement c describing the results of some earlier 
measurements of Jupiter's position, and describing the means by which the next 
position measurement will be made; the outcome description e states the result of this 
additional position measurement; and the background information (or auxiliary 
hypotheses) b might state some already well confirmed theory about the workings and 
accuracy of the devices used to make the position measurements. Thus, if (c·e) occurs, 
this may be considered good evidence for hi, given b, as the hypothetico-deductive
account of confirmation maintains. On the other hand, if from hi·b·c we calculate some 
outcome incompatible with e, then hi·b·c �  ~e. In that case from deductive logic alone 
we get that b·c·e �  ~hi, and hi is said to be falsified by b·c·e. 

Duhem (1906) and Quine (1953) are generally credited with alerting inductive 
logicians to the importance of auxiliary hypotheses. They point out that scientific 
hypotheses often make little contact with evidence claims on their own. Rather, most 
scientific hypotheses only make testable predictions relative to background claims or 
auxiliary hypotheses that tie them to that evidence. Typically auxiliaries are highly 
confirmed hypotheses from other scientific domains. They often describe the operating 
characteristics of various devices (e.g. measuring instruments) used to make 
observations or conduct experiments. They are usually not at issue in the testing of hi
against its competitors, because hi and its alternatives usually rely on the same 
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auxiliary hypotheses to tie them to the evidence. But even when an auxiliary 
hypothesis is already well-confirmed, we cannot simply assume that it is 
unproblematic, or just known to be true. Rather, the evidential support or refutation of 
a hypothesis h is relative to whatever auxiliaries and background information (in b) is 
being supposed. In other contexts the auxiliary hypotheses used to test hi may 
themselves be among a collection of alternative hypotheses that are themselves subject 
to evidential support or refutation. (Furthermore, to the extent that competing 
hypotheses employ different auxiliary hypotheses in accounting for evidence, the 
evidence only tests each such hypothesis in conjunction with its distinct auxiliaries 
against alternative hypotheses packaged with their distinct auxiliaries.) Thus, what 
counts as a hypothesis to be tested, hi, and what counts as auxiliary hypotheses and 
background information, b, and even to some extent what counts as the conditions c for 
an experiment or observation, will always depend on the epistemic context — on what 
alternative hypotheses are being tested by the same experiments or observations, and 
on what claims are being presupposed or held fixed for present purposes, and on what 
claims are considered to be immediate preconditions for the evidential outcome e. No 
statement is intrinsically a hypotheis, or intrinsically an auxiliary (or a background 
condition), or intrinsically an evidential condition. Rather, those are roles statements 
may play in an epistemic context, and the very same statement may play different roles 
in different confirmational contexts.

In a probabilistic inductive logic the degree to which evidence c·e supports a 
hypothesis hi relative to background b is represented by the posterior probability of hi, 
P�[hi | b·cn·en]. It turns out that the posterior probability of a hypothesis depends on 
just two kinds of factors: (1) its prior probability, P�[hi | b], together with the prior 
probabilities of its competitors, P�[hj | b], etc.; and (2) the likelihood of evidential 
outcomes e according to hi, given that b and c are true, P[e | hi·b·c], together with the 
likelihoods of outcomes according to its competitors, P[e | hj·b·c], etc. In this section 
we will first examine each of these two kinds of factors in some detail, and then see 
precisely how the values of posterior probabilities depend on them.
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3.1 Likelihoods

In probabilistic inductive logic the likelihoods carry the empirical import of 
hypotheses. A likelihood is a support function probability of form P[e | hi·b·c]. It 
expresses how likely it is that outcome e will occur according to hypothesis hi.[5] If a 
hypothesis together with auxiliaries and observation conditions deductively entails an 
evidence claim, the axioms of probability make the corresponding likelihood objective 
in the sense that every support function must agree on its values: i.e., P[e | hi·b·c] = 1 if 
hi·b·c � e; P[e | hi·b·c] = 0 if hi·b·c �  ~e. However, in many cases the hypothesis hi
will not be deductively related to the evidence, but will only imply it probabilistically. 
There are (at least) two ways this might happen. Either hi may itself be an explicitly 
probabilistic or statistical hypothesis, or it may be that an auxiliary statistical 
hypothesis, as part of background b, connects hi to the evidence. Let's briefly consider 
examples of each.

A blood test for HIV has a known false-positive rate and a known true-positive rate. 
Suppose the false positive rate is .05 — i.e., the test incorrectly shows the blood 
sample to be positive for HIV in 5% of all cases where HIV is not present. And 
suppose the true-positive rate is .99 — i.e., the test correctly shows the blood sample to 
be positive for HIV in 99% of all cases where HIV really is present.When a particular 
patient's blood is tested, the hypotheses under consideration are ‘the patient is infected 
with HIV’, h, and ‘the patient is not infected with HIV’, ~h. In this context the known 
test characteristics function as background information, b. The experimental condition 
c merely states that this patient was subjected to a blood test for HIV, which was 
processed by the lab in the usual way. Let us suppose that the outcome e states that the 
result is positive for HIV. The relevant likelihoods, then, are P[e | h·b·c] = .99 and 
P[e | ~h·b·c] = .05. 

In this example the values of the likelihoods are entirely due to the statistical 
characteristics of the accuracy of the test, which is carried by the background 
information b. The hypothesis h being tested is not itself statistical.

This kind of situation may, of course, arise for much more complex hypotheses. The 
hypothesis of interest may be some deterministic physical theory, say Newtonian 
Gravitation Theory. Some of the experiments that test this theory relay on somewhat 
imprecise measurements that have known statistical error characteristics, which are 
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expressed as part of the background or auxiliary hypotheses b. For example, the 
auxiliary b may describe the error characteristics of a device that measures the torque 
imparted to a quartz fiber, where the measured torque is used to assess the strength of 
the gravitational force between test masses. In that case b may say that for this kind of 
device the measurement errors are normally distributed about whatever value a given 
gravitational theory predicts, with some specified standard deviation that is 
characteristic of the device. This results in specific values ri for the likelihoods, 
P[e | hi·b·c] = ri, for each of the various alternative gravitational theories hi being 
tested.

On the other hand, the hypotheses being tested may themselves be statistical in nature. 
One of the simplest examples of statistical hypotheses and their role in likelihoods are 
hypotheses about the chance characteristic of coin-tossing. Let h[r] be a hypothesis that 
says a specific coin has a propensity r (e.g., 1/2) for coming up heads on normal tosses, 
and that such tosses are probabilistically independent of one another. Let c state that 
the coin is tossed n times in the normal way; and let e say that on these tosses the coin 
comes up heads m times. In cases like this the value of the likelihood of the outcome e
on hypothesis h for condition c is given by the well-known binomial term: 

P[e | h[r]·b·c] =
n!
m! × (n�m)! × rm (1�r)n�m.

There are, of course, more complex cases of likelihoods involving statistical 
hypotheses. Consider, for example, the hypothesis that plutonium 233 nuclei have a 
half-life of 20 minutes — i.e., the propensity for a Pu-233 nucleus to decay within a 20 
minute period is 1/2. This hypothesis, h, together with background b about decay 
products and the efficiency of the equipment used to detect them (which may itself be 
an auxiliary statistical hypothesis), yields precisely calculable values for likelihoods 
P[ek | h·b·c] of possible outcomes of the experimental arrangement.

Likelihoods that arise from explicit statistical claims — either within the hypotheses 
being tested, or from explicit statistical background claims that tie the hypotheses to 
the evidence — are often called direct inference likelihoods. Such likelihoods are 
completely objective. So it seems reasonable to suppose that all support functions 
should agree on their values, just as all support functions agree on likelihoods when 
evidence is logically entailed. Direct inference likelihoods are logical in an extended, 
non-deductive sense. Indeed, some logicians have attempted to spell out the logic of 
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direct inferences in terms of the logical form of the sentences involved.[6] But 
regardless of whether that project succeeds, it seems reasonable to take likelihoods of 
this sort to have highly objective or intersubjectively agreed values.

Not all likelihoods of interest in confirmational contexts are warranted deductively or 
by explicitly stated statistical claims. Nevertheless, the likelihoods that relate 
hypotheses to evidence in scientific contexts should often have objective or 
intersubjectively agreed values. So, although a variety of different support functions 
P�, P� ,…, P�, etc., may be needed to represent the differing “inductive proclivities” of 
the various members of a scientific community, all should agree, at least 
approximately, on the values of the likelihoods. For, likelihoods represent the 
empirical content of a hypothesis, what the hypothesis (together with background b) 
probabilistically implies about the evidence. Thus, the empirical objectivity of a 
science relies on a high degree of objectivity or intersubjective agreement among 
scientists on the numerical values of likelihoods.

To see the point more vividly, imagine what a science would be like if scientists 
disagreed widely about the values of likelihoods. Each practitioner interprets a theory 
to say quite different things about how likely it is that various possible evidence 
statements will turn out to be true. Whereas scientist � takes theory h1 to 
probabilistically imply that event e is highly likely, his colleague � understands the 
empirical import of h1 to say that e is very unlikely. And, conversely, � takes 
competing theory h2 to probabilistically imply that e is quite unlikely, whereas � reads 
h2 to say that e is very likely. So, for � the evidential outcome e supplies strong support 
for h1 over h2, because P�[e | h1·b·c] >> P�[e | h2·b·c]. But his colleague � takes 
outcome e to show just the opposite — that h2 is strongly supported over h1 — because 
P�[e | h1·b·c] << P�[e | h2·b·c]. If this kind of thing were to occur often or for 
significant evidence claims in a scientific domain, it would make a shambles of the 
empirical objectivity of that science. It would completely undermine the empirical 
testability of its hypotheses and theories. Under such circumstances, although each 
scientist employs the same theoretical sentences to express a given theory h, each 
understands the empirical import of these sentences so differently that h as understood 
by � is an empirically different theory than h as understood by �. Thus, the empirical 
objectivity of the sciences requires that experts should be in close agreement about the 
values of the likelihoods.[7]
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For now we will suppose that the likelihoods have objective or intersubjectively agreed 
values, common to all agents in a scientific community. Let us mark this agreement by 
dropping the subscript ‘�’, ‘�’, etc., from expressions that represent likelihoods. One 
might worry that this supposition is overly strong. There are many legitimate scientific 
contexts where, although scientists should have enough of a common understanding of 
the empirical import of hypotheses to assign quite similar values to likelihoods, precise 
agreement on the numerical values is unrealistic. This point is right. So later we will 
see how to relax the supposition that likelihood values agree precisely. But for now the 
main ideas behind probabilistic inductive logic will be more easily explained if we 
focus on those contexts were objective or intersubjectively agreed likelihoods are 
available. Later we will see that much the same logic continues to apply in contexts 
where the values of likelihoods may be somewhat vague, or where members of the 
scientific community disagree to some extent about their values.

An adequate treatment of the likelihoods calls for the introduction of one additional 
notational device. Scientific hypotheses are generally tested by a sequence of 
experiments or observations conducted over a period of time. To explicitly represent 
the accumulation of evidence, let the series of sentences c1, c2, …, cn, describe the 
conditions under which a sequence of experiments or observations are conducted. And 
let the corresponding outcomes of these observations be represented by sentences e1, 
e2,…,en. We will abbreviate the conjunction of the first n descriptions of experimental 
or observation conditions as ‘cn’, and abbreviate the conjunction of descriptions of 
their outcomes as ‘en’. Then, for a stream of n observations or experiments and their 
outcomes, the likelihoods take form P[en | hi·b·cn] = r, for appropriate r between 0 and 
1. In many cases the likelihood of the evidence stream will be equal to the product of 
the likelihoods of the individual outcomes:

P[en | hi·b·cn] = P[e1 | hi·b·c1] ×…× P[en | hi·b·cn].

When this equality holds the individual bits of evidence are said to be probabilistically 
independent on the hypothesis. In what follows such independence will only be 
assumed in those places where it is explicitly invoked.
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