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An inductive logic is a system of evidential support that extends deductive logic to less
-than-certain inferences. For valid deductive arguments the premises logically entail
the conclusion, where the entailment means that the truth of the premises provides a 
guarantee of the truth of the conclusion. Similarly, in a good inductive argument the 
premises should provide some degree of support for the conclusion, where such 
support means that the truth of the premises indicates with some degree of strength that 
the conclusion is true. Presumably, if the logic of good inductive arguments is to be of 
any real value, the measure of support it articulates should meet the following 
condition: 

Criterion of Adequacy (CoA):
As evidence accumulates, the degree to which the collection of true 
evidence statements comes to support a hypothesis, as measured by the 
logic, should tend to indicate that false hypotheses are probably false and 
that true hypotheses are probably true. 

This article will focus on the kind of the approach to inductive logic most widely 
studied by philosophers and logicians in recent years. These logics employ conditional 
probability functions to represent measures of the degree to which evidence statements 
support hypotheses. This kind of approach usually draws on Bayes' theorem, which is a 
theorem of probability theory, to articulate how the implications of hypotheses about 
evidence claims influences the degree to which hypotheses are supported by those 
evidence claims. We will examine the extent to which this kind of logic may pass 
muster as an adequate logic of evidential support, especially in regard to the testing of 
scientific hypotheses. In particular, we will see how such a logic may be shown to 
satisfy the Criterion of Adequacy.
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Sections 1 through 3 present all of the main ideas behind the probabilistic logic of 
evidential support. For most readers these three sections will suffice to provide an 
adequate understanding of the subject. Those readers who want to know more about 
how the logic applies when the implications of hypotheses about evidence claims
(called likelihoods) are vague or imprecise may, after reading sections 1-3, skip down 
to section 6.

Sections 4 and 5 are for the more advanced reader who wants a detailed understanding 
of some telling results about how this logic may bring about convergence to the truth. 
These results show that the Criterion of Adequacy is indeed satisfied — that as 
evidence accumulates, false hypotheses will very probably come to have evidential 
support values (as measured by their posterior probabilities) that approach 0; and as 
this happens, a true hypothesis will very probably acquire evidential support values (as 
measured by their posterior probabilities) that approach 1.
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1. Inductive Arguments

Let us begin by considering examples of the kinds of arguments an inductive logic 
should explicate. Consider the following two arguments:

Example 1.. Every raven in a random sample of 3200 ravens is black. 
This strongly supports the hypothesis that all ravens are black. 
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Example 2. 62 percent of voters in a random sample of 400 registered 
voters (polled on February 20, 2004) said that they favor John Kerry over 
George W. Bush for President in the 2004 Presidential election. This 
supports with a probability of at least .95 the hypothesis that between 57 
percent and 67 percent of all registered voters favor Kerry over Bush for 
President (at or around the time the poll was taken).

An argument of this kind is often called an induction by enumeration of cases. We may 
represent the logical form of such arguments semi-formally as follows:

Premise: In random sample S consisting of n members of population B, the 
proportion of members that have attribute A is r. 

Therefore, with degree of support p,

Conclusion: The proportion of all members of B that have attribute A is 
between r�q and r+q (i.e., is within margin of errorq of r).

Let's lay out this argument more formally. The Premise breaks down into three 
separate premises:[1]

Semi-formalization Formalization
Premise 1 The frequency (or proportion) of members 

with attribute A among the members of S is 
r.

F[A,S] = r

Premise 2 S is a random sample of B with respect to 
whether or not its members have A

Rnd[S,B,A]

Premise 3 Sample S has exactly n members Size[S] = n
Therefore with degree of support p ========{p
Conclusion The proportion of all members of B that 

have attribute A is between r�q and r+q (i.e. 
is within margin of errorq of r)

F[A,B] = r± q

Any inductive logic that encompasses such arguments should address two challenges. 
(1) It should tell us which enumerative inductive arguments should count as good
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inductive arguments rather than as inductive fallacies. In particular, it should tell us 
how to determine the appropriate degree p to which such premises inductively support
the conclusion, for a given margin of error q. (2) It should demonstrably satisfy the 
CoA. That is, it should be provable (as a metatheorem) that if a conclusion expressing 
the approximate proportion for an attribute in a population is true, then it is very likely 
that sufficiently numerous random samples of the population will provide true 
premises for good inductive arguments that confer degrees of support p approaching 1 
for that true conclusion — where, on pain of triviality, these sufficiently numerous
samples are only a tiny fraction of a large population. Later we will see how a 
probabilistic inductive logic may meet these two challenges.

Enumerative induction is rather limited in scope. This form of induction is only 
applicable to the support of claims involving simple universal conditionals (i.e., claims 
of form ‘All Bs are As’) and claims about the proportion of an attribute in a population 
(i.e., ‘The frequency of As among the Bs is r’). And it applies only when the evidence 
for such claims consists of instances of Bs observed to be either As or non-As. 
However, many important empirical hypotheses are not reducible to this simple form, 
and the evidence for hypotheses is often not composed of simple instances. Consider, 
for example, the Newtonian Theory of Mechanics:

All objects remain at rest or in uniform motion unless acted upon by some 
external force. An object's acceleration (i.e., the rate at which its motion 
changes from rest or uniform motion) is in the same direction as the force 
exerted on it; and the rate at which the object accelerates due to a force is 
equal to the magnitude of the force divided by the object's mass. If an 
object exerts a force on another object, the second object exerts an equal 
amount of force on the first object, but in the opposite direction to the 
force exerted by the first object. 

The evidence for (and against) this theory is not gotten by examining a randomly 
selected subset of objects and the forces acting upon them. Rather, the theory is tested 
by calculating observable phenomena entailed by it in a wide variety of specific 
situations — ranging from simple collisions between small bodies to the trajectories of 
planets and comets — and then seeing whether those phenomena really occur. This 
approach to testing hypotheses and theories is ubiquitous, and should be captured by an 
adequate inductive logic.

5

Many less theoretical instances of inductive reasoning also fail to be captured by 
enumerative induction. Consider the kinds of inferences members of a jury are 
supposed to make based on the evidence presented at a murder trial. The inference to 
probable guilt or innocence is usually based on a patchwork of various sorts of 
evidence. It almost never involves consideration of a randomly selected sequences of 
past situations when people like the accused committed similar murders. Or, consider 
how a doctor diagnoses her patient on the basis of his symptoms. Although the 
frequency of occurrence of various diseases when similar symptoms were present may 
play a role, this is clearly not the whole story. Diagnosticians commonly employ a 
form of hypothetical reasoning — e.g., if the patient has a brain tumor, would that 
account for all of his symptoms?; or are these symptoms more likely the result of a 
minor stroke?; or is there another possible cause? The point is that a full account of 
inductive logic should not be limited to enumerative induction, but should also 
explicate the logic of hypothetical reasoning through which hypotheses and theories 
are tested on the basis of their predictions about specific observations. In Section 3 we 
will see how a kind of probabilistic inductive logic called "Bayesian Confirmation 
Theory" captures such reasoning.

2. Inductive Logic and Inductive Probabilities

Probability, and the equivalent notion odds, are the oldest and best understood ways of 
representing partial belief and uncertain inference. Probability has been studied by 
mathematicians for over 350 years, but the concept is certainly much older. In recent 
times a number of other related representations of uncertainty have emerged. Many of 
these have found useful application in computer based artificial intelligence systems 
that perform inductive inferences in expert domains such as medical diagnosis. This 
article will explicate the representation of inductive inferences in terms of probability. 
A brief comparative description of some of the most prominent alternative 
representations may be found in the following supplementary document:

Some Prominent Approaches to the Represention of Uncertain Inferences. 
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2.1 The Historical Origins of Probabilistic Logic

The mathematical study of probability originated with Blaise Pascal and Pierre de 
Fermat in the mid-17th century. From that time through the early 19th century, as the 
mathematical theory continued to develop, the theory was primarily applied to the 
assessment of risk in games of chance and to drawing simple statistical inferences 
about characteristics of large populations — e.g., to compute appropriate life insurance 
premiums based on mortality rates. In the early 19th century Pierre de Laplace made 
further theoretical advances and showed how to apply probabilistic reasoning to a 
much wider range of scientific and practical problems. Since that time probability has 
become an indispensable tool in the sciences, business, and many other areas of 
modern life.

Throughout its development various researchers appear to have thought of probability 
as a kind of logic. But the first extended treatment of probability as an explicit part of 
logic was George Boole's The Laws of Thought (1854). John Venn followed two 
decades later with an alternative empirical frequentist account of probability in The 
Logic of Chance (1876). Not long after that the whole discipline of logic was 
transformed by new developments in deductive logic.

In the late 19th and early 20th century Frege, followed by Russell and Whitehead, 
showed how deductive logic could be represented in the kind of rigorous formal 
system we now call quantificational logic or predicate logic. For the first time 
logicians had a fully formal deductive logic powerful enough to represent all valid 
deductive arguments in mathematics and the sciences — a logic in which the validity 
of deductive arguments depends only on the logical structure of the sentences 
involved. This development spurred some logicians to attempt to apply a similar 
approach to inductive reasoning. The idea was to extend the deductive entailment 
relation to a notion of probabilistic entailment for cases where premises provide less 
than conclusive support for conclusions. These partial entailments are expressed in 
terms of conditional probabilities, probabilities of the form P[C | B] = r (read “the 
probability of C given B is r”), where P is a probability function, C is a conclusion 
sentence, B is a conjunction of premise sentences, and r is the probabilistic degree of 
support that B provides for C. Attempts to develop such a logic have varied widely in 
regard to precisely how the deductive model is emulated.

7

Some inductive logicians have tried to follow the deductive paradigm very closely by 
attempting to specify inductive support probabilities in terms of the syntactic structures 
of premise and conclusion sentences. In deductive logic the syntactic structure of the 
sentences involved completely determines whether premises logically entail a 
conclusion. So these logicians attempted to specify inductive support probabilities 
solely in terms of the syntactic structure of premise and conclusion sentences. In such a 
system each sentence confers a syntactically specified degree of support on each of the 
other sentences of the language. The inductive probabilities in such a system are 
logical in the sense that they depend on syntactic structure alone. This kind of 
conception was articulated to some extent by John Maynard Keynes in his Treatise on 
Probability (1921). Rudolf Carnap pursued this idea with greater rigor in his Logical 
Foundations of Probability (1950) and in several subsequent works (e.g., Carnap 
1952). (For details of Carnap's approach see the section on logical probability in the 
entry on interpretations of the probability calculus, in this Encyclopedia.)

In the inductive logics of Keynes and Carnap, Bayes' theorem, which is a theorem of 
probability theory, plays a central role in expressing how evidence comes to bear on 
hypotheses. (We'll examine Bayes' theorem later.) So, such approaches might well be 
called Bayesian logicist inductive logics. Other well-known Bayesian logicist attempts 
to develop a probabilistic inductive logic include (Jeffreys, 1939), (Jaynes, 1968), and 
(Rosenkrantz, 1981).

It is now generally held that the core idea of Bayesian logicism is fatally flawed — that 
syntactic logical structure cannot be the sole determiner of the degree to which 
premises inductively support conclusions. A crucial facet of the problem faced by 
Bayesian logicism involves how the logic is supposed to apply to scientific contexts 
where the conclusion sentence is some hypothesis or theory, and the premises are 
evidence claims. The difficulty is that in any probabilistic logic that satisfies the usual 
axioms for probabilities, the inductive support for a hypothesis must depend in part on 
its prior probability. This prior probability represents how plausible the hypothesis is 
supposed to be based on considerations other than the observational and experimental 
evidence (e.g. perhaps due to relevant plausibility arguments). A Bayesian logicist 
must tell us how to assign values to these pre-evidential prior probabilities of 
hypotheses, for each of the hypotheses or theories under consideration. Furthermore, 
this kind of Bayesian logicist must determine these prior probability values in a way 
that relies only on the syntactic logical structure of these hypotheses, perhaps based on 
some measure of their syntactic simplicities. There are severe technical problems with 
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getting this idea to work. Moreover, various kinds of examples seem to show that such 
an approach must assign intuitively quite unreasonable prior probabilities to 
hypotheses in specific cases (see the footnote cited near the end of section 3.2 for 
details). Furthermore, for this idea to apply to the evidential support of real scientific 
theories, scientists would have to formalize theories in a way that makes their relevant 
syntactic structures apparent, and then evaluate theeories solely on that syntactic basis 
(together with their syntactic relationships to evidence statements). Are we to evaluate 
alternative theories of gravitation (and alternative quantum theories) this way? This 
seems an extremely doubtful approach to the evaluation of real scientific theories and 
hypotheses. Thus, it seems that logical structure alone cannot suffice for the inductive 
evaluation of scientific hypotheses. (This issue will be treated in more detail in Section 
3, after we first see how probabilistic logics employ Bayes' theorem to represent the 
evidential support for hypotheses as a function of prior probabilities together with 
their evidential likelihoods.)

At about the time the Bayesian logicist idea was developing, an alternative conception 
of probabilistic inductive reasoning was also emerging. This approach is now generally 
referred to as the Bayesian subjectivist or personalist approach to inductive reasoning 
(see, e.g., Ramsey, 1926; De Finetti, 1937; Savage 1954; Edwards, Lindman, Savage, 
1963; Jeffrey, 1983, 1992; Howson, Urbach, 1993; Joyce 1999). It treats inductive 
probability as part of a larger normative theory of belief and action known as Bayesian 
decision theory. The principle idea is that the strength of an agent's desires for various 
possible outcomes should combine with her belief-strengths regarding claims about the 
world to produce optimally rational decisions. Bayesian subjectivists provide a logic 
that captures this idea, and they attempt to justify this logic by showing that in 
principle it leads to optimal decisions about which of various risky alternatives should 
be pursued. On the Bayesian subjectivist or personalist account of inductive 
probability, inductive probability functions represent the subjective (or personal) belief
-strengths of ideally rational agents, the kind of belief strengths that figure into rational 
decision making. (See the section on subjective probability in the entry on 
interpretations of the probability calculus, in this Encyclopedia.)

Elements of the logicist conception of inductive logic live on today as part of the 
general approach called Bayesian inductive logic. However, among philosophers and 
statisticians the term ‘Bayesian’ is now most closely associated with the subjectivist or 
personalist account of belief and decision. And the term ‘Bayesian inductive logic’ has 
come to carry the connotation of a logic that involves purely subjective probabilities. 
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This current usage is misleading since for inductive logics the Bayesian/non-Bayesian 
distinction should really hang on whether the logic gives Bayes' theorem a prominent 
role, or whether the logic largely eschews the use of Bayes' theorem in inductive 
inferences (as do the classical approaches to statistical inference developed by R. A. 
Fisher (1922) and by Neyman and Pearson (1967)). Indeed, any inductive logic that 
employs the same probability functions to represent both the probabilities of evidence 
claims due to hypotheses and the probabilities of hypotheses due to those evidence 
claims must be a Bayesian inductive logic in this broader sense; because Bayes' 
theorem follows directly from the axioms that each probability function must satisfy, 
and Bayes' theorem expresses a necessary connection between the probabilities of 
evidence claims due to hypotheses and the probabilities of hypotheses due to those 
evidence claims.

In this article the probabilistic inductive logic we will examine is a Bayesian inductive 
logic in the broader sense. This logic will not presuppose the subjectivist Bayesian 
theory of belief and decision, and will avoid the objectionable features of Bayesian 
logicism. Later we will see that there are good reasons to distinguish inductive 
probabilities from Bayesian degree-of-belief probabilities and from purely logical 
probabilities. So, the probabilistic logic articulated in this article will be presented in a 
way that depends on neither of these conceptions of what the probability functions are. 
However, this version of the logic will be general enough that it may be fitted to a 
Bayesian subjectivist or Bayesian logicist program, if one desires to do that.
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2.2 Probabilistic Logic: Axioms and Characteristics

All logics derive from the meanings of terms in sentences. What we now recognize as 
formal deductive logic rests on the meanings (i.e., the truth-functional properties) of 
the standard logical terms. These terms, and the symbols we will employ to represent 
them, are as follows: ‘not’, ‘~’; ‘and’, ‘·’; ‘or’, ‘�’; truth-functional ‘if-then’, ‘�’; ‘if 
and only if’, ‘�’; the quantifiers ‘all’, ‘�’, and ‘some’, ‘�’; and the identity relation, 
‘=’. The meanings of all other terms (i.e., names, and predicate and relational 
expressions) are permitted to “float free”. That is, the logic depends neither on their 
meanings nor on the truth-values of sentences containing them. It merely supposes that 
these other terms are meaningful, and that sentences containing them have truth-
values. Deductive logic then tells us that the logical structures of some sentences —
i.e., the syntactic arrangements of their logical terms — preclude them from being 
jointly true of any possible state of affairs. That is the notion of logical inconsistency. 
The notion of logical entailment is interdefinable with it. A collection of premise 
sentences logically entails a conclusion sentence just when the negation of the 
conclusion is logically inconsistent with those premises.

An inductive logic must, it seems, deviate from this paradigm in several significant 
ways. For one thing, logical entailment is an absolute, all-or-nothing relationship 
between sentences, whereas inductive support comes in degrees of strength. For 
another, although the notion of inductive support is analogous to the deductive notion 
of logical entailment, and is arguably an extension of it, there seems to be no inductive 
logic extension of the notion of logical inconsistency — at least none that is inter-
definable with inductive support in the way that logical inconsistency is inter-definable 
with logical entailment. That is, B logically entails A just when (B·~A) is logically 
inconsistent. However, it turns out that when the unconditional probability of (B·~A) is 
very nearly 0 (i.e., when (B·~A) is “nearly inconsistent”), the degree to which B
inductively supports A, P[A | B], may range anywhere between 0 and 1. 

Another notable difference is that when B logically entails A, adding a premise C
cannot undermine the entailment — i.e., (C·B) must entail A as well. This property of 
logical entailment is called monotonicity. But inductive support is nonmonotonic. In 
general, depending on what A, B, and C mean, adding a premise C to B may 
substantially raise the degree of support for A, or may substantially lower it, or may 
leave it completely unchanged — i.e., P[A | C·B] may have a value much larger than 
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P[A | B], or a much smaller value, or it may have the same, or nearly the same value as 
P[A | B].

In a formal treatment of probabilistic inductive logic, inductive support is represented 
by conditional probability functions defined on sentences of a formal language L. 
These conditional probability functions are constrained by certain rules or axioms that 
are sensitive to the meanings of the logical terms (i.e., ‘not’, ‘and’, ‘or’, etc., the 
quantifiers ‘all’ and ‘some’, and the identity relation). The axioms apply without 
regard for what the other terms of the language may mean. In essence the axioms 
specify a family of possible support functions, {P�, P�, … , P�, …} for a given 
language L. Although each support function satisfies these same axioms, the further 
issue of which among them provides an appropriate measure of inductive support is 
not settled by the axioms alone. That may depend on additional factors, such as the 
meanings of the non-logical terms in the language.

A good way to specify the rules or axioms of the logic of inductive support functions is 
as follows. Let L be a language for predicate logic with identity, and let ‘�’ be the 
standard logical entailment relation — i.e. the expression ‘B�A’ says “B logically 
entails A” and the expression ‘�A’ says “A is a tautology”. 

A support function is a function P� from pairs of sentences of L to real 
numbers between 0 and 1 that satisfies the following rules or axioms: 

1. P�[D | E] < 1 for at least one pair of sentences D and E. 

For all sentence A, B, and C, 

2. If B � A, then P�[A | B] =1; 
3. If � (B�C), then P�[A | B] = P�[A | C];
4. If C � ~(B·A), then P�[(A� B) | C] = P�[A | C] + P�[B | C] or 

P�[D | C] = 1 for every D;
5. P�[(A·B) | C] = P�[A | (B·C)] × P�[B | C].

This axiomatization takes conditional probability as basic, as seems appropriate for 
evidential support functions. These functions agree with the usual unconditional 
probability functions when the latter are defined — just let P�[A] = P�[A | (D�~D)].
However, these axioms permit conditional probabilities P�[A | C] to remain defined 
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even when condition statement C has probability 0 (i.e., even when P�[C | (D�~D)] = 
0).

Notice that conditional probability functions apply only to pairs of sentences, a 
conclusion sentence and a premise sentence. So in probabilistic inductive logic we 
represent finite collections of premises by conjoining them into a single sentence. 
Rather than say, ‘A is supported to degree r by the set of premises {B1, B2, B3,…,Bn}’, 
we say ‘A is supported to degree r by the premise (…((B1·B2)·B3)·…·Bn)’, and write 
this as ‘P[A | (…((B1·B2)·B3)·…·Bn)] = r’.

Let us briefly consider each axiom, 1-5, to see how plausible it is as a constraint on a 
quantitative measure of inductive support, and how it extends the notion of deductive 
entailment. First, notice that adopting an inductive support scale between 0 and 1 is 
merely a convenience. This scale is usual for probabilities; but any other scale might 
do as well.

Rule (1) is a non-triviality requirement. It says that at least one sentence must be 
supported by another to degree less than 1. We might instead have required that 
P�[(A·~A) | (A�~A)] < 1; but this turns out to be derivable from Rule (1) together with 
the other rules.

Each degree-of-support function P� on L measures support strength with numerical 
values between 0 and 1, with maximal support at 1. When B logically entail A, the 
support of A based on B is maximal. This is what Rule (2) asserts. It comports with the 
idea that an inductive support function is a generalization of the deductive entailment 
relation.

Rule (3) is equally obvious. It says that whenever B is logically equivalent to C, as 
premises each must provide precisely the same amount of support to every conclusion.

Rule (4) says that inductive support “adds up” in a plausible way. When C logically 
entails the incompatibility of A and B, the support C provides each separately must 
sum to the support it provides for their disjunction. The only exception is in cases 
where C acts like a contradiction and supports all sentences to degree 1.

To understand what Rule (5) says, think of a support function P� as describing a 
measure on possible worlds or possible states of affairs. ‘P�[C | D] = r’ says that the 
proportion of worlds in which C is true among those where D is true is r. Rule (5) then 

13

says the following: if A is true in fraction r of worlds where B and C are true together, 
and if B (together with C) is true in proportion q of all the C-worlds, then A and B (and 
C) should be true together in fraction r of that proportion q of B (and C) worlds among 
the C-worlds.[2]

From these five rules all of the usual theorems of probability theory are easily derived. 
For example, logically equivalent sentences are always supported to the same degree: 
if C � (B�A), then P�[A | C] = P�[B | C]. The following generalizations of the Addition 
Rule (4) may be proved as well: 

P�[(A�B) | C] = P�[A | C] + P�[B | C] � P�[(A·B) | C]. 

If {B1, …, Bn} is any finite set of sentences such that for each pair Bi and 
Bj, C � ~(Bi·Bj) (i.e., the members of the set are mutually exclusive, given 
C), then 

P�[((B1� B2)�…�Bn) | C]  =   
n
	 
i=1

P�[Bi | C],  

unless P�[D | C] = 1 for every sentence D. 

If {B1, …, Bn, …} is any countably infinite set of sentences such that for 
each pair Bi and Bj, C � ~(Bi·Bj), then 

limn P�[((B1� B2)�…�Bn) | C]  =   


	 
i=1

P�[Bi | C],  

unless P�[D | C] = 1 for every sentence D.[3]

In the context of inductive logic it makes good sense to supplement the above rules 
with two additional rules. One is this:

6. If A is an axiom of set theory or any other piece of pure mathematics employed 
by the sciences, or if A is analytically truth (given the meanings of terms in L
associated with support function P�), then, for all C, P�[A | C] = 1.
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The idea is that inductive logic is about evidential support for contingent claims. 
Nothing can count as empirical evidence against non-contingent truths. They should be 
maximally supported by all claims C.

One important respect in which inductive logic should follow the deductive paradigm 
is in not presupposing the truth-values of contingent sentences. No inductive support 
function P� should permit a tautological premise to assign degree of support 1 to a 
contingent claim — i.e., P�[C | (B�~B)] should always be less than 1 when C is 
contingent. For, the whole idea of inductive logic is to provide a measure of the extent 
to which contingent premise sentences indicate the likely truth-values of contingent 
conclusion sentences. This idea won't work properly if the truth-values of some 
contingent sentences are presupposed. Such presuppositions would make inductive 
logic enthymematic. It may hide significant premises in inductive support 
relationships.

However, it is common practice for probabilistic logicians to sweep provisionally 
accepted contingent claims under the rug by assigning them probability 1. This saves 
the trouble of repeatedly writing a given contingent sentence B as a premise, since 
P�[A | B·C] will just equal P�[A | C] whenever P�[B | C] = 1. Although this device is 
useful, such probability functions should be considered mere abbreviations of proper, 
logically explicit, non-enthymematic, inductive support functions. Thus, properly 
speaking, an inductive support function P�should not assign probability 1 to a sentence 
relative to all possible premises unless that sentence is either (i) logically true, or (ii) 
an axiom of set theory or some other piece of pure mathematics employed by the 
sciences, or (iii) unless according to the interpretation of the language that 
P�presupposes, the sentence is analytic, and so outside the realm of evidential support. 
Thus, we adopt the following version of the so-called “axiom of regularity”.

7. If, for all C, P�[A | C] = 1, then A is a logical truth or an axiom of set theory or 
some other piece of pure mathematics employed by the sciences, or A is 
analytically true (according to the meanings of the terms of L as represented in 
P�).

This is more a convention than an axiom. Taken together with (6) it tells us that a 
support function P� counts as non-contingently true just those sentences that it assigns 
probability 1 on every premise.

15

Some Bayesian logicists (e.g. Carnap) thought that inductive logic might be made to 
depend solely on the logical form of sentences, just like deductive logic. The idea was, 
effectively, to supplement axioms 1–7 with additional axioms that depend only on the 
logical structures of sentences, and to introduce enough such axioms to reduce the 
number of possible support functions to a single uniquely best confirmation function. It 
is now widely agreed that this project cannot be carried out in a plausible way. Perhaps 
there are additional rules that should be added to 1–7. But it is doubtful such rules can 
suffice to specify a single, uniquely qualified support function based only on logical 
structure. We will se why in Section 3, but only after first seeing how inductive 
probabilities capture the relationship between hypotheses and evidence.

2.3 Two Conceptions of Inductive Probability

Axioms 1–7 for conditional probability functions merely place formal constraints on 
what may properly count as a degree of support function. Each function P� satisfying 
these rules may be viewed as a possible way of applying the notion of inductive 
support to a language L that respects the meanings of the logical terms, much as each 
possible truth-value assignment for a language represents a possible way of assigning 
truth-values to its sentences in a way that respects the semantic rules expressing the 
meanings of the logical terms. The issue of which of the possible truth-value 
assignments to a language represents the actual truth or falsehood of its sentences 
depends on more than this — it depends on the meanings of the non-logical terms and 
on the state of the actual world. Similarly, the degree to which some sentences actually
support others in a fully meaningful language must rely on something more than 
merely satisfying the axioms for support functions. It must, at least, rely on what the 
sentences of the language mean, and perhaps on much more besides. But, what more? 
Various “interpretations of probability”, which offer accounts of how support functions 
are to be understood, may help by filling out our conception of what inductive support
is really about. There are two prominent views.

One reading is to take each P� as a measure on possible worlds, or possible states of 
affairs. The idea is that, given a fully meaningful language (and, perhaps relative to the 
inferential inclinations of a particular agent, �) ‘P�[A | B] = r’ says that among the 
worlds in which B is true, A is true in proportion r of them. There will generally not be 
a single privileged way to define such a measure on possible worlds. Rather, it may be 
that each of a number of functions P�, P�, P�, …, etc., satisfying the constraints 
imposed by axioms 1-7 can represent a viable measure of the inferential import of 
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propositions expressed by sentences of the language. This idea needs more fleshing 
out, of course. The next section will give some indication of how that might go.

Subjectivist Bayesians offer an alternative reading of the support functions. First, they 
usually take unconditional probability as basic, and they take conditional probabilities 
as defined in terms of them: the conditional probability ‘P�[A | B]’is defined as a ratio 
of unconditional probabilities, P�[A·B]/P�[B].Subjectivist Bayesians take each 
unconditional probability function P� to represent the belief-strengths or confidence-
strengths of an ideally rational agent, �. On this understanding ‘P�[A] =r’ says, “the 
strength of �'s belief (or confidence) that A is truth is r.” Subjectivist Bayesians usually 
tie such belief strengths to what the agent would be willing to bet on A turning out to 
be true. Roughly, the idea is this. Suppose that an ideally rational agent � would be 
willing to accept a wager that would yield (no less than) $u if A turns out to be true and 
would lose him $1 if A turns out to be false. Then, under reasonable assumptions about 
how much he desires money, it can be shown that his belief strength that A is true 
should be P�[A] = 1/(u+1). And it can further be shown that any function P� that 
expresses such betting-related belief-strengths on all statements in agent �'s language 
must satisfy axioms for unconditional probabilities analogous to axioms 1–5.[4]

Moreover, it can be shown that any function P� that satisfies these axioms is a possible 
rational belief function for some ideally rational agent �. These relationships between 
belief-strengths and the desirability of outcomes (e.g., gaining money or goods on bets) 
are at the core of subjectivist Bayesian decision theory. Subjectivist Bayesians usually 
take inductive probability to just be this notion of probabilistic belief-strength.

Undoubtedly real agents do believe some claims more strongly than others. And, 
arguably, the belief strengths of real agents can be measured on a probabilistic scale 
between 0 and 1, at least approximately. And clearly the inductive support of evidence 
for hypotheses should influence the strength of an agent's belief in those hypotheses. 
However, there is good reason for caution about viewing inductive support functions as 
Bayesian belief-strength functions, as we will see a bit later. So, perhaps an agent's 
support function is not simply identical to his belief function, and perhaps the 
relationship between inductive support and belief-strength is somewhat more 
complicated.

In any case, some account of what support functions are supposed to represent is 
clearly needed. The belief function account and the possible worlds account are two 
attempts to provide this. Let us put this interpretative issue aside for now. One may be 
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able to get a better handle on what inductive support functions really are after one sees 
how the inductive logic that draws on them is supposed to work.

3. The Application of Inductive Probabilities to the 
Evaluation of Scientific Hypotheses

One of the most important applications of a formal inductive logic is to the 
confirmation or refutation of scientific hypotheses. The logic should explicate the 
notion of evidential support for all sorts of hypotheses, ranging from simple diagnostic 
claims (e.g., “the patient is infected with the HIV”) to scientific theories about the 
fundamental nature of the world, like quantum mechanics or the theory of relativity. 
We'll now look into how support functions (a.k.a. confirmation functions) represent the 
logic of hypothesis confirmation. This kind of inductive logic is often referred to as 
Bayesian Confirmation Theory.

Consider some exhaustive set of mutually incompatible hypotheses or theories about 
some subject matter, {h1, h2, …}. The set of alternatives may be very simple, e.g., 
{“the patient has HIV”, “the patient is free of HIV”}. Or, when the physician is trying 
to determine which among a range of diseases is causing the patient's symptoms, the 
alternative hypotheses may consist of a long list of possible diseases. For the 
cosmologist the alternatives may be a list of several alternative gravitational theories, 
or several versions of the “same theory“. Where inductive logic is concerned, even a 
slightly different version of a given theory will count as a distinct theory if it differs 
from the original in empirical import. (This should not be confused with the converse 
claim, which is the positivistic assertion that theories with the same empirical content 
are really the same theory. Inductive logic doesn't require you to buy that!)

In general there may be finitely or infinitely many such alternatives under 
consideration. They may all be considered at once, or they may be constructed and 
compared over a long historical period. One may even think of the set of alternative 
hypotheses as consisting of all logically possible alternatives expressible in a given 
language about a given subject matter — e.g., all possible theories of the origin and 
evolution of the universe expressible in English and mathematics. Although testing 
every possible alternative may pose practical challenges, it turns out that the logic 
works much the same way in the logically ideal case as it does in realistic cases.
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If the set of alternative hypotheses is finite, it may contain a catch-all hypothesis hK
that says that none of the other hypotheses are true (e.g., “none of the other known 
diseases is present”). When only some number u of explicit alternative hypotheses is 
under consideration, hK is just the sentence (~h1·…·~hu).

Evidence for scientific hypotheses consists of the results of specific experiments or 
observations. For a given experiment or observation, let ‘c’ represent a description of 
the relevant conditions under which it is performed, and let ‘e’ represent a description 
of the result, the evidential outcome of conditions c.

Scientific hypotheses often require the mediation of background knowledge and 
auxiliary hypotheses to help them express claims about evidence. Let ‘b’ represent all 
background and auxilliary hypothese not at issue in the assessment of the hypotheses 
hi, but that mediate their implications about evidence. In cases where a hypothesis is 
deductively related to evidence, either hi·b·c � e or hi·b·c �  ~e.

For example, hi might be the Newtonian Theory of Gravitation. A test of the theory 
might involve a condition statement c describing the results of some earlier 
measurements of Jupiter's position, and describing the means by which the next 
position measurement will be made; the outcome description e states the result of this 
additional position measurement; and the background information (or auxiliary 
hypotheses) b might state some already well confirmed theory about the workings and 
accuracy of the devices used to make the position measurements. Thus, if (c·e) occurs, 
this may be considered good evidence for hi, given b, as the hypothetico-deductive
account of confirmation maintains. On the other hand, if from hi·b·c we calculate some 
outcome incompatible with e, then hi·b·c �  ~e. In that case from deductive logic alone 
we get that b·c·e �  ~hi, and hi is said to be falsified by b·c·e. 

Duhem (1906) and Quine (1953) are generally credited with alerting inductive 
logicians to the importance of auxiliary hypotheses. They point out that scientific 
hypotheses often make little contact with evidence claims on their own. Rather, most 
scientific hypotheses only make testable predictions relative to background claims or 
auxiliary hypotheses that tie them to that evidence. Typically auxiliaries are highly 
confirmed hypotheses from other scientific domains. They often describe the operating 
characteristics of various devices (e.g. measuring instruments) used to make 
observations or conduct experiments. They are usually not at issue in the testing of hi
against its competitors, because hi and its alternatives usually rely on the same 
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auxiliary hypotheses to tie them to the evidence. But even when an auxiliary 
hypothesis is already well-confirmed, we cannot simply assume that it is 
unproblematic, or just known to be true. Rather, the evidential support or refutation of 
a hypothesis h is relative to whatever auxiliaries and background information (in b) is 
being supposed. In other contexts the auxiliary hypotheses used to test hi may 
themselves be among a collection of alternative hypotheses that are themselves subject 
to evidential support or refutation. (Furthermore, to the extent that competing 
hypotheses employ different auxiliary hypotheses in accounting for evidence, the 
evidence only tests each such hypothesis in conjunction with its distinct auxiliaries 
against alternative hypotheses packaged with their distinct auxiliaries.) Thus, what 
counts as a hypothesis to be tested, hi, and what counts as auxiliary hypotheses and 
background information, b, and even to some extent what counts as the conditions c for 
an experiment or observation, will always depend on the epistemic context — on what 
alternative hypotheses are being tested by the same experiments or observations, and 
on what claims are being presupposed or held fixed for present purposes, and on what 
claims are considered to be immediate preconditions for the evidential outcome e. No 
statement is intrinsically a hypotheis, or intrinsically an auxiliary (or a background 
condition), or intrinsically an evidential condition. Rather, those are roles statements 
may play in an epistemic context, and the very same statement may play different roles 
in different confirmational contexts.

In a probabilistic inductive logic the degree to which evidence c·e supports a 
hypothesis hi relative to background b is represented by the posterior probability of hi, 
P�[hi | b·cn·en]. It turns out that the posterior probability of a hypothesis depends on 
just two kinds of factors: (1) its prior probability, P�[hi | b], together with the prior 
probabilities of its competitors, P�[hj | b], etc.; and (2) the likelihood of evidential 
outcomes e according to hi, given that b and c are true, P[e | hi·b·c], together with the 
likelihoods of outcomes according to its competitors, P[e | hj·b·c], etc. In this section 
we will first examine each of these two kinds of factors in some detail, and then see 
precisely how the values of posterior probabilities depend on them.
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3.1 Likelihoods

In probabilistic inductive logic the likelihoods carry the empirical import of 
hypotheses. A likelihood is a support function probability of form P[e | hi·b·c]. It 
expresses how likely it is that outcome e will occur according to hypothesis hi.[5] If a 
hypothesis together with auxiliaries and observation conditions deductively entails an 
evidence claim, the axioms of probability make the corresponding likelihood objective 
in the sense that every support function must agree on its values: i.e., P[e | hi·b·c] = 1 if 
hi·b·c � e; P[e | hi·b·c] = 0 if hi·b·c �  ~e. However, in many cases the hypothesis hi
will not be deductively related to the evidence, but will only imply it probabilistically. 
There are (at least) two ways this might happen. Either hi may itself be an explicitly 
probabilistic or statistical hypothesis, or it may be that an auxiliary statistical 
hypothesis, as part of background b, connects hi to the evidence. Let's briefly consider 
examples of each.

A blood test for HIV has a known false-positive rate and a known true-positive rate. 
Suppose the false positive rate is .05 — i.e., the test incorrectly shows the blood 
sample to be positive for HIV in 5% of all cases where HIV is not present. And 
suppose the true-positive rate is .99 — i.e., the test correctly shows the blood sample to 
be positive for HIV in 99% of all cases where HIV really is present.When a particular 
patient's blood is tested, the hypotheses under consideration are ‘the patient is infected 
with HIV’, h, and ‘the patient is not infected with HIV’, ~h. In this context the known 
test characteristics function as background information, b. The experimental condition 
c merely states that this patient was subjected to a blood test for HIV, which was 
processed by the lab in the usual way. Let us suppose that the outcome e states that the 
result is positive for HIV. The relevant likelihoods, then, are P[e | h·b·c] = .99 and 
P[e | ~h·b·c] = .05. 

In this example the values of the likelihoods are entirely due to the statistical 
characteristics of the accuracy of the test, which is carried by the background 
information b. The hypothesis h being tested is not itself statistical.

This kind of situation may, of course, arise for much more complex hypotheses. The 
hypothesis of interest may be some deterministic physical theory, say Newtonian 
Gravitation Theory. Some of the experiments that test this theory relay on somewhat 
imprecise measurements that have known statistical error characteristics, which are 
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expressed as part of the background or auxiliary hypotheses b. For example, the 
auxiliary b may describe the error characteristics of a device that measures the torque 
imparted to a quartz fiber, where the measured torque is used to assess the strength of 
the gravitational force between test masses. In that case b may say that for this kind of 
device the measurement errors are normally distributed about whatever value a given 
gravitational theory predicts, with some specified standard deviation that is 
characteristic of the device. This results in specific values ri for the likelihoods, 
P[e | hi·b·c] = ri, for each of the various alternative gravitational theories hi being 
tested.

On the other hand, the hypotheses being tested may themselves be statistical in nature. 
One of the simplest examples of statistical hypotheses and their role in likelihoods are 
hypotheses about the chance characteristic of coin-tossing. Let h[r] be a hypothesis that 
says a specific coin has a propensity r (e.g., 1/2) for coming up heads on normal tosses, 
and that such tosses are probabilistically independent of one another. Let c state that 
the coin is tossed n times in the normal way; and let e say that on these tosses the coin 
comes up heads m times. In cases like this the value of the likelihood of the outcome e
on hypothesis h for condition c is given by the well-known binomial term: 

P[e | h[r]·b·c] =
n!
m! × (n�m)! × rm (1�r)n�m.

There are, of course, more complex cases of likelihoods involving statistical 
hypotheses. Consider, for example, the hypothesis that plutonium 233 nuclei have a 
half-life of 20 minutes — i.e., the propensity for a Pu-233 nucleus to decay within a 20 
minute period is 1/2. This hypothesis, h, together with background b about decay 
products and the efficiency of the equipment used to detect them (which may itself be 
an auxiliary statistical hypothesis), yields precisely calculable values for likelihoods 
P[ek | h·b·c] of possible outcomes of the experimental arrangement.

Likelihoods that arise from explicit statistical claims — either within the hypotheses 
being tested, or from explicit statistical background claims that tie the hypotheses to 
the evidence — are often called direct inference likelihoods. Such likelihoods are 
completely objective. So it seems reasonable to suppose that all support functions 
should agree on their values, just as all support functions agree on likelihoods when 
evidence is logically entailed. Direct inference likelihoods are logical in an extended, 
non-deductive sense. Indeed, some logicians have attempted to spell out the logic of 
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direct inferences in terms of the logical form of the sentences involved.[6] But 
regardless of whether that project succeeds, it seems reasonable to take likelihoods of 
this sort to have highly objective or intersubjectively agreed values.

Not all likelihoods of interest in confirmational contexts are warranted deductively or 
by explicitly stated statistical claims. Nevertheless, the likelihoods that relate 
hypotheses to evidence in scientific contexts should often have objective or 
intersubjectively agreed values. So, although a variety of different support functions 
P�, P� ,…, P�, etc., may be needed to represent the differing “inductive proclivities” of 
the various members of a scientific community, all should agree, at least 
approximately, on the values of the likelihoods. For, likelihoods represent the 
empirical content of a hypothesis, what the hypothesis (together with background b) 
probabilistically implies about the evidence. Thus, the empirical objectivity of a 
science relies on a high degree of objectivity or intersubjective agreement among 
scientists on the numerical values of likelihoods.

To see the point more vividly, imagine what a science would be like if scientists 
disagreed widely about the values of likelihoods. Each practitioner interprets a theory 
to say quite different things about how likely it is that various possible evidence 
statements will turn out to be true. Whereas scientist � takes theory h1 to 
probabilistically imply that event e is highly likely, his colleague � understands the 
empirical import of h1 to say that e is very unlikely. And, conversely, � takes 
competing theory h2 to probabilistically imply that e is quite unlikely, whereas � reads 
h2 to say that e is very likely. So, for � the evidential outcome e supplies strong support 
for h1 over h2, because P�[e | h1·b·c] >> P�[e | h2·b·c]. But his colleague � takes 
outcome e to show just the opposite — that h2 is strongly supported over h1 — because 
P�[e | h1·b·c] << P�[e | h2·b·c]. If this kind of thing were to occur often or for 
significant evidence claims in a scientific domain, it would make a shambles of the 
empirical objectivity of that science. It would completely undermine the empirical 
testability of its hypotheses and theories. Under such circumstances, although each 
scientist employs the same theoretical sentences to express a given theory h, each 
understands the empirical import of these sentences so differently that h as understood 
by � is an empirically different theory than h as understood by �. Thus, the empirical 
objectivity of the sciences requires that experts should be in close agreement about the 
values of the likelihoods.[7]
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For now we will suppose that the likelihoods have objective or intersubjectively agreed 
values, common to all agents in a scientific community. Let us mark this agreement by 
dropping the subscript ‘�’, ‘�’, etc., from expressions that represent likelihoods. One 
might worry that this supposition is overly strong. There are many legitimate scientific 
contexts where, although scientists should have enough of a common understanding of 
the empirical import of hypotheses to assign quite similar values to likelihoods, precise 
agreement on the numerical values is unrealistic. This point is right. So later we will 
see how to relax the supposition that likelihood values agree precisely. But for now the 
main ideas behind probabilistic inductive logic will be more easily explained if we 
focus on those contexts were objective or intersubjectively agreed likelihoods are 
available. Later we will see that much the same logic continues to apply in contexts 
where the values of likelihoods may be somewhat vague, or where members of the 
scientific community disagree to some extent about their values.

An adequate treatment of the likelihoods calls for the introduction of one additional 
notational device. Scientific hypotheses are generally tested by a sequence of 
experiments or observations conducted over a period of time. To explicitly represent 
the accumulation of evidence, let the series of sentences c1, c2, …, cn, describe the 
conditions under which a sequence of experiments or observations are conducted. And 
let the corresponding outcomes of these observations be represented by sentences e1, 
e2,…,en. We will abbreviate the conjunction of the first n descriptions of experimental 
or observation conditions as ‘cn’, and abbreviate the conjunction of descriptions of 
their outcomes as ‘en’. Then, for a stream of n observations or experiments and their 
outcomes, the likelihoods take form P[en | hi·b·cn] = r, for appropriate r between 0 and 
1. In many cases the likelihood of the evidence stream will be equal to the product of 
the likelihoods of the individual outcomes:

P[en | hi·b·cn] = P[e1 | hi·b·c1] ×…× P[en | hi·b·cn].

When this equality holds the individual bits of evidence are said to be probabilistically 
independent on the hypothesis. In what follows such independence will only be 
assumed in those places where it is explicitly invoked.
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3.2 Posterior Probabilities and Prior Probabilities

In the probabilistic logic of evidential support the evaluation of a hypothesis on 
evidence is represented by its posterior probability, P�[hi | b·cn·en]. The posterior 
probability represents the net plausibility of the hypothesis resulting from the 
combination of the evidence together with any relevant non-evidential plausibility 
considerations (which should be packaged within b). The likelihoods are the means 
through which evidence contributes to posterior probabilities. But another factor, the 
prior probability of the hypothesis based on considerations expressed within b, 
P�[hi | b], also makes a contribution. It represents the weight of all non-evidential 
plausibility considerations on which posterior probabilities may depend. It turns out 
that posterior probabilities depend only on the values of (ratios of) likelihoods and on 
the values of (ratios of) prior probabilities.

To understand the role of prior probabilities, consider the HIV test example described 
in the previous section. What the physician and patient want to know is the value of the 
posterior probability P�[h | b·c·e] that the patient has HIV, h, given the evidence of the 
positive test, c·e, and given the error rates of the test, described within b. The value of 
this posterior probability depends on the likelihood (due to the error rates) of this 
patient obtaining a true-positive result, P[e | h·b·c] = .99, and of obtaining a false 
positive result, P[e | ~h·b·c] = .05. In addition, the value of the of the posterior 
probability depends on how plausible it is that the patient has HIV before the test 
results are taken into account, P�[h | b]. In the context of medical diagnosis this prior 
probability is sometimes called the base rate. It represents the probability that the 
patient may have contracted HIV based on his risk group (i.e., whether he is an IV 
drug user, has unprotected sex with multiple partners, etc.). Such information should 
be explicitly stated, and represented within b as well. To see its importance, consider 
the following numerical results (which may be calculated using the formula called 
Bayes' Theorem, presented in the next section). If the base rate for the patient's risk 
group is relatively high, say P�[h | b] = .10, then the positive test result yields a 
probability for his having HIV of P�[h | b·c·e] = .69. However, if the patient is in a 
very low risk group, P�[h | b] = .001, then a positive test only raises the probability of 
HIV infection to P�[h | b·c·e] = .02. This posterior probability is much higher than the 
prior probability of .001, but should not worry the patient too much. This positive test 
result is more likely due to the false-positive rate of the test than to the presence of 
HIV. (This sort of test, with such a large false-positive rate, .05, is best used as a 
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screening test; a positive result should lead to a second, more rigorous, more expensive 
test.)

In the evidential evaluation of scientific theories, prior probabilities often represent 
assessments by agents of non-evidential, conceptually motivated plausibility 
weightings among hypotheses. However, because such plausibility assessments tend to 
vary among agents, critics often brand them as merely subjective, and take their role in 
probabilistic induction to be highly problematic. Bayesian inductivists counter that 
such assessments often play an important role in the sciences, especially when there is 
insufficient evidence to distinguish among some of the alternative hypotheses. And, 
they argue, the epithet merely subjective is unwarranted. Such plausibility assessments 
are often backed by extensive arguments that may draw on forceful conceptual 
considerations.

Consider, for example, the kind of plausibility arguments that have been brought to 
bear on the various interpretations of quantum theory (e.g., those related to the 
measurement problem). These arguments go to the heart of conceptual issues that were 
central to the development of the theory. Indeed, many of these issues were first raised 
by the scientists who made the greatest contributions to the theory's development, in 
the attempt to get a conceptual hold on the theory and its implications. Such arguments 
seem to play a legitimate role in the assessment of alternative views when 
distinguishing evidence has yet to be found.

More generally, scientists often bring plausibility arguments to bear in assessing their 
views. Although such arguments are seldom decisive, they may bring the scientific 
community into widely shared agreement, especially regarding the implausibility of 
some logically possible alternatives. This seems to be the primary epistemic role of the 
thought experiment. Thus, although prior probabilities may be subjective in the sense 
that agents may disagree on the relative strengths of plausibility arguments — and so 
disagree on the comparative plausibilities of various hypotheses — the priors used in 
scientific contexts should not represent mere subjective whims. Rather, they should be 
supported (or at least be supportable) by explicit arguments regarding how much more 
plausible one hypothesis is than another. The important role of plausibility assessments 
is apparent in such received bits of scientific wisdom as the old saw that extraordinary 
claims require extraordinary evidence. That is, it takes especially strong evidence, in 
the form of extremely high values for ratios of likelihoods, to overcome the extremely 
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low plausibility values possessed by some hypotheses. We'll see precisely how this 
idea works in the next section, and return to it again in Section 3.5. 

When sufficiently strong evidence becomes available, it turns out that prior plausibility 
assessments may be “washed out” or overridden by the evidence. We'll see how this 
works in Sections 4 and 5. Thus, prior plausibility assessments play their most 
important role when the kind of evidence for which hypotheses specify likelihoods is 
still fairly sparse. It will be shown that provided the value of the prior probability of a 
true hypothesis isn't assessed to be zero, as evidence accumulates the influence of the 
values of the prior probabilities will very probably fade away as evidence accumulates.

Some Bayesian logicists (e.g. Carnap) have maintained that posterior probabilities of 
hypotheses should be determined by logical form alone. The idea is that the likelihoods 
might reasonably be specified in terms of logical form; so if logical form might be 
made to determine the values of prior probabilities as well, then inductive logic would 
be fully “formal” in the same way that deductive logic is “formal”. Keynes and Carnap 
tried to implement this idea through syntactic versions of the principle of indifference 
— the idea that syntactically similar hypotheses should be assigned the same prior 
probability values. Carnap showed how to carry out this project in detail, but only for 
extremely simple formal languages. Most logicians now take the project to have failed 
because of a fatal flaw with the whole idea that reasonable prior probabilities can be 
made to depend on logical form alone. Semantic content should matter. Goodmanian 
grue-predicates provide one way to illustrate the point.[8] Furthermore, as suggested 
earlier, for this idea to apply to the evidential support of real scientific theories, 
scientists would have to assess the prior probabilities of each alternative theory based 
only on its syntactic structure. That seems an unreasonable way to proceed. Are we to 
evaluate the prior probabilities of alternative theories of gravitation, or of alternative 
quantum theories, by exploring only their syntactic structures, with absolutely no 
regard for their semantic content — with no regard for what they say about the world? 
This seems an extremely dubious approach to the evaluation of real scientific theories. 
Logical structure alone cannot, and should not suffice for determining reasonable prior 
probability values for real scientific theories. Moreover, real scientific hypotheses and 
theories are inevitably subject to plausibility considerations based on what they say
about the world. Prior probabilities are much better suited to representating of the 
weight of such plausibility considerations, vague as they may be..
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We will return to prior probabilities in a bit. But first let's see how likelihoods combine 
with prior probabilities to yield posterior probabilities for hypotheses.

3.3 Bayes' Theorem

Any probabilistic inductive logic that draws on the usual axioms of probability theory 
to represent how evidence supports hypotheses must be a Bayesian inductive logic in 
the broad sense. For, Bayes' Theorem is just a simple theorem of probability theory. Its 
importance is due to the relationship it expresses between hypotheses and evidence. 
The theorem shows how, through the likelihoods, evidence combines with prior 
plausibility assessments to produce posterior plausibility values for hypotheses. Thus, a 
logics of hypothesis evaluation of this sort is called a Bayesian Confirmation Theory.

Let's now examine several forms of Bayes' Theorem, each derivable from axioms 1–5. 
The simplest is this:

Bayes' Theorem: Simple Form

(8) P�[hi | b·cn·en]  = P[en | hi·b·cn] × P�[hi | b]
P�[en | b·cn]

× P�[cn | hi·b]
P�[cn | b]

 = 
P[en | hi·b·cn] × P�[hi | b]

P�[en | b·cn]
if P�[cn | hi·b] = P�[cn | b].

This equation expresses the posterior probability of hi, P�[hi | b·cn·en], in terms of the 
likelihood of the evidence on the hypothesis (together with background and 
observation conditions), P[en | hi·b·cn], the prior probability of the hypothesis (given 
background conditions), P�[hi | b], and the simple probability of the evidence (given 
background and observation conditions), P�[en | b·cn]. This latter probability is 
sometimes called the expectedness of the evidence. 

This version of Bayes' Theorem also includes a term, (P�[cn | hi·b] / P�[cn | b]), that 
represents the ratio of the likelihood of the experimental conditions on the hypothesis 
and background to the “likelihood” of the experimental conditions on the background 
alone. Bayes' Theorem is usually expressed in a way that suppresses this factor by 
building cn into the background b. However, if cn is built into b, then technically b
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must change as new evidence is accumulated. So it is better to make this factor explicit 
and see how to deal with it logically. Arguably the term (P�[cn | hi·b] / P�[cn | b])
should be 1, or be very near 1, since the truth of the hypothesis at issue should not 
significantly affect how likely it is that the experimental conditions are satisfied. If 
various alternative hypotheses assign significantly different likelihoods to the 
experimental conditions, then such conditions should more properly be included in the 
evidential outcomes en.

Both the prior probability of the hypothesis and the expectedness tend to be somewhat 
subjective factors in that various agents from the same scientific community may 
legitimately disagree on what values these factors should take. Bayesian logicians 
usually accept the subjectivity of the prior probabilities of hypotheses, but find the 
subjectivity of the expectedness to be more troubling. This is due at least in part to the 
the fact that in a Bayesian logic of evidential support the value of the expectedness 
cannot be independendent of likelihoods and the prior probabilities of hypotheses. That 
is, when for each member of a set of alternative hypotheses the likelihood 
P[en | hj·b·cn] has an objective (or intersubjectively agreed) value, the expectedness is 
constrained by the following equation (where the sum ranges over a mutually exclusive 
and exhaustive set of alternative hypotheses {h1, h2, …, hm, …}, which may be finite 
or infinite):

P�[en | b·cn]  =  	j P[en | hj·b·cn] × P�[hj | b·cn]
=  	j P[en | hj·b·cn] × P�[hj | b]
if cn is irrelevant to each hypothesis hj given b. 

The first line implies that the value of the expectedness must at least lie between the 
largest and smallest of the various likelihood values based on specific hypotheses. The 
second line shows that the values for the prior probabilities together with the values of 
the likelihoods should uniquely determine the value for the expectedness of the 
evidence. This result reflects the intuitive idea that, according to an evidential support 
function, evidence claims are not "simply likely" to a certain degree on their own, 
independently of what any hypothesis has to say. Rather, the likelihoods of evidence 
claims are most fundamentally fixed relative to relevant hypotheses. Furthermore, the 
expectedness can only be calculated in this way in cases where every alternative 
hypothesis to hi already figured out. Otherwise, although the expectednessis 
constrained in principle, but there is no way to figure out what its value should be.
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However, this troublesome expectedness of the evidence term is easily sidestepped.

The subjective expectedness term may be circumvented by considering a ratio form of 
Bayes' Theorem, a form that compares hypotheses one pair at a time:

Bayes' Theorem: Ratio Form

(9) 
P�[hj | b·cn·en] 
P�[hi | b·cn·en] 

=
P[en | hj·b·cn]
P[en | hi·b·cn] 

×
P�[hj | b] 
P�[hi | b] 

×
P�[cn | hj·b] 
P�[cn | hi·b] 

=
P[en | hj·b·cn]
P[en | hi·b·cn] 

×
P�[hj | b] 
P�[hi | b] 

 if
P�[cn | hj·b]
P�[cn | hi·b]

= 1

=
P[e1 | hj·b·c1] 
P[e1 | hi·b·c1] 

×…×
P[en | hj·b·cn] 
P[en | hi·b·cn] 

×
P�[hj | b] 
P�[hi | b] 

if P�[cn | hj·b] / P�[cn | hi·b] = 1 and relative to each hypothesis 
the evidential events are probabilistic independent of one 
another. 

The condition ‘P�[cn | hj·b] / P�[cn | hi·b] = 1’ says that cn is no more likely on hi·b than 
on hj·b — i.e., that neither hypothesis makes the occurrence of experimental or 
observation conditions more likely than the other.[9]

This Ratio Form of Bayes' Theorem expresses how much more plausible, on the 
evidence, one hypothesis is than another. Notice that the likelihood ratios carry the full 
import of the evidence. The evidence influences the evaluation of hypotheses in no 
other way. Alsi notice that the only element affecting the ratio of posterior probabilities 
that may not be fully objectively determinate is the ratio of prior probabilities. 

This version of Bayes's Theorem shows that to evaluate the posterior probability ratios 
of hypotheses, the prior probabilities of hypotheses need not be evaluated absolutely; 
only their ratios are needed. That is, with regard to the priors, the Bayesian evaluation 
of hypotheses only relies on how much more plausible one hypothesis is than another 
(due to the considerations expressed within b). The Bayesian evaluation of hypotheses 
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is essentially comparative in that only ratios of likelihoods and ratios of prior 
probabilities are ever really needed for the assessment of scientific hypotheses. 
Furthermore, we will soon see that the absolute values of the posterior probabilities 
entirely derive from the posterior probability ratios provided by the Ratio Form of 
Bayes' Theorem. 

Let's consider a simple example of how the Ratio Form of the theorem is utilized. 
Suppose we possess a warped coin and want to determine its propensity for heads
when tossed in the usual way. We may compare two hypotheses, h[q] and h[r], that 
propose that the propensity for the coin to come up heads on the usual kind of toss is q
and r, respectively. Let cn report that the coin is tossed n times in the normal way, and 
let en report a total m heads. Supposing that the outcomes of tosses are probabilistically 
independent relative to each of the two hypotheses, line 3 of Equation (9) yields the 
following equation, where the likelihood ratio is the ratio of the respective binomial 
terms:

P�[h[q] | b·cn·en] 

P�[h[r] | b·cn·en] 
= qm (1�q)n�m

rm (1�r)n�m
× P�[h[q] | b] 

P�[h[r] | b] 

When, for instance, the coin is tossed n = 100 times and comes up heads m = 72 times, 
the evidence for hypothesis h[1/2] as compared to h[3/4] is given by the likelihood ratio 
[(1/2)72(1/2)28]/[(3/4)72(1/4)28] = .000056269. So, even if prior to the evidence, 
plausibility considerations (expressed within b) make it 100 times more plausible that 
the coin is fair than that it is warped towards heads with propensity 3/4 — i.e., even if 
P�[h[1/2] | b] /P�[h[3/4] | b] = 100 — the evidence provided by these tosses makes the 
posterior plausibility that the coin is fair only about 6/1000th as plausible as the 
hypothesis that it is warped towards heads with propensity 3/4 — i.e., 
P�[h[1/2] | b·cn·en] /P�[h[3/4] | b·cn·en] = .0056269. Thus, such evidence strongly refutes
the “fairness hypothesis” relative to the “3/4-heads-propensity hypothesis”, provided 
the assessment of prior probabilities (i.e. prior plausibilities) doesn't make the latter 
hypothesis too extremely implausible to begin with. Notice, however, that strong 
refutation is not absolute refutation. Additional evidence could reverse the trend 
towards the strong refutation of the “fairness hypothesis”.
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This example employs repetitions of the same kind of experiment — repeated tosses of 
a coin. But the point holds more generally. If, as the evidence increases, the likelihood 
ratios P[en | hj·b·cn] / P[en | hi·b·cn] approach 0, then the Ratio Form of Bayes' 
Theorem, Equation 9, shows that the posterior probability of hj must approach 0 as 
well. The evidence comes to strongly refute hj with little regard for its prior plausibility 
value. Indeed, Bayesian induction turns out to be a version of eliminative induction, 
and Equation 9 begins to illustrate this. For, suppose that hi is the true hypothesis, and 
consider what happens to each of its false competitors, hj. If enough evidence becomes 
available to drive each of the likelihood ratios P[en | hj·b·cn] / P[en | hi·b·cn] toward 0 
(as n increases), then Equation 9 says that each false hj will become effectively refuted 
— each of their posterior probabilities approaches 0. As a result, the posterior 
probability of hi must approach 1. The next two equations show precisely how this 
works.

If we sum the ratio versions of Bayes' Theorem in Equation 9 over all alternatives to 
hypothesis hi (including the catch-all hK, if we need one), we get the Odds Form of 
Bayes' Theorem. The odds against A given B is defined as ��[~A | B] = 
P�[~A | B] / P�[A | B]. So, we have:

Bayes' Theorem: The Odds Form

(10) ��[~hi | b·cn·en]  =  	
j�i

P�[hj | b·cn·en]

P�[hi | b·cn·en]
+ 

P�[hK | b·cn·en]

P�[hi | b·cn·en]

= 	
j�i

P[en | hj·b·cn] 

P[en | hi·b·cn] 
× 

P�[hj | b] 
P�[hi | b] 

+
P�[en | hK·b·cn] 

P[en | hi·b·cn] 
× 

P�[hK | b] 
P�[hi | b] 

where the factor following the ‘+’ sign is only required in cases where a 
catch-all alternative hypothesis, hK, is needed. 

Notice that if a catch-all hypothesis is needed, the likelihood of evidence relative to it 
will not generally enjoy the same kind of objectivity as the likelihoods for specific, 
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positive hypotheses. We leave the subscript � on the likelihood for the catch-all to 
indicate this lack of objectivity.

Although the catch-all hypothesis may lack objective likelihoods, the influence of the 
catch-all term in Bayes' theorem diminishes as additional positive hypotheses are 
articulated. That is, as new hypotheses are discovered they are “peeled off” of the catch
-all. So, when a new hypothesis hu+1 is formulated and made explicit, the old catch-all 
hK is replaced by a new catch-all, hK*, of form (~h1·…·~hu·~hu+1); and the prior 
probability for the new catch-all hypothesis is gotten by diminishing the prior of the 
old catch-all: P�[hK* | b] = P�[hK | b] � P�[hu+1 | b]. Thus, the influence of the catch-all 
term should diminish towards 0 as new alternative hypotheses are made explicit.[10]

If increasing evidence drives the likelihood ratios comparing hi with each competitor 
towards 0, then the odds against hi, ��[~hi | b·cn·en], will approach 0 (provided that 
priors of catch-all terms, if needed, approach 0 as well as new alternative hypotheses 
are made explicit and peeled off). And, as ��[~hi | b·cn·en] approaches 0, the posterior 
probability of hi goes to 1. The relationship between the odds against hi and its 
posterior probability is this:

Bayes' Theorem: General Probabilistic Form

(11)    P�[hi | b·cn·en]  =  1 / (1 + ��[~hi | b·cn·en]).

The odds against a hypothesis depends only on the values of ratios of posterior 
probabilities, which entirely derive from the Ratio Form of Bayes' Theorem. Thus we 
see that the individual value of the posterior probability of a hypothesis depends only 
on the ratios of posterior probabilities, which come from the Ratio Form of Bayes' 
Theorem. Thus, the Ratio Form of Bayes' Theorem completely captures the essential 
features of the Bayesian evaluation of hypothesis. It shows how the impact of evidence 
(in the form of likelihood ratios) combines with comparative plausibility assessments 
of hypotheses (in the form of ratios of prior probabilities) to provide a net assessment 
of the extent to which hypotheses are refuted or supported via contests with their 
rivals. 

There is a result, a kind of Bayesian Convergence Theorem, that shows that if hi

(together with b·cn) is true, then the likelihood ratios P[en | hj·b·cn] / P[en | hi·b·cn]
comparing evidentially distinguishable alternative hypothesis hj to hi will very 
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probably approach 0 as evidence accumulates (i.e., as n increases). Let's call this result 
the Likelihood Ratio Convergence Theorem. When this theorem applies, Equation 9 
shows that the posterior probability of false competitor hj will very probably approach 
0 as evidence accumulates, regardless of the value of its prior probability P�[hj | b]. As 
this happens to each of hi's false competitors, Equations 10 and 11 say that the 
posterior probability of the true hypothesis, hi, will approach 1 as evidence increases.
[11] Thus, Bayesian induction is at bottom a version of induction by elimination, where 
the elimination of alternatives comes by way of likelihood ratios approaching 0 as 
evidence accumulates. We will examine the Likelihood Ratio Convergence Theorem in 
detail in Section 5.[12]

For more on Bayes' Theorem see the entries on Bayes' Theorem and on Bayesian 
epistemology in this Encyclopedia.

3.4 Likelihood Ratios, Likelihoodism, and the Law of Likelihood

The versions of Bayes' Theorem provided by Equations 9-11 show that for 
probabilistic inductive logic the influence on posterior probabilities of hypotheses of 
the kind of empirical evidence for which hypotheses express likelihoods is completely 
captured by the ratios of likelihoods, P[en | hj·b·cn] / P[en | hi·b·cn]. The evidence 
(cn·en) influences the posterior probabilities in no other way. So, the following “Law” 
is a consequence of the logic of probabilistic support functions.

General Law of Likelihood: 
Given any pair of incompatible hypotheses hi and hj, whenever the 
likelihoods P�[en | hj·b·cn] and P�[en | hi·b·cn] are defined, the evidence 
(cn·en) supports hi over hj, given b, if and only if P�[en | hi·b·cn]  > 
P�[en | hj·b·cn]. The ratio of likelihoods P�[en | hi·b·cn] / P�[en | hj·b·cn]
measures the strength of the evidence for hi over hj given b. 

Two features of this law require some explanation. As stated, the General Law of 
Likelihood does not presuppose that likelihoods of form P�[en | hj·b·cn] and 
P�[en | hi·b·cn] are always defined. This qualification is introduced to accommodate a 
conception of evidential support called Likelihoodism, which is especially influential 
among statisticians. Also, the likelihoods in the law are expressed with the subscript � 
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attached to indicate that the law holds for each inductive support function P�, even 
when the values of the likelihoods are not objective or agreed on by all agents in a 
given scientific community. These two features of the law are closely related, as we 
will see.

Each probabilistic support function satisfies the axioms of Section 2. According to 
these axioms the conditional probability of one sentence on another is always defined. 
So, in the context of the inductive logic of support functions the likelihoods are always 
defined, and the qualifying clause about this in the General Law of Likelihood is 
automatically satisfied. For inductive support functions, all of the versions of Bayes' 
theorem (Equations 8-11) continue to hold even when the likelihoods are not objective 
or intersubjectively agreed on by the scientific community. In many scientific contexts 
there will be general agreement on the values of likelihoods; but whenever such 
agreement fails the subscripts �, �, etc. must remain attached to the support function 
likelihoods to indicate this. Even so, the General Law of Likelihood continues to hold 
for each support function.

There is a view, or family of views, called likelihoodism that maintains that the 
inductive logician or statistician should only be concerned with whether the evidence 
provides increased or decreased support for one hypothesis over another, and only in 
cases where this evaluation is based on the ratios of completely objective likelihoods. 
(Prominent likelihoodists include Edwards (1972) and Royall (1997); also see Forster 
and Sober (2004) and Fitelson (2007).) When the likelihoods involved are objective, 
the ratios P[en | hj·b·cn] / P[en | hi·b·cn] provide a pure, objective measure of how 
strongly the evidence supports hi as compared to hj, a measure that is “untainted” by 
prior plausibility considerations. According to likelihoodists, only this kind of pure 
measure is scientifically appropriate for the assessment of how evidence impacts 
hypotheses. (It should be noted that the classical school of statistics, assocoated with 
R.A. Fisher (1922) and with Neyman and Pearson (1967), reject the claim about the 
nature of evidential support expressed by the General Law of Likelihood.)

Likelihoodists maintain that it is not appropriate for statisticians to incorporate 
assumptions about prior probabilities of hypotheses into the assessment of evidential 
support. It is not their place to compute recommended values of posterior probabilities 
for the scientific community. When the results of experiments are made public, say in 
scientific journals, only objective likelihoods should be reported. The evaluation of the 
impact of objective likelihoods on agents' posterior probabilities depends on each 

35

agent's individual subjective prior probability, which represents plausibility 
considerations that have nothing to do with the evidence. So, likelihoodists suggest, 
posterior probabilities should be left for individuals to compute (if they desire to do 
so). 

The conditional probabilities between most pairs of sentences fail to be objectively 
defined in a way that suits likelihoodists. So, for likelihoodists, the general logic of 
support functions (captured by the axioms of Section 2) cannot represent an 
objectivelogic of evidential support for hypotheses. Because they eschew the logic of 
support functions, likelihoodist do not have Bayes' theorem available, and so cannot 
derive the Law of Likelihood from it. Rather, they must state the Law of Likelihood
as an axiom of their inductive logic, an axiom that applies only when the likelihoods 
have well-defined objective values.

Likelihoodists tend to have a very strict conception of what it takes for likelihoods to 
be well-defined. They consider a likelihood to be well-defined only when it is (what we 
referred to earlier as) a direct inference likelihood — i.e., only when either, (1) the 
hypothesis (together with background and experimental conditions) logically entails 
the data, or (2) the hypothesis (together with background) logically entails an explicit 
simple statistical hypothesis that (together with experimental conditions) specifies 
precise probabilities for each of the events that make up the evidence. 

Likelihoodists contrast simple statistical hypotheses with composite statistical 
hypotheses, which only entail vague, or imprecise, or directional claims about the 
statistical probabilities of evidential events. Whereas a simple statistical hypothesis
might say, for example, “the chance of heads on tosses of the coin is precisely .65”, a 
composite statistical hypothesis might say, “the chance of heads on tosses is either .65 
or .75,” or it may be a directional hypothesis that says, “the chance of heads on tosses 
is greater than .65.” Likelihoodists maintain that composite hypotheses are not an 
appropriate basis for well-defined likelihoods. Such hypotheses represent a kind of 
disjunction of simple statistical hypotheses. The direction hypothesis, for instance, is 
essentially a disjunction of the various simple statistical hypotheses that assign specific 
values above .65 to the chances of heads on tosses. Likelihoods based on such 
hypotheses are not appropriately objective by the lights of the likelihoodist because 
they must in effect depend on factors that represent the degree to which the composite 
hypothesis supports each of the simple statistical hypotheses that it encompasses; and 
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likelihoodists consider such factors too subjective to be permitted in a logic that should 
permit only objective likelihoods.[13]

Taking all of this into account, the version of the Law of Likelihood appropriate to 
likelihoodists may be stated as follows.

Special Law of Likelihood: 
Given a pair of incompatible hypotheses hi and hj that imply simple 
statistical models regarding outcomes en given (b·cn), the likelihoods 
P[en | hj·b·cn] and P[en | hi·b·cn] are well defined. For such likelihoods, the 
evidence (cn·en) supports hi over hj, given b, if and only if P[en | hi·b·cn] > 
P[en | hj·b·cn]; the ratio of likelihoods P[en | hi·b·cn] / P[en | hj·b·cn]
measures the strength of the evidence for hi over hj given b. 

Notice that when either version of the Law of Likelihood holds, the absolute size of a 
likelihood is irrelevant to the strength of the evidence. All that matters is the relative 
size of the likelihoods for one hypothesis as compared to another. That is, let c1 and c2
be the conditions for two distinct experiments having outcomes e1 and e2, respectively. 
Suppose that e1 is 1000 times more likely on hi (given b·c1) than is e2 on hi (given 
b·c2); and suppose that e1 is also 1000 times more likely on hj (given b·c1) than is e2 on 
hj (given b·c2) — i.e., suppose that P�[e1 | hi·b·c1] = 1000 × P�[e2 | hi·b·c1], and 
P�[e1 | hj·b·c1]  =  1000 × P�[e2 | hj·b·c2]. Which piece of evidence, (c1·e1) or (c2·e2), is 
stronger evidence with regard to the comparison of hi to hj? The Law of Likelihood
implies both are equally strong. All that matters evidentially are the ratios of the 
likelihoods, and they are the same: P�[e1 | hi·b·c1] / P�[e1 | hj·b·c1] = 
P�[e2 | hi·b·c2] / P�[e2 | hj·b·c2]. Thus, the General Law of Likelihood implies the 
following principle.

General Likelihood Principle: 
Suppose two different experiments or observations (or two sequences of 
them) c1 and c2 produce outcomes e1 and e2, respectively. Let { h1, h2, …} 
be any set of alternative hypotheses. If there is a constant K such that for 
each hypothesis hj from the set, P�[e1 | hj·b·c1] = K × P�[e2 | hj·b·c2], then 
the evidential import of (c1·e1) for distinguishing among hypotheses in the 
set (given b) is precisely the same as the evidential import of (c2·e2). 
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Similarly, the Special Law of Likelihood implies a corresponding Special Likelihood 
Principle that applies only to hypotheses that express simple statistical models.[14]

Throughout the remainder of this article we will not assume that likelihoods must be 
based on simple statistical hypotheses, as likelihoodist would have them. However, 
most of what will be said about likelihoods, especially the convergence result in 
Section 5, applies to likelihoodist likelihoods as well. We will, however, continue to 
suppose that likelihoods are objective in the sense that all members of the scientific 
community agree on their numerical values. In Section 6 we will see how even this 
supposition may be relaxed in scientific contexts where completely objective values 
for likelihoods are not realistically available.

3.5 On Prior Probability Assessments — and Representations of 
Vague and Diverse Plausibility Assessments

Given that a scientific community should largely agree on the values of the likelihoods, 
any significant disagreement among them with regard to the values of posterior 
probabilities of hypotheses should derive from disagreements over their assessments of 
values for the prior probabilities of those hypotheses. We saw in section 3.3 that the 
Bayesian logic of evidential support need only rely on assessments of ratios of prior 
probabilities — on how much more plausible one hypothesis is than another. 
Furthermore, presumably, in scientific contexts the comparative plausibility values for 
hypotheses should depend on explicit plausibility arguments (stated within b), not on 
privately help opinions. (It would be highly unscientific for a member of the scientific 
community to disregard or dismiss a hypothesis that other members take to be a 
reasonable proposal with only the comment: “don't ask me to give reasons, it's just my 
opinion”.) Even so, agents may be unable to specify precisely how much more strongly 
the available plausibility arguments support a hypothesis over an alternative; so prior 
probability ratios for hypotheses may be vague. Furthermore, agents in a scientific 
community may disagree about how strongly the available plausibility arguments 
support a hypothesis over a rival hypothesis; so prior probability ratios may be 
somewhat diverse as well. 

Both the vagueness of prior plausibility ratio values for individual agents and the 
diversity of values among the community of agents can be represented formally by sets 
of probabilistic support functions, {P�, P�, …}, that agree on the values for the 
likelihoods but encompass a range of values for the (ratios of) prior probabilities of 
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hypotheses. Vagueness and diversity are somewhat different issues, but they may be 
represented in much the same way. Let's consider each in turn.

Assessments of the prior plausibilities of hypotheses will often be vague — not subject 
to the kind of precise quantitative treatment that a Bayesian version of probabilistic 
inductive logic may seem to require for prior probabilities. So, it is sometimes 
objected, the kind of assessment of prior probabilities required to get the Bayesian 
algorithm going cannot be accomplished in practice. To see how Bayesian inductivists 
address this worry, first recall the Ratio Form of Bayes' Theorem, equation (9).

P�[hj | b·cn·en] 
P�[hi | b·cn·en] 

=
P[en | hj·b·cn] 
P[en | hi·b·cn] 

× 
P�[hj | b] 
P�[hi | b] 

Recall that this Ratio Form of the theorem captures the essential features of the logic of 
evidential support, even though it only provides a value for the ratio of the posterior 
probabilities. (We'll see why this is so in more detail in a moment.) 

Notice that the ratio form of the theorem easily accommodates situations where we 
don't have precise numerical values for prior probabilities. It only depends on our 
ability to assess how much more or less plausible alternative hypothesis hj is than 
hypothesis hi — only the value of the ratio P�[hj | b] / P�[hi | b] need be assessed; the 
values of the individual prior probabilities are not required. Such comparative 
plausibilities are much easier to assess than specific numerical prior plausibility values 
for individual hypotheses. When combined with the ratio of likelihoods, this ratio of 
priors suffices to yield an assessment of the ratio of posterior plausibilities, 
P�[hj | b·cn·en] / P�[hi | b·cn·en].

Although such posterior ratios don't supply values for the individual posterior 
probabilities, they place a crucial constraint on the posterior support of hypothesis hj, 
since

P�[hj | b·cn·en] <
P�[hj | b·cn·en] 
P�[hi | b·cn·en] 

=
P[en | hj·b·cn] 
P[en | hi·b·cn] 

× 
P�[hj | b] 
P�[hi | b] 
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This Ratio Form of Bayes' Theorem tolerates a good deal of vagueness or imprecision 
in assessments of the ratios of prior probabilities. In practice one need only assess 
bounds for these prior plausibility ratios to achieve meaningful results. Given a prior 
ratio in a specific interval, 

q 
 P�[hj | b] / P�[hi | b] 
 r

a likelihood ratio P[en | hj·b·cn] / P[en | hi·b·cn] = LRn results in a posterior 
confirmation ratio in the interval 

(LRn×q) 
 P�[hj | b·cn·en] / P�[hi | b·cn·en] 
 (LRn×r). 

Technically each probabilistic support function assigns a specific 
numerical value to each pair of sentences; so when we write an inequality 
like ‘q 
 P�[hj | b] / P�[hi | b] 
 r’we are really referring to a set of 
probability function P�, a vaguness set, for which the inequality holds. 
Thus, technically, the Bayesian logic employs sets of probabilistic support 
functions to represent the vagueness in comparative plausibility values for 
hypotheses. 

Observe that if the likelihood ratio values LRn approach 0 as the amount of evidence en

increases, the interval of values for the posterior probability ratio becomes tighter as 
the upper bound (LRn×r) approaches 0. Furthermore, the absolute degree of support for 
hj, P�[hj | b·cn·en], must also approach 0.

This observation is really useful because it can be shown that when hi·b·cn is true and 
hj is empirically distinct from hi, the continual pursuit of evidence is very likely to 
result in evidential outcomes en that (as n increases) yield values of likelihood ratios 
P[en | hj·b·cn] / P[en | hi·b·cn] = LRn that approach 0 as the amount of evidence 
increases. (I'll provide the details of this Likelihood Ratio Convergence Theorem in 
section 5.) When that happens, the upper bound on the posterior probability ratio also 
approaches 0, driving the posterior probability of hj to approach 0, effectively refuting 
hypothesis hj. Thus, false competitors of a true hypothesis will effectively be 
eliminated by increasing evidence. As this happens, equations (10) and (11) show that 
the posterior probability P�[hi | b·cn·en] of the true hypothesis hi approaches 1. 
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Thus, Bayesian inductive support for hypotheses is a form of eliminative induction, 
where the evidence effectively refutes false alternatives to the true hypothesis. The 
eliminative nature of Bayesian evidential support doesn't require precise values for 
prior probabilities. It only need draw on bounds on comparative plausibility ratios, and 
these bounds only play a significant role while evidence remains fairly sparse. If the 
true hypothesis is comparatively plausible (due to plausibility arguments contained in 
b), then plausibility assessments give it a leg-up over alternatives. If the true 
hypothesis is comparatively implausible, the plausibility assessments merely slow 
down the rate at which it comes to dominate its rivals, reflecting the idea that 
extraordinary hypotheses require extraordinary evidence (or an extraordinary 
accumulation of evidence) to overcome their initial implausibilities. 

Thus, as evidence accumulates, the agent's vague initial plausibility assessments 
transform into quite sharp posterior probabilities that indicate the strong refutation or 
support of the various hypotheses. Intuitively this seems quite a reasonable way to 
represent how evidential support should work.

The various agents in a community may widely disagree over the non-evidential 
plausiblities of hypotheses. Bayesian inductivists may represent this kind of diversity
across the community of agents as a collection of the agents' vagueness sets. Let's call 
such a collection a diversity set. That is, a diversity set is just a set of support functions 
P� that cover the ranges of values for comparative plausibility assessments for pairs of 
competing hypotheses

q  
  P�[hj | b] / P�[hi | b]  
  r

as assessed by the scientific community on the basis of plausibility arguments and 
considerations (expressed within b).

So, although there may well be disagreement among agents regarding the ranges of 
comparative prior plausibilities of hypotheses, a probabilistic inductive logic may 
easily represent this diversity. Furthermore, if accumulating evidence drives the 
likelihood ratios to extremes, the range of functions in a diversity set will come to near 
agreement, near 0 or 1, on the values for posterior probabilities of hypotheses. So, not 
only does such evidence firm up each agent's vague initial plausibilities, it also brings 
the whole community into agreement on the near refutation of empirically distinct 
competitors of a true hypothesis.
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Under what conditions might the likelihood ratios go to such extremes as evidence 
accumulates, effectively washing out vagueness and diversity? The Likelihood Ratio 
Convergence Theorem (discussed in detail in Section 5) implies that if a true 
hypothesis disagrees with false alternatives on the likelihoods of possible outcomes for 
a long enough stream of experiments or observations, then that evidence stream will 
very probably produce actual outcomes that drive the likelikood ratios of false 
alternatives as compared to the true hypothesis to approach 0. As this happens, almost 
any range of prior plausibility assessments will be driven to agreement on the posterior 
plausibilities for hypotheses. Thus, the accumulating evidence will very probably bring 
all support functions in the vagueness and diversity sets for a community of agents to 
near agreement on posterior plausibility values — near 0 for the false competitors, and 
near 1 for the true hypothesis (or for its disjunction with empirically indistinguishable 
alternatives). 

One more point about prior probabilities and Bayesian convergence should be 
mentioned here. Some subjectivist versions of Bayesian induction seem to suggest that 
an agent's prior plausibility assessments for hypotheses should stay fixed once and for 
all, and that all plausibility updating should be brought about via the likelihoods in 
accord with Bayes' Theorem. Critics argue that this is unreasonable. The members of a 
scientific community may quite legitimately revise their (comparative) prior 
plausibility assessments for hypotheses from time to time as they rethink plausibility 
arguments and bring new considerations to bear. This seems a natural part of the 
conceptual development of a science. It turns out that such reassessments of priors 
poses no difficulty for probabilistic inductive logic as I've described it here. 
Reassessments may come about by the addition of explicit statements that supplement 
or modify the background information b, and they may also take the form of (non-
Bayesian) transitions to new vagueness sets for individual agents and to new diversity 
sets for the community. The logic of Bayesian induction (as described here) has 
nothing to say about what values the prior plausibility assessments for hypotheses 
should have; and it places no restrictions on how they might change. Provided that the 
series of reassessments of prior plausibilities doesn't push the prior of the true 
hypothesis ever nearer to zero, the Likelihood Ratio Convergence Theorem implies that 
the evidence will very probably bring the posterior probabilities of empirically distinct 
rivals of the true hypothesis to approach 0 via decreasing likelihood ratios; and as this 
happens, the posterior probability of the true hypothesis will head towards 1.
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4. Bayesian Estimation and Convergence for 
Enumerative Inductions

In this section we'll see that for the special case of enumerative inductions probabilistic 
inductive logic satisfies the Criterion of Adequacy (CoA) stated at the beginning of 
this article. That is, under some plausible conditions, given a reasonable amount of 
evidence, the degree to which that evidence comes to support a hypothesis through 
enumerative induction is very likely to approach 1 for true hypotheses. We will now 
see precisely how this works.

Recall that in enumerative inductions the idea is to infer the proportion, or relative 
frequency, of an attribute in a population from how frequently the attribute occurs in a 
sample of the population. Examples 1 and 2 at the beginning of the article describe two 
such inferences. Enumerative induction is only a rather special case of inductive 
inference. However, such inferences are very common, and so worthy of careful 
attention. They arise, for example, in the context of polling and in many other cases 
where a population frequency is estimated from a sample. We will establish conditions 
under which such inferences give rise to highly objective posterior probabilities, 
posterior probabilities that are extremely stable over a wide range of reasonable prior 
plausibility assessments. That is, we will consider all of the inductive support functions 
in an agent's vagueness set V or in a community's diversity set D. We will see that 
under some very weak suppositions about the make up of V or of D, a reasonable 
amount of data will bring all of the support functions in these sets to agree that the 
posterior degree of support for a particular frequency hypothesis is very close to 1. 
And, we will see, it is very likely these support functions will converge to agreement 
on a true hypothesis.
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4.1 Convergence to Agreement

Suppose we want to know the frequency with which attribute A occurs among 
members of population B. We randomly select a sample S from B consisting of n
members, and find that it contains m members that exhibit attribute A.[15] On the basis 
of this evidence, what is the posterior probability p of the hypothesis that the true 
proportion (or frequency) of As among Bs is within a given region R around the sample 
proportion m/n? And to what extent does that bound depend on the prior probabilities 
of the various possible alternative frequency hypotheses. More generally, for a given 
vagueness or diversity set, what bounds can we place on the values of p. 

Put more formally, we are asking for what values of p and q does the following 
inequality hold:

P�[(m/n)�q< F[A,B] <(m/n)+q | b · F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n]  > p?

It turns out that we need only a very weak supposition about the values of prior 
probabilities of support functions P� in vagueness or diversity sets to legitimize such 
inferences, an supposition that almost always holds in the context of enumerative 
inductions.

Boundedness Assumption for Estimation:
There is a region R of possible values near the sample frequency m/n (e.g., 
R is the region between (m/n)�q and (m/n)+q , for some margin of error q
of interest) such that no frequency hypothesis outside of region R is 
overwhelmingly more initially plausible than those frequency hypotheses 
inside of region R. 

What does it mean for no frequency hypothesis outside of region R to be 
overwhelmingly more initially plausible than those frequency hypotheses inside of 
region R (where R is some specific region in which the sample frequence, F[A,S]=m/n, 
lies)? The main idea is that there is some (perhaps very large) bound K on how much 
more plausible frequency hypotheses outside of region R may be than those frequency 
hypotheses inside of region R. We state this condition carefully by considering two 
kinds of cases, depending on whether or not the population B is known to be bounded 
in size by some specific (perhaps overly large) integer u. (The first case will be simpler 
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because it doesn't suppose that the support functions involved may be characterized by 
probability density functions, while the second case does suppose this.)

Case 1. Suppose the size of the population B is finite. We need not know 
how big B is. We merely suppose that for some positive integer u that is at 
least as large as the size of B, but might well be many times larger, the 
following condition holds for all support functions P� in the vagueness or 
diversity set under consideration.

There is some specific positive factor K (possibly very large, perhaps as 
large as 1000, or larger) such that for any pair of hypotheses of form 
F[A,B] = v/u inside region R and of form F[A,B] = w/u outside of region R
(where u, v, and w are non-negative integers), the hypothesis outside of 
region R is no more than K times more plausible than the hypothesis 
within region R (given plausibility consideration within b) — i.e., for all 
ratios v/u inside region R and all ratios v/u outside region R, 
P�[F[A,B]=w/u | b] / P�[F[A,B]=v/u | b] 
 K.

For Case 1 we also assume (as seems reasonable) that in the absence of information 
about the observed sample frequency, the claim ‘Random[S,B,A] · Size[S]=n’, that the 
sample is randomly selected and of size n, should be irrelevant to the initial 
plausibilities of possible population frequencies — i.e. we suppose that 
P�[F[A,B]=k/u | Rnd[S,B,A] · Size[S]=n · b] = P�[F[A,B]=k/u | b] for each integer k
from 0 through u.

Case 2. Alternatively, suppose that there is no positive integer u at least as 
large as the size of population B that satisfies the conditions of case 1. But 
suppose that the prior probabilities of the various competing hypotheses 
can be represented (at least very nearly) by a probability density function 
p�[F[A,B]=r | b]— i.e., for any specific values v and u, the value of 
P�[ v < F[A,B] < u | b] = �vup�[F[A,B]=r | b] dr, or at least very nearly so. 
Then we just need the following condition to be satisfied by all support 
functions P� in the vagueness or diversity set under consideration.

There is some specific positive factor K (possibly very large, perhaps as 
large as 1000, or larger) such that for any pair of hypotheses of form 
F[A,B] = r inside region R and of form F[A,B] = s outside of region R
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(where r and s are non-negative real numbers no larger than 1), the value 
of the probability density function for the hypothesis outside of region R is 
no more than K times larger than the value of the probability density 
function for the hypothesis within region R (given plausibility 
consideration within b), where the density function within region R is 
never less than some (perhaps very tiny) positive lower bound — i.e., for 
all values r inside region R and all values s outside region R, 
p�[F[A,B]=s | b] / p�[F[A,B]=r | b] 
 K, where for all r within region R, p�
[F[A,B]=r | b] � g for some small g > 0. 

For Case 2 we also assume (as seems reasonable) that in the absence of information 
about the observed sample frequency, the claim ‘Random[S,B,A] · Size[S]=n’, that the 
sample is randomly selected and of size n, should be irrelevant to the initial 
plausibilities of possible population frequencies — i.e. in particular, we suppose that 
for each probability density function p� under consideration, 
p�[F[A,B]=q | Rnd[S,B,A] · Size[S]=n · b] = p�[F[A,B]=q | b] for real numbers q from 0 
through 1.

When either of these two Cases hold, let us say that for the support functions P� in the 
vagueness or diversity sets under consideration, the prior probabilities are K bounded 
with resprct to region R. Then we have the following theorem about enumerative 
inductions, which shows that the posterior probability that the true frequency must lie 
within a small region R around the sample frequency m/n quicky approaches 1 as the 
sample size n becomes large.

Theorem: Frequency Estimation Theorem:[16]

Suppose, for all support functions P� in the vagueness or diversity set under 
consideration, the prior probabilities are K bounded with respect to region R, where 
region R contains the fraction m/n (for positive integer n and non-negitive integer m 
 
n). Then, for all support functions P� in the vagueness or diversity set, 

P�[ F[A,B]�R | b · F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n]

� 1 / (1 + K×[(1/�[R, m+1, n�m+1]) � 1]).

For any given region R containing sample frequencies m/n, this lower 
bound approaches 1 rapidly as n increases.
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The expression ‘�[R, m+1, n�m+1]’ represents the beta-distribution function with 
parameters m+1 and n�m+1 evaluated over region R. By definition 
�[R, m+1, n�m+1] =�Rrm (1�r)n�m dr / �01 r m (1�r)n�mdr. When region R contains an 
interval around m/n, the value of this function is a fraction that approaches 1 for large 
n. In a moment we will see some concrete illustrations of the implications of this 
theorem for specific values of m and n and specific regions R.

The values of the beta-distribution function may be easily computed using a version of 
the function supplied with most mathematics and spreadsheet programs. The version of 
the function supplied by such programs usually takes the form BETADIST(x, y, z), 
which computes the value of the beta distribution from 0 up to to x, and where y and z 
are the “parameters of the distribution”. For our purposes, where the sample S of n
selections from B yields m that exhibit As, these parameters need to be m+1 and 
n�m+1. So if the region R of interest (wherein the sample frequency m/n lies) is 
between the values v and u (where v is the lower bound on region R and u is the upper 
bound on region R), then the program should be asked to compute the value of 
�[R, m+1, n�m+1] =�vurm (1�r)n�m dr / �01 r m (1�r)n�mdr by having it compute 
BETADIST[u, m+1, n�m+1]� BETADIST[v, m+1, n�m+1]. So, to have your 
mathematics or spreadsheet program compute a lower bound on the value of

P�[v 
 F[A,B] 
 u | b · F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n]

for a given upper bound K (on how much more initially plausible it is that the true 
population frequency lies outside the region between v and u than it is that the true 
polulation frequency lies inside that region), you may be able to simply paste the 
following expression into your program and then plug in desired values for K, u, v, m, 
n in this expression:

1 / (1 + K*((1/(BETADIST(u, m+1, n-m+1)-BETADIST(v, m+1, n-m+1)) - 1))

In many real cases it will not be initially more plausible that the true frequency value 
lies outside of the region of interest between v and u than that it lies inside that region. 
In such cases set the value of K to 1. However, you will find that for any moderately 
large sample size n, this function yields very similar values for all plausible values of K
you might try out, even when the values of K are quite large. (We'll see examples of 
this fact in the computed tables below.)
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This theorem implies that for large samples the values of prior probabilities don't 
matter much. Given such evidence, a vary wide range of inductive support functions P�
will come to agree on high posterior probabilities that the proportion of attribute A in 
population B is very close to the sample frequency. Thus, all support functions in such 
vagueness or diversity sets come to near agreement. Let us look at several numerical 
examples to make clear how strong this result really is.

The first section of this article provided two examples of enumerative inductive 
inferences. Consider Example 1. Let ‘B’ represent the population of all ravens. Let ‘A’ 
represent the class of black ravens. Now consider those hypotheses of form 
‘F[A,B] = r’ for r in the interval between .99 and 1. This collection of hypotheses 
includes the claim that “all ravens are black” together with those alternative hypotheses 
that claim the frequency of being black among ravens is within .01 of 1. The 
alternatives to these hypotheses are just those that assert ‘F[A,B] = s’ for values of s
below .99.

Suppose none of the support functions represented in the vagueness or diversity set 
under consideration rates the prior plausibility of any of the hypotheses ‘F[A,B] = s’ 
with s less than .99 to be more than twice as plausible as the hypotheses ‘F[A,B] = r’ 
for which r is between .99 and 1. That is, suppose, for each P�in the vagueness or 
diversity set under consideration, the prior plausibility P�[F[A,B] = s | b] for 
hypotheses with s below .99 is never more than K = 2 times greater than the prior 
plausibility P�[F[A,B] = r | b] for hypotheses with r between .99 and 1. Then, on the 
evidence of 400 ravens selected randomly with respect to color, the theorem yields the 
following bound for all P� in the vagueness or diversity set:

P�[F[A,B] >.99 | b · F[A,S] = 1 · Rnd[S,B,A] · Size[S] = 400]  �  .9651.

The following table describes similar results for other upper bounds K on values of 
prior probability ratios and other sample sizes n: 
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Table 1: Values of lower bound p on the posterior 
probability 

m/n = 1 
F[A,B] > .99

Sample-Size = n
(number of As in Sample of Bs = m = n) 

Prior Ratio K
� 400 800 1600 3200

1 0.9822 0.9997 1.0000 1.0000
2 0.9651 0.9994 1.0000 1.0000
5 0.9170 0.9984 1.0000 1.0000
10 0.8468 0.9968 1.0000 1.0000
100 0.3560 0.9691 1.0000 1.0000
1,000 0.0524 0.7581 0.9999 1.0000
10,000 0.0055 0.2386 0.9990 1.0000
100,000 0.0006 0.0304 0.9898 1.0000
1,000,000 0.0001 0.0031 0.9068 1.0000
10,000,000 0.0000 0.0003 0.4931 1.0000

P�[F[A,B]>.99 | b·F[A,S]=1 ·Rnd[S,B,A] · Size[S]=n] � p, for a range of Sample-Sizes n
(from 400 to 3200), when the prior probability of any specific frequency hypothesis 
outside the region between .99 and 1 is no more than K times more than the lowest prior 
probability for any specific frequency hypothesis inside of the region between .99 and 1. 

(All probabilities with entries ‘1.0000’ in this table and the next actually have values 
slightly less than one, but nearly equal 1.0000 to four significant decimal places.)

To see what the table tells us, consider the third to last row. It represents what happens 
when a vagueness or diversity set contains at least some support functions that assign 
prior probabilities (i.e. prior plausibilities) nearly one hundred thousand times higher 
to some hypotheses asserting frequencies not between .99 and 1 than it assigns to 
hypotheses asserting frequencies between .99 and 1. The table shows that even in such 
cases, a random sample of 1600 black ravens will, nevertheless, pull the posterior 
plausibility level that “the true frequency is above .99” to a value above .9898, for 
every support function in the set. And if the vagueness or diversity set contains support 
functions that assign even more extreme priors, say, priors that are nearly ten million
times higher for some hypotheses asserting frequencies below .99 than for hypotheses 
within .99 of 1 (the table's last row), this poses no great problem for convergence-to-
agreement. A random sample of 3200 black ravens will yield posterior probabilities 
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(i.e. posterior plausibilities) indistinguishable from 1 for the claim that “more than 99% 
of all ravens are black.”

Strong support can be gotten for an even narrower range of hypotheses about the 
percentage of black birds among the ravens. But a larger sample size is needed for this. 
For an additional example, see the supplementary document

Tighter Bounds on the Margin of Error. 

Now consider the second example of an enumerative induction provided at the 
beginning of this article, involving the poll about the presidential preferences of voters. 
The posterior probabilities for this example follow a pattern similar to that of the first 
example. Let ‘B’ represent the class of all registered voters on February 20, 2004, and 
let ‘A’ represent those who prefer Kerry to Bush. In sample S (randomly drawn from B
with respect to A) consisting of 400 voters, 248 report preference for Kerry over Bush 
— i.e., F[A,B] = 248/400 = .62. Suppose, as seems reasonable, that none of the support 
functions in the vagueness or diversity set under consideration rates the hypotheses 
‘F[A,B] = r’ for values of r outside the interval .62±.05 as more initially plausible than 
they rate alternative frequency hypotheses having values of r inside this interval. That 
is, suppose, for each P� under consideration, the prior probabilities P�[F[A,B] = s | b]
when s is not within .62±.05 is never more than K = 1 times as great as the prior 
probabilities P�[F[A,B] = r | b] for hypotheses having r within .62±.05. Then, the 
theorem yields the following lower bound on the posterior plausibility ratings, for all 
P� in the vagueness or diversity set under consideration:

P�[.57 < F[A,B] < .67 | b · F[A,S]=.62 · Rnd[S,B,A] · Size[S]=400]  �  .9614. 

The following table gives similar results for other sample sizes, and for upper bounds 
on ratios of prior probabilities that may be much larger than 1. In addition, this table 
shows what happens when we tighten up the interval around the frequency hypotheses 
being supported to .62±.025 — i.e., it shows the bounds p on support for the 
hypothesis .595 < F[A,B] < .645 as well:
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Table 2: Values of lower bound p on the posterior probability 
m/n = .62 F[A,B] = 

m/n ± q
Sample-Size = n

(number of As in Sample of Bs = m:
where m/n = .62) 

Prior Ratio K
�

q = .05
or .025

400 
(248)

800 
(496)

1600 
(992)

3200 
(1984)

6400 
(3968)

12800 
(7936)

1 .05 � 
.025 �

0.9614 
0.6982

0.9965 
0.8554

1.0000 
0.9608

1.0000 
0.9964

1.0000 
1.0000

1.0000 
1.0000

2 .05 � 
.025 �

0.9256 
0.5364

0.9930 
0.7474

0.9999 
0.9246

1.0000 
0.9929

1.0000 
0.9999

1.0000 
1.0000

5 .05 � 
.025 �

0.8327 
0.3163

0.9827 
0.5420

0.9998 
0.8306

1.0000 
0.9825

1.0000 
0.9998

1.0000 
1.0000

10 .05 � 
.025 �

0.7133 
0.1879

0.9661 
0.3717

0.9996 
0.7103

1.0000 
0.9656

1.0000 
0.9996

1.0000 
1.0000

100 .05 � 
.025 �

0.1992 
0.0226

0.7402 
0.0559

0.9963 
0.1969

1.0000 
0.7371

1.0000 
0.9962

1.0000 
1.0000

1,000 .05 � 
.025 �

0.0243 
0.0023

0.2217 
0.0059

0.9639 
0.0239

1.0000 
0.2190

1.0000 
0.9637

1.0000 
1.0000

10,000 .05 � 
.025 �

0.0025 
0.0002

0.0277 
0.0006

0.7277 
0.0024

0.9999 
0.0273

1.0000 
0.7261

1.0000 
0.9999

100,000 .05 � 
.025 �

0.0002 
0.0000

0.0028 
0.0001

0.2109 
0.0002

0.9994 
0.0028

1.0000 
0.2096

1.0000 
0.9994

1,000,000 .05 � 
.025 �

0.0000 
0.0000

0.0003 
0.0000

0.0260 
0.0000

0.9940 
0.0003

1.0000 
0.0258

1.0000 
0.9943

10,000,000 .05 � 
.025 �

0.0000 
0.0000

0.0000 
0.0000

0.0027 
0.0000

0.9433 
0.0000

1.0000 
0.0026

1.0000 
0.9457

P�[.62�q < F[A,B] < .62+q | F[A,S] = .62 · Rnd[S,B,A] · Size[S] = n] � p, for two values 
of q (.05 and .025) and a range of Sample-Sizes n (from 400 to 12800), when the prior 
probability of any specific frequency hypothesis outside of .62 ± q is no more than K
times more than the lowest prior probability for any specific frequency hypothesis inside 
of .62 ± q. 

Notice that even if the vagueness or diversity set includes prior plausibilities nearly ten 
million times higher for hypotheses asserting frequency values outside of .62±.025 than 
for hypotheses asserting frequencies within .62±.025, a random sample of 12800 
registered voters will, nevertheless, bring about a posterior plausibility value greater 
than .9457 for the claim that “the true frequency of preference for Kerry over Bush 
among all registered voters is within .62±.025”, for all support functions P� in the set.
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4.2 Convergence to the Truth

The Frequency Estimation Theorem is a Bayesian Convergence-to-Agreement result. It 
does not, on its own, show that the Criterion of Adequacy (CoA) is satisfied. The 
theorem shows, for enumerative inductions, that as evidence accumulates, diverse 
support functions will come to near agreement on high posterior support strengths for 
those hypotheses expressing population frequencies near the sample frequency. But, it 
does not show that the true hypothesis is among them — it does not show that the 
sample frequency is near the true population frequency. So, it does not show that these 
converging support functions converge on strong support for the true hypothesis, as a 
CoA result is supposed to do.

However, there is such a CoA result close at hand. It is a Weak Law of Large Numbers
result that establishes that each frequency hypothesis of form ‘F[A,B] = r’implies, via 
direct inference likelihoods, that randomly selected sample data is highly likely to 
result in sample frequencies very close to the value r that it claims to be the true 
frequency. Of course each frequency hypothesis says that the sample frequency will be 
near its own frequency value; but only the true hypothesis says this truthfully. Add this 
result to the previous theorem and we get that, for large sample sizes, it is very likely 
that a sample frequency will occur that yields a very high degree of support for the true 
hypothesis. Thus the CoA is satisfied.

Here is the needed result. 
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Theorem: Weak Law of Large Numbers for Enumerative Inductions. 

Let r be any frequency between 0 and 1.

For r = 0,   P[F[A,S]=0 | F[A,B]=0 · Rnd[S,B,A] · Size[S]=n]   =   1.

For r = 1,   P[F[A,S]=1 | F[A,B]=1 · Rnd[S,B,A] · Size[S]=n]   =   1.

For 0 < r < 1, let q be any real number such that r is in the region, 
0 < (r�q) <  r  < (r+q) < 1.

Given a specific q (which identifies a specific small region of interest 
around r), for each given positive integer n that's large enough to permit it, 
we define associated non-negative integers v and u such that v < u, where 
by definition:

v is the non-negative integer for which v/n is the smallest 
fraction greater than (r�q), and 

u is the non-negative integer for which u/n is the largest 
fraction less than (r+q). 

Then,

P[r�q < F[A,S] < r+q | F[A,B]=r · Rnd[S,B,A] · Size[S]=n]

=  

u

	
m=v

n! 
m! × (n�m)! × rm (1�r)n�m

�   1 � 2 × �[�q/(r×(1�r))/n)½] �   1 � 2 × �[�2×q×n½],

which goes to 1 quickly as n increases.

Here �[x] is the area under the Standard Normal Distribution up to point x. The first 
equality is a version of the binomial theorem. The approximation of the binomial 
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formula by the normal distribution is guaranteeed by the Central Limit Theorem. This 
approximation is very close for n near 20, and gets extremely close as n gets larger. 

Notice that the degree of support probability in this theorem is a direct inference 
likelihood — all support functions should agree on these values.[17]

This Weak Law result together with the Simple Estimation Theorem yields the 
promised CoA result: for large sample sizes, it is very likely that a sample frequency 
will occur that has a value very near the true frequency; and whenever such a sample 
frequency does occur, it yields a very high degree of support for the true frequency 
hypothesis.

This result only applies to enumerative inductions. In the next section we establish a 
CoA result that applies much more generally. It applies to the inductive support of 
hypotheses in any context where competing hypotheses are empirically distinct enough 
to disagree, at least a little, on the likelihoods of possible evidential outcomes.

5. The Likelihood Ratio Convergence Theorem

In this section we will investigate the Likelihood Ratio Convergence Theorem. This 
theorem shows that under certain reasonable conditions, when hypothesis hi (in 
conjunction with auxiliaries in b) is true and an alternative hypothesis hj is empirically 
distinct from hi on some possible outcomes of experiments or observations described 
by conditions ck, then it is very likely that a long enough sequence of such experiments 
and observations cn will produce a sequence of outcomes en that yields likelihood 
ratios P[en | hj·b·cn] / P[en | hi·b·cn] that approach 0 as evidence accumulates (i.e., as n
increases). The theorem places an explicit lower bound on the “rate of probable 
convergence” of these likelihood ratios towards 0. That is, it puts a lower bound on 
how likely it is, if hi is true, that a stream of outcomes will occur that yields likelihood 
ratio values against hj as compared to hi that lie within any specified small distance 
from 0. 

The theorem itself does not require the full apparatus of Bayesian probability 
functions. It draws only on likelihoods. Neither the statement of the theorem nor its 
proof employ prior probabilities of any kind. Likelihoodists and Bayesian inductivists 
agree that when the ratios P[en | hj·b·cn] / P[en | hi·b·cn] approach 0 for increasing n, 
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the evidence goes strongly against hj as compared to hi. So even a likelihoodist who 
eschews the use of Bayesian prior probabilities may embrace this result.

For Bayesians, the Likelihood Ratio Convergence Theorem further implies the likely 
convergence to agreement near 0 of the posterior probabilities of false competitors of a 
true hypothesis. When the ratios P[en | hj·b·cn] / P[en | hi·b·cn] approach 0 for 
increasing n, the Ratio Form of Bayes' Theorem, Equation 9, says that the posterior 
probability of hj must also approach 0 as evidence accumulates, regardless of the value 
of its prior probability. So, support functions in collections representing vague prior 
plausibilities for an individual agent (i.e., a vagueness set) and representing the diverse 
range of priors for a community of agents (i.e., a diversity set) will very likely come to 
agree on the near 0 posterior probability of empirically distinct false rivals of a true 
hypothesis. And as the posterior probabilities of false competitors fall, the posterior 
probability of the true hypothesis heads towards 1. Thus, the theorem establishes that 
the inductive logic of probabilistic support functions satisfies the Criterion of 
Adequacy (CoA).

The Likelihood Ratio Convergence Theorem overcomes many of the objections raised 
by critics of Bayesian convergence results. First, this theorem does not employ second-
order probabilities; it says noting about the probability of a probability. It only 
concerns the probability of a particular disjunctive sentence that expresses a 
disjunction of various possible sequences of experimental or observational outcomes. 
The theorem does not require evidence to consist of sequences of events that, 
according to the hypothesis, are identically distributed (like repeated tosses of a die). 
Although the result is most easily expressed in cases where the sequence of outcomes 
are probabilistically independent relative to each hypothesis, a version of the theorem 
also holds when the individual outcomes of the evidence stream are not 
probabilistically independent on the hypotheses. The result does not rely on countable 
additivity. And the explicit lower bounds it provides on convergence means that there 
is no need to wait for the infinte long run before convergence occurs (as some critics 
seem to think).

It is sometimes claimed that Bayesian convergence results only work when an agent 
locks in values for the prior probabilities of hypotheses once and for all, and updates 
posterior probabilities from there only by conditioning on evidence via Bayes 
Theorem. The Likelihood Ratio Convergence Theorem, however, applies even if 
agents revise their prior probability assessments over time. Such non-Bayesian shifts 
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from one support function (or vagueness set) to another may arise from new 
plausibility arguments or from reassessments of the strengths of old ones. The 
Likelihood Ratio Convergence Theorem itself only involves the values of likelihoods. 
So, provided such reassessments don't push the prior probability of the true hypothesis 
towards 0 too rapidly, the theorem implies that the posterior probabilities of each 
empirically distinct false competitor will very probably approach 0 as evidence 
increases.[18]

5.1 The Space of Possible Outcomes of Experiments and Observations

To specify the details of the Likelihood Ratio Convergence Theorem we'll need a few 
additional notational conventions and definitions. Here they are.

For a given sequence of n experiments or observations cn, consider the set of those 
possible sequences of outcomes that would result in likelihood ratios for hj over hi that 
are less than some chosen small number � > 0. This set is represented by the 
expression:

{en : P[en | hj·b·cn] / P[en | hi·b·cn] < �}. 

Placing the disjunction symbol ‘�’ in front of this expression yields an expression: 

�{en : P[en | hj·b·cn] / P[en | hi·b·cn] < �}, 

that we'll use to represent the disjunction of all outcome sequences in this set. So,

�{en : P[en | hj·b·cn] / P[en | hi·b·cn] < �} 

is just a particular sentence that says, in effect, “one of the sequences of outcomes of 
the first n experiments or observations will occur that makes the likelihood ratio for hj
over hi less than �.”

The Likelihood Ratio Convergence Theorem says that under certain conditions 
(covered in detail below), the likelihood of a disjunctive sentence of this sort, given 
that ‘hi·b·cn’ is true,

P[�{en : P[en | hj·b·cn]/P[en | hi·b·cn] < �}   |   hi·b·cn], 
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must be at least 1�(�/n), for some explicitly calculable term �. Thus, the true 
hypothesis hi probabilistically implies that as the amount of evidence, n, increases, it 
becomes highly likely (as close to 1 as you please) that one of the outcome sequences 
en will occur that yields a likelihood ratio P[en | hj·b·cn] / P[en | hi·b·cn] less than �; and 
this holds for any specific value of � you may choose. As this happens, the posterior 
probability of hi's false competitor, hj, must approach 0, as required by the Ratio Form 
of Bayes' Theorem, Equation 9.

The term � in the lower bound of this probability depends on a measure of the 
empirical distinctness of the hypotheses for the proposed sequence of experiments and 
observations. To specify this measure we need to contemplate the collection of 
possible outcomes of each experiment or observation. So, consider some sequence of 
experimental or observational conditions described by sentences c1,c2,…,cn. 
Corresponding to each condition ck there will be some range of possible alternative 
outcomes. Let Ok = {ok1,ok2,…,okw} be a set of statements describing the alternative 
possible outcomes for condition ck. (The number of alternative outcomes will usually 
differ for distinct experiments c1,…,cn; so, the value of w depends on ck.) For each 
hypothesis hj, the alternative outcomes of ck in Ok are mutually exclusive and 
exhaustive, so we have:

P[oku·okv | hj·b·ck] = 0 and
w
	

u = 1
P[oku | hj·b·ck] =1. 

We now let expressions like ‘ek’ act as variables that range over the possible outcomes 
of ck— i.e., ek ranges over the members of Ok. As before, ‘cn’ denotes the conjunction 
of the first n test conditions, (c1·c2·…·cn), and ‘en’ represents possible sequences of 
corresponding outcomes, (e1·e2·…·en). Let's use the expression ‘En’ to represent the set 
of all possible outcome sequences that may result from the sequence of conditions cn. 
So, for each hypothesis hj (including hi), 	en�EnP[en | hj·b·cn] = 1. 

Everything introduced in this subsection is mere notational convention. No substantive 
suppositions (other than the axioms of probability theory) have yet been introducted. 
The version of the Likelihood Ratio Convergence Theorem I'll present below does, 
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however, draw on one substantive supposition, although a rather weak one. The next 
subsection will discuss that supposition in detail.

5.2 Probabilistic Independence

In most scientific contexts the outcomes in a stream of experiments or observations are 
probabilistically independent of one another relative to each hypothesis under 
consideration, or can at least be divided up into probabilistically independent parts. For 
our purposes probabilistic independence of evidential outcomes on a hypothesis
divides neatly into two types.

Definition: Independent Evidence Conditions:
(1) A sequence of outcomes ek is condition-independent of a condition 
for an additional experiment or observation ck+1, given h·b and its own 
conditions ck, if and only if

P[ek | h·b·ck·ck+1] = P[ek | h·b·ck].

(2) An individual outcome ek is result-independent of a sequence of other 
observations and their outcomes (ck�1·ek�1), given h·b and its own 
condition ck, if and only if

P[ek | h·b·ck·(ck�1·ek�1)] = P[ek | h·b·ck].

When these two conditions hold, the likelihood for an evidence sequence may be 
decomposed into the product of the likelihoods for individual experiments or 
observations. To see how the two independence conditions affect the decomposition, 
first consider the following formula, which holds even when neither independence 
condition is satisfied:

(12)   P[en | hj·b·cn] = 
n
�

k = 1
P[ek | hj·b·cn·ek�1]. 

When condition-independence holds, the likelihood of the whole evidence stream 
parses into a product of likelihoods that probabilistically depend on only past 
observation conditions and their outcomes. They do not depend on the conditions for 
other experiments whose outcomes are not yet specified. Here is the formula:
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(13) P[en | hj·b·cn] = 
n
�

k = 1
P[ek | hj·b·ck· (ck�1·ek�1)]. 

Finally, whenever both independence conditions are satisfied we have the following 
relationship between the likelihood of the evidence stream and the likelihoods of 
individual experiments or observations:

(14) P[en | hj·b·cn] = 
n
�

k = 1
P[ek | hj·b·ck]. 

(For proofs of Equations 12-14, see the supplementary document: 
Immediate Consequences of Independent Evidence Conditions.)

In scientific contexts the evidence can almost always be divided into parts that satisfy 
both clauses of the Independent Evidence Condition with respect to each alternative 
hypothesis. To see why, let us consider each independence condition more carefully.

Condition-independence says that the mere addition of a new observation condition 
ck+1, without specifying one of its outcomes, does not alter the likelihood of the 
outcomes ek of other experiments ck. To appreciate the significance of this condition, 
imagine what it would be like if it were violated. Suppose hypothesis hj is some 
statistical theory, say, for example, a quantum theory of superconductivity. The 
conditions expressed in ck describe a number of experimental setups, perhaps 
conducted in numerous labs throughout the world, that test a variety of aspects of the 
theory (e.g., experiments that test electrical conductivity in different materials at a 
range of temperatures). An outcome sequence ek describes the results of these 
experiments. The violation of condition-independence would mean that merely adding 
to hj·b·ck a statement ck+1 describing how an additional experiment has been set up, but 
with no mention of its outcome, changes how likely the evidence sequence ek is taken 
to be. What (hj·b) says via likelihoods about the outcomes ek of experiments ck differs 
as a result of merely supplying a description of another experimental arrangement, ck+1. 
Condition-independence, when it holds, rules out such strange effects.
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Result-independence says that the description of previous test conditions together with 
their outcomes is irrelevant to the likelihoods of outcomes for additional experiments. 
If this condition were widely violated, then in order to specify the most informed 
likelihoods for a given hypothesis one would need to include information about 
volumes of past observations and their outcomes. What a hypothesis says about future 
cases would depend on how past cases have gone. Such dependence had better not 
happen on a large scale. Otherwise, the hypothesis would be fairly useless, since its 
empirical import in each specific case would depend on taking into account volumes of 
past observational and experimental results. However, even if such dependencies 
occur, provided they are not too pervasive, result-independence can be accommodated 
rather easily by packaging each collection of result-dependent data together, treating it 
like a single extended experiment or observation. The result-independence condition
will then be satisfied by letting each term ‘ck’ in the statement of the independence 
condition represent a conjunction of test conditions for a collection of result-dependent
tests, and by letting each term ‘ek’ (and each term ‘oku’) stand for a conjunction of the 
corresponding result-dependent outcomes. Thus, by packaging result-dependent data 
together in this way, the result-independence condition is satisfied by those 
(conjunctive) statements that describe the separate, result-independent chunks.[19]

The version of the Likelihood Ratio Convergence Theorem we will examine depends 
only on the Independent Evidence Conditions (together with the axioms of probability 
theory). It draws on no other assumptions. Indeed, an even more general version of the 
theorem can be established that draws on neither of the Independent Evidence 
Conditions. However, the Independent Evidence Conditions will be satisfied in almost 
all scientific contexts, so little will be lost by assuming them. (And the presentation 
will run more smoothly if we side-step the added complications needed to explain the 
more general result.)

From this point on let us assume that the following versions of the Independent 
Evidence Conditions hold. 
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Assumption: Independent Evidence Assumptions. For each hypothesis 
h and background b under consideration, we assume that the experiments 
and observations can be packaged into condition statements, c1,…, ck, ck+1,
…, and possible outcomes in a way that satisfies the following conditions:

(1) Each sequence of possible outcomes ek of a sequence of conditions ck

is condition-independent of additional conditions ck+1 — i.e., 
P[ek | h·b·ck·ck+1] = P[ek | h·b·ck].

(2) Each possible outcome ek of condition ck is result-independent of 
sequences of other observations and possible outcomes (ck�1·ek�1) — i.e., 
P[ek | h·b·ck·(ck�1·ek�1)] = P[ek | h·b·ck].

We now have all that is needed to begin to state the Likelihood Ratio Convergence 
Theorem.

5.3 Likelihood Ratio Convergence when Falsifying Outcomes are 
Possible

The Likelihood Ratio Convergence Theorem comes in two parts. The first part applies 
only to experiments or observations ck in the total evidence stream cn for which some 
of the possible outcomes have 0 probability of occurring according to hypothesis hj but 
have non-0 likelihood of occurring according to hi. Such outcomes are highly 
desirable. If they occur, the likelihood ratio comparing hj to hi will become 0, and hj
will be falsified. Crucial experiments are a special case of this — the case where for at 
least one possible outcome oku, P[oku | hi·b·ck] = 1 and P[oku | hj·b·ck] = 0. In the more 
general case hi together with b says that one of the outcomes of ck is at least minimally 
probable, whereas hj says that outcome is impossible — i.e., P[oku | hi·b·ck]  > 0 and 
P[oku | hj·b·ck] = 0. It will be convenient to define a term for this situation.
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Definition: Full Outcome Compatibility. Let's call hjfully outcome-
compatible with hi on experiment or observation ck just when for each of 
its possible outcomes ek, if P[ek | hi·b·ck]  > 0, then P[ek | hj·b·ck]  > 0. 
Equivalently, hj is fails to be fully outcome-compatible with hi on 
experiment or observation ck just when for at least one of its possible 
outcomes ek, P[ek | hi·b·ck]  > 0 but P[ek | hj·b·ck] = 0. 

The first part of the Likelihood Ratio Convergence Theorem applies to that part of the 
total stream of evidence (i.e. that subsequence of the total evidence stream) on which 
hypothesis hj fails to be fully outcome-compatible with hypothesis hi; the second part 
of the theorem applies to the remaining part of the total stream of evidence, that 
subsequence of the total evidence stream on which hj is fully outcome-compatible with 
hi for each experiment and observation. It turns out that these two kinds of cases must 
be treated differently. (This is due to the way in which the expected information 
content of for distinguishing between the two hypotheses will be measured for 
experiments and observations that are fully outcome compatible; this measure of 
information content blows up ( becomes infinite) for experiments and observations that 
fail to be fully outcome compatible). Thus, the following part of the convergence 
theorem applies to just that part of the total stream of evidence that consists of 
experiments and observations that fail to be fully outcome compatible for the pair of 
hypotheses involved. Here, then, is the first part of the theorem.

62

Stanford Encyclopedia of Philosophy James Hawthorne,  2011



Likelihood Ratio Convergence Theorem 1 — The Falsification Theorem:
Suppose that the total stream of evidence cn contains precisely m experiments or 
observations on which hj fails to be fully outcome-compatible with hi. And suppose that 
the Independent Evidence Conditions hold for evidence stream cn with respect to each 
of these two hypotheses. Furthermore, suppose there is a lower bound � > 0 such that 
for each ck on which hj fails to be fully outcome-compatible with hi, 
P[�{oku : P[oku | hj·b·ck] = 0} | hi·b·ck]  � � — i.e. hi together with b·ck says, with 
likelihood at least as large as �, that one of the outcomes will occur that hj says cannot 
occur. Then, 

P[�{en : P[en| hj·b·cn]/P[en | hi·b·cn] = 0}   | hi·b·cn] 

=     P[�{en : P[en | hj·b·cn] = 0}   |   hi·b·cn] 

    �     1�(1��)m, 

which approaches 1 for large m. (For proof see the supplementary document Proof 
of the Falsification Theorem.) 

In other words, we only suppose that for each of m observations, ck, (drawn from the 
total stream of all n observations, cn), hi says observation ck has at least a small 
likelihood � of producing one of the outcomes oku that hj says is impossible. If the 
number m of such experiments or observations is large enough (or if the lower bound � 
on the likelihoods of getting such outcomes is large enough), and if hi (together with 
b·cn) is true, then it is highly likely that one of the outcomes held to be impossible by hj
will actually occur. If one of these outcomes does occur, then the likelihood ratio for hj
as compared to over hi will become 0. According to Bayes' Theorem, when this 
happen, hj is absolutely refuted by the evidence — its posterior probability becomes 0.

The Falsification Theorem is very commonsensical. First, notice that if there is a 
crucial experiment in the evidence stream, the theorem is completely obvious. That is, 
suppose for the specific experiment ck (in evidence stream cn) there are two 
incompatible possible outcomes okv and oku such that P[okv | hj·b·ck] = 1 and 
P[oku | hi·b·ck] = 1. Then, clearly, P[�{oku: P[oku | hj·b·ck] = 0} | hi·b·ck] = 1, since oku
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is one of the oku such that P[oku | hj·b·ck] = 0. So where there is a crucial experiment 
available, the theorem applies with m = 1 and � = 1.

The theorem is equally commonsensical for cases where no crucial experiment is 
available. To see what it says in such cases, consider an example. Let hi be some 
theory that implies a specific rate of proton decay, but a rate so low that there is only a 
very small probability that any particular proton will decay in a given year. Consider 
an alternative theory hj that implies that protons never decay. If hi is true, then for a 
persistent enough sequence of observations (i.e., if proper detectors can be built and 
trillions of protons kept under observation for long enough), eventually a proton decay 
will almost surely be detected. When this happens, the likelihood ratio becomes 0. 
Thus, the posterior probability of hj becomes 0.

It is instructive to plug some specific values into the formula given by the Falsification 
Theorem, to see what the convergence rate might look like. For example, the theorem 
tells us that if we compare any pair of hypotheses hi and hj on an evidence stream cn

that contains at least m = 19 observations or experiments having � � .10 for the 
likelihood of yielding a falsifying outcome, then the likelihood (on hi·b·cn) of obtaining 
an outcome sequence en that yields likelihood-ratio P[en | hj·b·cn] / P[en | hi·b·cn] = 0, 
will be at least as large as 1�(1�.1)19 = .865. (The reader is invited to try other values 
of � and m as well.)

A comment about the need for and usefulness of such convergence theorems is in 
order, now that we’ve seen one. Given some specific pair of scientific hypotheses hi

and hj one may directly compute the likelihood, given (hi·b·cn), that a proposed 
sequence of experiments or observations cn will result in one of the sequences of 
outcomes that yield low likelihood ratios. So, given a specific pair of hypotheses and a 
proposed sequence of experiments, we don't need a general Convergence Theorem to 
tell us the likelihood of obtaining refuting evidence. The specific hypotheses hi and hj
tell us this themselves. They tell us the likelihood of obtaining each specific outcome 
stream, including those that refute the competitor or produce a very small likelihood 
ratio for it. Furthermore, after we've actually performed an experiment and recorded its 
outcome, all that matters is the actual ratio of likelihoods for that outcome. 
Convergence theorems become moot.

64

Stanford Encyclopedia of Philosophy James Hawthorne,  2011



The point of the Likelihood Ratio Convergence Theorem (both the Falsification 
Theorem and the part of the theorem still to come) is to assure us in advance of the 
consideration of any specific pair of hypotheses that if the possible evidence streams 
that test hypotheses have certain characteristics which reflect the empirical distinctness 
of the hypotheses, then it is highly likely that one of the sequences of outcomes will 
occur that yields a very small likelihood ratio. These theorems provide relatively 
meager, but finite lower bounds on how quickly such convergence is likely to be. 
Thus, they show that the CoA is satisfied in advance of our using the logic to test 
specific pairs of hypotheses against one another.

5.4 Likelihood Ratio Convergence When No Falsifying Outcomes are 
Possible

The Falsification Theorem applies whenever the evidence stream includes possible 
outcomes that may falsify the alternative hypothesis. However, it only takes account of 
the influence of the possibly falsifying experiments or observations. It completely 
ignores the influence of any experiments or observations in the evidence stream on 
which hypothesis hj is fully outcome-compatible with hypothesis hi. We now turn to a 
theorem that applies to those evidence streams (or to parts of evidence streams) 
consisting only of experiments and observations on which hypothesis hj is fully 
outcome-compatible with hypothesis hi. Evidence streams of this kind contain no 
possibly falsifying outcomes. In such cases the only outcomes of an experiment or 
observation ck for which hypothesis hj may specify 0 likelihoods are those for which 
hypothesis hi specifies 0 likelihoods as well. 

Hypotheses whose connection with the evidence is entirely statistical in nature will 
inevitably be fully outcome-compatible on the entire evidence stream. So, evidence 
streams of this kind are undoubtedly much more common in practice than those 
containing possibly falsifying outcomes. Furthermore, whenever an entire stream of 
evidence contains some mixture of experiments and observations on which the 
hypotheses are not fully outcome compatible along with others on which they are fully 
outcome compatible, we may treat the experiments and observations for which full 
outcome compatiblity holds as a seperate subsequence of the entire evidence stream, to 
see the likely impact of that part of the evidence in producing values for likelihood 
ratios. 
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To cover evidence streams (or subsequences of evidence streams) consisting entirely 
of experiments or observations on which hj is fully outcome-compatible with 
hypothesis hi we will first need to identify a useful way to measure the degree to which 
hypotheses are empirically distinct from one another on such evidence. Consider some 
particular sequence of outcomes en that results from observations cn. The likelihood 
ratio P[en | hj·b·cn] / P[en | hi·b·cn] itself measures the extent to which the outcome 
sequence distinguishes between hi and hj. But as a measure of the power of evidence to 
distinguish among hypotheses, raw likelihood ratios provide a rather lopsided scale, a 
scale that ranges from 0 to infinity with the midpoint, where en doesn't distinguish at 
all between hi and hj, at 1. So, rather than using raw likelihood ratios to measure the 
ability of en to distinguish between hypotheses, it proves more useful to employ a 
symmetric measure. The logarithm of the likelihood ratio provides such a measure.

Definition: QI — the Quality of the Information. 
For each experiment or observation ck, define the quality of the 
information provided by possible outcome oku for distinguishing hj from 
hi, given b, as follows (where henceforth we take “logs” to be base-2):

QI[oku | hi/hj | b·ck] = log[P[oku | hi·b·ck]/P[oku | hj·b·ck]].

Similarly, for the sequence of experiments or observations cn, define the
quality of the information provided by possible outcome en for 
distinguishing hj from hi, given b, as follows:

QI[en | hi/hj | b·cn] = log[P[en | hi·b·cn]/P[en | hj·b·cn]].

That is, QI is the base-2 logarithm of the likelihood ratio for hi over that 
for hj.

So, we'll measure the Quality of the Information an outcome would yield in 
distinguishing between two hypotheses as the base-2 logarithm of the likelihood ratio. 
This is clearly a symmetric measure of the outcome's evidential strength at 
distinguishing between the two hypotheses. On this measure hypotheses hi and hj
assign the same likelihood value to a given outcome oku just whenQI[oku | hi/hj | b·ck] = 
0. Thus, QI measures information on a logarithmic scale that is symmetric about the 
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natural no-information midpoint, 0. This measure is set up so that positive information
favors hi over hj, and negative information favors hj over hi.

Given the Independent Evidence Assumptions with respect to each hypothesis, it's easy 
to show that the QI for a sequence of outcomes is just the sum of the QIs of the 
individual outcomes in the sequence:

(15)  QI[en | hi/hj | b·cn] = 
n
	

k = 1
QI[ek | hi/hj | b·ck]. 

Probability theorists measure the expected value of a quantity by first multiplying each 
of its possible values by their probabilities of occurring, and then summing these 
products. Thus, the expected value of QI is given by the following formula:
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Definition: EQI — the Expected Quality of the Information. 
We adopt the convention that if P[oku | hi·b·ck] = 0, then the term 
QI[oku | hi/hj | b·ck] × P[oku | hi·b·ck] = 0. This convention will make good 
sense in the context of the following definition because, whenever the 
outcome oku has 0 probability of occurring according to hi (together with 
b·ck), it makes good sense to give it 0 impact on the ability of the evidence 
to distinguish between hj and hi when hi (together with b·ck) is true. Also 
notice that the full outcome-compatiblity of hj with hi on ck means that 
whenever P[ek | hj·b·ck] = 0, we must have P[ek | hi·b·ck] = 0 as well; so 
whenever the denominator would be 0 in the term QI[oku | hi/hj | b·ck] = 
log[P[oku | hi·b·ck]/P[oku | hj·b·ck]], the the convention just described 
makes the term QI[oku | hi/hj | b·ck] × P[oku | hi·b·ck] = 0. Thus the 
following notion is well-defined: 

For hj fully outcome-compatible with hi on experiment or observation ck, 
define

EQI[ck | hi/hj | b] = 	u QI[oku | hi/hj | b·ck] × P[oku | hi·b·ck].

Also, for hj fully outcome-compatible with hi on each experiment and 
observation in the sequence cn, define

EQI[cn | hi/hj | b] = 	en�En QI[en | hi/hj | b·cn] × P[en | hi·b·cn]. 

The EQI of an experiment or observation is the Expected Quality of its Information for 
distinguishing hi from hj when hi is true. It is a measure of the expected evidential 
strength of the possible outcomes of an experiment or observation at distinguishing 
between the hypotheses when hi (together with b·c) is true. Whereas QI measures the 
ability of each particular outcome or sequence of outcomes to empirically distinguish 
hypotheses, EQI measures the tendency of experiments or observations to produce 
distinguishing outcomes. It can be shown that EQI tracks empirical distinctness in a 
very precise way. We return to this in a moment.

It is easily seen that the EQI for a sequence of observations cn is just the sum of the 
EQIs of the individual observations ck in the sequence:
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(16)   EQI[cn | hi/hj | b] =
n
	

k = 1
EQI[ck | hi/hj | b]. 

(For proof see the supplementary document Proof that the EQI for cn is the 
sum of the EQI for the individual ck.)

This suggests that it may be useful to average the values of the EQI[ck | hi/hj | b] over 
the number of observations n to obtain a measure of the average expected quality of 
the information among the experiments and observations that make up the evidence 
stream cn.

Definition: The Average Expected Quality of Information
For hj fully outcome-compatible with hi on each experiment and 
observation in the evidence stream cn, define the average expected quality 
of information, EQI, from cn for distinguishing hj from hi, given hi·b, as 
follows:

EQI[cn | hi/hj | b]   =  EQI[cn | hi/hj | b] ÷ n

  =  (1/n) × 
n
	
k = 1

EQI[ck | hi/hj | b].

It turns out that the value of EQI[ck | hi/hj | b] cannot be less than 0; and it will be 
greater just in case hi is empirically distinct from hj on at least one outcome oku — i.e., 
just in case it is empirically distinct in the sense that P[oku | hi·b·ck] � P[oku | hj·b·ck].
The same goes for the average, EQI[cn | hi/hj | b].
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Theorem: Nonnegativity of EQI.

EQI[ck | hi/hj | b] � 0; and EQI[ck | hi/hj | b] > 0 if and only if for at least one of its 
possible outcomes oku, P[oku | hi·b·ck] � P[oku | hj·b·ck].

As a result, EQI[cn | hi/hj | b] � 0; and EQI[cn | hi/hj | b] > 0 if and only if at least one 
experiment or observation ck has at least one possible outcome oku such that 
P[oku | hi·b·ck] � P[oku | hj·b·ck].

(For proof, see the supplementary document The Effect on EQI of Partitioning the 
Outcome Space More Finely — Including Proof of the Nonnegativity of EQI.)

In fact, the more finely one partitions the outcome space Ok = {ok1,…,okv,…,okw} into 
distinct outcomes that differ on likelihood ratio values, the larger EQI becomes.[20]

This shows that EQI tracks empirical distinctness in a precise way. The importance of 
the Non-negativity of EQI result for the Likelihood Ratio Convergence Theorem will 
become clear in a moment.

We are now in a position to state the second part of the Likelihood Ratio Convergence 
Theorem. It applies to all evidence streams not containing possibly falsifying outcomes
for hj when hi holds — i.e., it applies to all evidence streams for which hj is fully 
outcome-compatible with hi on each ck in the stream.
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Likelihood Ratio Convergence Theorem 2 — The Non-Falsifying Refutation 
Theorem.

Suppose the evidence stream cn contains only experiments or observations on which hj
is fully outcome-compatible with hi — i.e. suppose that for each condition ck in 
sequence cn, for each of its possible outcomes possible outcomes oku, either 
P[oku | hi·b·ck] = 0 or P[oku | hj·b·ck] > 0. In addition (as a slight strengthening of the 
previous supposition), for some � > 0 a number smaller than 1/e2 (� .135; where ‘e’ is 
the base of the natural logarithm), suppose that for each possible outcome oku of each 
observation condition ck in cn, either P[oku | hi·b·ck] = 0 or P[oku | hj·b·ck] / 
P[oku | hi·b·ck] � �. And suppose that the Independent Evidence Conditions hold for 
evidence stream cn with respect to each of these hypotheses. Now, choose any positive 
� < 1, as small as you like, but large enough (for the number of observations n being 
contemplated) that the value of EQI[cn | hi/hj | b] > �(log �)/n. Then:

P[�{en : P[en | hj·b·cn] / P[en | hi·b·cn] < �}   |   hi·b·cn]

> 1 � 1
n ×

(log �)2

(EQI[cn | hi/hj | b] + (log �)/n )2

(For proof see the supplementary document Proof of the Non-Falsifying 
Refutation Theorem.) 

This theorem provides sufficient conditions for the likely refutation of false 
alternatives via exceeding small likelihood ratios. The conditions under which this 
happens characterize the degree to which the hypotheses involved are empirically 
distinct from one another. The theorem says that when these conditions are met, 
according to hypothesis hi (taken together with b·cn), the likelihood is near 1 that that 
one of the outcome sequence en will occur for which the likelihood ratio is smaller than 
� (for any value of � you may choose). The likelihood of getting such an evidential 
outcome en is quite coles to 1 — i.e. no more than the amount 
(1/n) × (log �)2 / (EQI[cn | hi/hj | b] + (log �)/n)2 below 1. (Notice that this amount 
below 1 goes to 0 as n increases.) 
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It turns out that in almost every case (for almost any pair of hypotheses) the actual 
likelihood of obtaining such evidence (i.e. evidence that has a likelihood ratio value 
less than �) will be much closer to 1 than this factor indicates.[21] Thus, the theorem 
provides an overly cautious lower bound on the likelihood of obtaining small 
likelihood ratios. It shows that the larger the value of EQI for an evidence stream, the 
more likely that stream is to produce a sequence of outcomes that yield a very small 
likelihood ratio value. But even if EQI remains quite small, a long enough evidence 
stream, n, of such low-grade evidence will, nevertheless, almost surely produce an 
outcome sequence having a very small likelihood ratio value.[22]

Notice that the antecedent condition of the theorem, that “either P[oku | hi·b·ck] = 0 or 
P[oku | hj·b·ck] / P[oku | hi·b·ck]  � �, for some � > 0 but less than 1/e2 (� .135)”, does 
not favor hypothesis hi over hj in any way. The condition only rules out the possibility 
that some outcomes might furnish extremely strong evidence against hj relative to hi —
by making P[oku | hi·b·ck] = 0 or by making P[oku | hj·b·ck] / P[oku | hi·b·ck] less than 
some quite small �. This condition is only needed because our measure of evidential 
distinguishability, QI, blows up when the ratio P[oku | hj·b·ck] / P[oku | hi·b·ck] is 
extremely small. Furthermore, this condition is really no restriction at all on possible 
experiments or observations. If ck has some possible outcome sentence oku that would 
make P[oku | hj·b·ck] / P[oku | hi·b·ck]  < � (for a given small � of interest), one may 
disjunctively lump oku together with some other outcome sentence okv for ck. Then, the 
antecedent condition of the theorem will be satisfied, but with the sentence 
‘(oku� okv)’treated as a single outcome. It can be proved that the only effect of such 
“disjunctive lumping” is to make EQI smaller than it would otherwise be (whereas 
larger values of EQI are more desirable). If the too strongly refuting disjunct oku
actually occurs when the experiment or observation ck is conducted, all the better, since 
the result is to yield a likelihood ratio P[oku | hj·b·ck] / P[oku | hi·b·ck] smaller than � on 
that particular evidential outcome. We merely failed to take this more strongly refuting
possibility into account when computing our lower bound on the likelihood that 
refutation via likelihood ratios would occur.

The point of the two Convergence Theorems explored in this section is to assure us, in 
advance of the consideration of any specific pair of hypotheses, that if the possible 
evidence streams that test them have certain characteristics which reflect their 
evidential distinguishability, it is highly likely that outcomes yielding small likelihood 
ratios will result. These theorems provide finite lower bounds on how quickly 
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convergence is likely to occur, bounds that show one need not wait for convergence 
through some infinitely long run. Indeed, for any evidence sequence on which the 
probability distributions are at all well behaved, the actual likelihood of obtaining 
outcomes that yield small likelihood ratio values will inevitably be much higher than 
the lower bounds given by Theorems 1 and 2.

In sum, according to Theorems 1 and 2, each hypothesis hi says, via likelihoods, that 
given enough observations, it is very likely to dominate its empirically distinct rivals in 
a contest of likelihood ratios. The true hypothesis speaks truthfully about this, and its 
competitors lie. Even a sequence of observations with an extremely low average 
expected quality of information is very likely to do the job if that evidential sequence is 
long enough. Thus (by Equation 9), as evidence accumulates, the degree of support for 
false hypotheses will very probably approach 0, indicating that they are probably false; 
and as this happens, (by Equations 10 and 11) the degree of support for the true 
hypothesis will approach 1, indicating its probable truth. Thus, the Criterion of 
Adequacy (CoA) is satisfied.

6. When the Likelihoods are Vague or Diverse

Up to this point we have been supposing that likelihoods possess objective or agreed 
numerical values. Although this supposition is often satisfied in scientific contexts, 
there are important settings where it is unrealistic, where hypotheses only support 
vague likelihood values, and where there is enough ambiguity in what hypotheses say
about evidential claims that the scientific community cannot agree on precise values 
for the likelihoods of evidential claims.[23] Let us now see how the supposition of 
precise, agreed likelihood values may be relaxed in a reasonable way.

Recall why agreement, or near agreement, on precise values for likelihoods is so 
important to the scientific enterprise. To the extent that members of a scientific 
community disagree on the likelihoods, they disagree about the empirical content of 
their hypotheses, about what each hypothesis says about how the world is likely to be. 
This can lead to disagreement about which hypotheses are refuted or supported by a 
given body of evidence. Similarly, to the extent that the values of likelihoods are only 
vaguely implied by hypotheses as understood by an individual agent, that agent may be 
unable to determine which of several hypotheses is refuted or supported by a given 
body of evidence.
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We have seen, however, that the values of individual likelihoods are not what is most 
crucial to the way evidence impacts hypotheses. Rather, as Equations 9-11 show, it is 
ratios of likelihoods that do the heavy lifting. So, even if two support functions P� and 
P� disagree on the values of individual likelihoods, they may, nevertheless, largely 
agree on the refutation or support that accrues to various rival hypotheses, provided 
that the following condition is satisfied: 

Directional Agreement Condition: 
The likelihood ratios due to each of a pair of support functions P� and P�
are said to agree in direction (with respect to the possible outcomes of 
experiments or observations relevant to a pair of hypotheses) just in case

• whenever possible outcome sequence en makes 
P�[en | hj·b·cn] / P�[en | hi·b·cn]  < 1, it also makes 
P�[en | hj·b·cn] / P�[en | hi·b·cn]  < 1; 

• whenever possible outcome sequence en makes 
P�[en | hj·b·cn] / P�[en | hi·b·cn]  > 1, it also makes 
P�[en | hj·b·cn] / P�[en | hi·b·cn]  > 1; 

• each of these likelihood ratios is either extremely close to 1 for both 
of these support functions or for neither of these support functions.
[24]

When this condition holds, the evidence will support hi over hj according to P� just in 
case it does so for P� as well, although the strength of support may differ. Furthermore, 
the rate at which the likelihood ratios increase or decrease on a stream of evidence 
may differ for the two support functions, but the impact of the cumulative evidence 
should ultimately affect their refutation or support in much the same way. 

When likelihoods are vague or diverse, we may take the approach we employed for 
vague and diverse prior plausibility assessments. We may extend the vagueness sets
for individual agents to include a collection of inductive support functions that cover 
the range of values for likelihood ratios of evidence claims that the hypotheses 
apparently support (as well as covering the ranges of prior comparative support 
strengths for hypotheses due to plausibility arguments within b). Similarly, we may 
extend the diversity sets for communities of agents to include support functions that 
cover the ranges of likelihood ratio values (along with ranges of prior comparative 
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support strengths for hypotheses) drawn from the vagueness sets of members of the 
scientific community.

This broading of vagueness and diversity sets to accommodate vague and diverse 
likelihood values makes no trouble for the convergence to truth results for hypotheses. 
For, provided that the Directional Agreement Condition is satisfied by all support 
functions in an extended vagueness or diversity set under consideration, the Likelihood 
Ratio Convergence Theorem applies to the whole range of support functions in that set. 
The the proof of the theorem doesn't depend on the supposition that likelihoods are 
objective or have intersubjectively agreed values. It applies to each individual support 
function P�. The only problem with applying this result across a range of support 
functions is that when their values for likelihoods differ, function P� may disagree with 
P� on which of the hypotheses is favored by a given sequence of evidence. That can 
happen because different support functions may represent the evidential import of 
hypotheses differently, by specifying different likelihood values for the very same 
evidence claims. So, an evidence stream that favors hi according to P� may instead 
favor hj according to P�. However, when the Directional Agreement Condition holds 
for a given collection of support functions, this cannot happen. Directional Agreement
means that the evidential import of hypotheses is similar enough for P� and P�that a 
sequence of outcomes may favor a hypothesis according to P� only if it does so for P�
as well.

Thus, when the Directional Agreement Condition holds for all support functions in a 
vagueness or diversity set extended to include vague or diverse likelihoods, if enough 
evidentially distinguishing experiments or observations can be performed, all support 
functions in the extended vagueness or diversity set will very probably come to agree 
that the likelihood ratios for empirically distinct false competitors of a true hypothesis 
are extremely small. As that happens, the community comes to agree on the refutation 
of these competitors, and the true hypothesis rises to the top of the heap.[25]

What if the true hypothesis has evidentially equivalent rivals? Their posterior 
probabilities must rise as well. In that case we are only assured that the disjunction of 
the true hypothesis with its evidentially equivalent rivals will be driven to 1 as 
evidence lays low its evidentially distinct rivals. The true hypothesis will itself 
approach 1 only if either it has no evidentially equivalent rivals, or whatever equivalent 
rivals it has are laid low by plausibility arguments of the kind that don't depend on the 
evidential likelihoods.
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powerpoint slides for each of his lectures and some links to handouts for the 
course. The Links page contains links to some useful internet resources.
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Supplement to Inductive Logic

Some Prominent Approaches to the Represention of 
Uncertain Inferences
The following figure indicates some relationships among six of the most prominent 
approaches. The arrows point from more general to less general representation schemes. 
For example, the Dempster-Shafer represention contains the probability functions as a 
special case.

Representations of Uncertainty

These representations are often described as measures on events, or states, or 
propositions, or sets of possibilities. But deductive logics are usually described in terms 
of statements or sentences of a language. So let's follow suit.

Plausibility relations (Friedman and Halpern, 1995) constitute the most general of these 
representations. They satisfy the weakest axioms, the weakest constraints on the logic of 
uncertainty. For a plausibility relation� between sentences, an expression ‘A� B’, says 
that A is no more plausible than B (i.e., B is at least as plausible as A, maybe more 
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plausible). The axioms for plausibility relations say that tautologies are more plausible 
than contradictions, any two logically equivalent sentences are plausibility-related to 
other sentence in precisely the same way, a sentence is no more plausible than the 
sentences it logically entails, and the no more plausible than relation is transitive. These 
axioms make plausibility relations weak partial orderings on the relative plausibility of 
sentences. They permit some sentences to be incomparable — neither more plausible, nor 
less plausible, nor equally plausible to one another.

Qualitative probability relations are plausibility relations for which the ordering is total
— i.e. any two sentences are either equally plausible, or one is more plausible than the 
other. This total ordering is established by one additional axiom. Qualitative probability 
relations also satisfy a second additional axiom that says that when a sentence S is 
logically incompatible with A and with B, then A� B holds just in case
(A or S) � (B or S) holds as well. When qualitative probability relations are defined on a 
language with a rich enough vocabulary and satisfy one additional axiom, they can be 
shown to be representable by probability functions — i.e., given any qualitative
probability relation�, there is a unique probability function P such that A� B just in 
case P[A] 
 P[B]. So quantitative probability may be viewed as essentially just a way of 
placing a numerical measure on sentences that uniquely emulates the is no more plausible 
than relation specfied by qualitative probability. (See (Koopman, 1940), (Savage, 1954), 
(Hawthorne and Bovens, 1999), (Hawthorne, 2009).) 

Probability (i.e., quantitative probability) is a measure of plausibility that assigns a 
number between 0 and 1 to each sentence. Intuitively, the probability of a sentence S, 
P[S] = r, says that S is plausible to degree r, or that the rational degree of confidence (or 
belief) that S is true is r. The axioms for probabilities basically require two things. First, 
tautologies get probability 1. Second, when A and B contradict each other, the probability 
of the disjunction (A or B) must be the sum of the probabilities of A and of B individually. 
It is primarily in regard to this second axiom that probability differs from each of the 
other quantitative measures of uncertainty.

Like probability, Dempster-Shafer belief functions (Shafer, 1976, 1990) measure 
appropriate belief strengths on a scale between 0 and 1, with contradictions and 
tautologies at the respective extremes. But whereas the probability of a disjunction of 
incompatible claims must equal the sum of the parts, Dempster-Shafer belief functions
only require such disjunctions be believed at least as strongly as the sum of the belief
strengths of the parts. So these functions are a generalization of probability. By simply 
tightening up the Dempster-Shafer axiom about how disjunctions are related to the their 
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parts we get back a restricted class of Dempster-Shafer functions that just is the class of 
probability functions. Dempster-Shafer functions are primarily employed as a logic of the 
evidential support for hypotheses. In that realm they are a generalization of the idea of 
evidential support embodied by probabilistic inductive logic. There is some controversy 
as to whether such a generalization is useful or desirable, or whether simple probability is 
too narrow to represent important evidential relationships captured by some Dempster-
Shafer functions.

There is a sense in which the other two quantative measures of uncertainty, possibility
functions and ranking functions, are definable in terms of formulas employing the 
Dempster-Shafer functions. But this is not the best way to understand them. Possibility 
functions (Zadeh, 1965, 1978), (Dubois and Prade, 1980, 1990) are generally read as 
representing the degree of uncertainty in a claim, where such uncertainty is often 
attributed to vaguness or fuzziness. These functions are formally like probability
functions and Dempster-Shafer functions, but they subscribe to a simpler addition rule: 
the degree of uncertainty of a disjunction is the greater of the degrees of uncertainty of 
the parts. Similarly, the degree of uncertainty of a conjunction is the smaller of the 
uncertainties of the parts.

Ranking functions (Spohn, 1988) supply a measure of how surprising it would be if a 
claim turned out to be true, rated on a scale from 0 (not at all surprizing) to infinity. 
Tautologies have rank 0 and contradictions are infinitely surprizing. Logically equivalent 
claims have the same rank. The rank of a disjunction is equal to the rank of the lower 
ranking disjunct. These functions may be used to represent a kind of order-of-magnitude
reasoning about the plausibility of various claims.

See (Halpern, 2003) for a good comparative treatment of all of these approaches.

Here are the axioms for the Plausibility Relations and the Qualitative Probability 
Relations.

Axioms for the Plausibility Relations
Each plausibility relation� satisfies the following axioms: 

1. if T is a tautology and K is a contradiction, it is not the case that 
T� K;

2. if A is logically equivalent to B and C is logically equivalent to D, and 
A� C, then B� D;
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3. if A logically entails B, then A� B; 
4. if A� B and B� C, then A� C.

Two sentences are defined as equally plausible, A = B, just when A� B and B� A. One 
sentence is defined as less plausible than another, A� B, just when A� B but not 
B� A.

Axioms for the Qualitative Probability Relations
To get the qualitative probability relations we add the axioms 

5. A� B or B� A; 
6. if ‘(S and A)’ and ‘(S and B)’ are both logical contradictions, then 

A� B just in case (A or S) � (B or S).

The typical axioms for quantitative probability are as follows:

i. for all sentences S, 0 
 P[S] 
 1; 
ii. if S is a tautology, then P[S] = 1; 

iii. if ‘(A and B)’ is a logical contradiction, then P[A or B] = P[A] + P[B].

Axioms 1-6 for the qualitative probability relations are probabilistically sound with 
respect to the quantitative probability functions. That is, for each given probability 
function P, define a relation � such that A� B just in case P[A] 
 P[B]. Then � must 
satisfy axioms 1-6. However, not every qualitative probability relation that satisfies 
axioms 1-6 may be represented by a probability function. To get that we must add one 
further axiom.

Let's say that a qualitative probability relation � is fine-grained just in case it satisfies 
the following axiom:

(7) if A� B, then there is some tautology consisting of n sentences, (S1 or S2 or … or 
Sn), where each distinct Si and Sj are inconsistent with one another, such that for each of 
the Si,   (A or Si) � B.

For each fine-grained qualitative probability relation � there is a unique probability 
function P such that A� B just in case P[A] 
 P[B].
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Now call a qualitative probability relation � properly extendable just in case it can be 
extended to a fine-grained qualitative probability relation defined on a larger language 
(i.e., a language containing additional sentences). Then for every properly extendable
qualitative probability relation � there is a probability function P such that A� B just in 
case P[A] 
 P[B]. In general a given properly extendable qualitative probability relation 
may have many such representing probability functions, corresponding to different ways 
of extending it to fine-grained qualitative probability relations.

Thus, the quantitative probability functions may be viewed as just useful ways of 
representing properly extendable qualitiative probability relations on a convenient 
numerical scale. 

[Back to Text]
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Supplement to Inductive Logic

Tighter Bounds on the Margin of Error

If we want strong support for hypotheses claiming more than 99.9% of all ravens are 
black, the following extension of Table 1 applies.

Table 1.2: Values of lower bound p on the posterior probability
m/n = 1 
F[A,B] > .999

Sample-Size = n
(number of As in Sample of Bs =  m = n)

Prior Ratio: K
� 400 800 1600 3200 6400 12800 25600

1 0.3305 0.5513 0.7985 0.9593 0.9983 1.0000 1.0000
2 0.1980 0.3805 0.6645 0.9219 0.9967 1.0000 1.0000
5 0.0899 0.1973 0.4421 0.8252 0.9918 1.0000 1.0000
10 0.0470 0.1094 0.2838 0.7023 0.9837 1.0000 1.0000
100 0.0049 0.0121 0.0381 0.1909 0.8578 0.9997 1.0000
1,000 0.0005 0.0012 0.0039 0.0231 0.3763 0.9973 1.0000
10,000 0.0000 0.0001 0.0004 0.0024 0.0569 0.9733 1.0000
100,000 0.0000 0.0000 0.0000 0.0002 0.0060 0.7849 1.0000
1,000,000 0.0000 0.0000 0.0000 0.0000 0.0006 0.2674 1.0000
10,000,000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0352 0.9999

P�[F[A,B] > .999  | b ·F[A,S]=1 · Random[S,B,A] · Size[S]=n]   � p, for a range of 
Sample-Sizes n (from 400 to 25600), when the prior probability of any specific frequency 
hypothesis outside the region between .999 and 1 is no more than K times more than the 
lowest prior probability for any specific frequency hypothesis inside of the region 
between .999 and 1.

The lower right corner of the table shows that even when thevagueness or diversity sets 
include support functions with prior plausibilities up to ten million times higher for 
hypotheses asserting frequency values below .999 than for hypotheses making 
frequency claims between .999 and 1, a sample of 25600 black ravens will, 
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nevertheless, pull the posterior plausibility above .9999 that “the true frequency is 
over .999” for every support function in the set.

[Back to Text]
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Supplement to Inductive Logic

Immediate Consequences of the Independent Evidence 
Conditions

When neither independence condition holds, we at least have:

P[en | hj·b·cn] = P[en | hj·b·cn·en�1] × P[en�1 | hj·b·cn] 
= …

=
n
�

k = 1
P[ek | hj·b·cn·ek�1]

When condition-independence holds we have:

P[en | hj·b·cn] = P[en | hj·b·cn·(cn�1·en�1)] × P[en�1 | hj·b·cn·cn�1] 
= P[en | hj·b·cn·(cn�1·en�1)] × P[en�1 | hj·b·cn�1] 
= …

=
n
�

k = 1
P[ek | hj·b·ck·(ck�1·ek�1)]

If we add result-independence tocondition-independence, the occurrences 
of‘(ck�1·ek�1)’may be removed from the previous formula, giving:

P[en | hj·b·cn] = 
n
�

k = 1
P[ek | hj·b·ck] 
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Supplement to Inductive Logic

Proof of the Falsification Theorem

Likelihood Ratio Convergence Theorem 1—The Falsification Theorem:
Suppose the evidence stream cn contains precisely m experiments or observations on 
which hj isnot fully outcome-compatible with hi. And suppose that the Independent
Evidence Conditions hold for evidence stream cn with respect to each of these 
hypotheses. Furthermore, suppose there is a lower bound � > 0 such that for each ck on 
which hj isnot fully outcome-compatible with hi, 
P[�{oku : P[oku | hj·b·ck] = 0} | hi·b·ck]  �  � — i.e. hi (together with b·ck) says, via a 
likelihood with value no smaller than �, that one of the outcomes will occur that hj says
cannot occur). Then,

P[�{en : P[en| hj·b·cn]/P[en | hi·b·cn] = 0}   |  hi·b·cn] 

=     P[�{en : P[en | hj·b·cn] = 0}   |   hi·b·cn] 

    �     1�(1��)m,

which approaches 1 for large m.

Proof

First notice that according to the supposition of the theorem, for each of the m
experiments or observations ck on which hj is not fully outcome-compatible with hi we 
have

(1��) � P[�{oku :P[oku  | hj·b·ck] > 0}   |   hi·b·ck] 

= 	{oku�Ok: P[oku | hj·b·ck] > 0} P[oku | hi·b·ck].
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And for each of the other ck in the evidence stream cn — i.e. for each of the ck on 
which hj is fully outcome-compatible with hi,

P[�{oku : P[oku | hj·b·ck] > 0}   |   hi·b·ck]  =  1. 

Then, we may iteratively decompose P[�{en : P[en | hj·b·cn] > 0}   |   hi·b·cn] into it's 
components as follows:

P[�{en : P[en | hj·b·cn] > 0}   |   hi·b·cn]
=   	{en:P[en | hj·b·cn] > 0} P[en | hi·b·cn]
=   	{en:P[en | hj·b·cn·cn�1·en�1] ×P[en�1 | hi·b·cn·cn�1] > 0} P[en | hj·b·cn·cn�1·en�1] ×

P[en�1 | hi·b·cn·cn�1]
=  	{en:P[en | hj·b·cn] ×P[en�1 | hi·b·cn�1] > 0} P[en | hj·b·cn] ×P[en�1 | hi·b·cn�1]
= 	{en:P[en | hj·b·cn] > 0 &P[en�1 | hi·b·cn�1] > 0} P[en | hj·b·cn] ×P[en�1 | hi·b·cn�1]
=  	{en�1: P[en�1 | hj·b·cn�1] > 0}	{onu�On:P[onu | hj·b·cn] > 0} P[onu | hi·b·cn] ×

P[en�1 | hi·b·cn�1]
=  	{en�1: P[en�1 | hj·b·cn�1] > 0} P[�{onu: P[onu | hj·b·cn] > 0} | hi·b·cn]  ×

P[en�1 | hi·b·cn�1]

 
 (1��) × 	{en�1: P[en�1 | hj·b·cn�1] > 0} P[en�1 | hi·b·cn�1], 
if cn is an observation on which hj is not fully outcome-compatible with hi

or 
 = 	{en�1: P[en�1 | hj·b·cn�1] > 0} P[en�1 | hi·b·cn�1], 

if cn is an observation on which hj is fully outcome-compatible with hi

…
continuining this process of decomposing terms of 
form	{ek: P[ek | hj·b·ck] > 0} P[ek | hi·b·ck] (in each disjunct of the ‘or’ above, using the 
same decomposition process shown in the six lines preceding that disjunction), and 
realizing that according to the supposition of the theorem, this decomposition leads to 
terms of the form of the first disjunct exactly m times, we get 
…

 (1��)   =   (1��)m. 
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m
�

k = 1

So,

P[�{en : P[en | hj·b·cn] = 0}   |   hi·b·cn] 
= 1 � P[�{en : P[en | hj·b·cn] > 0}   |   hi·b·cn]   �     1 � (1��)m.

We also have,

P[�{en : P[en | hj·b·cn]/P[en | hi·b·cn] = 0} | hi·b·cn] 
= P[�{en : P[en | hj·b·cn] = 0} | hi·b·cn], 

because

P[�{en : P[en | hj·b·cn]/P[en | hi·b·cn] > 0} | hi·b·cn] 
= 	{en: P[en | hj·b·cn]/P[en | hi·b·cn] > 0} P[en | hi·b·cn]

= 	{en: P[en | h j·b·cn] > 0 & P[en | hi·b·cn] > 0} P[en | hi·b·cn]

= 	{en: P[en | h j·b·cn] > 0} P[en | hi·b·cn]

= P[�{en : P[en | hj·b·cn] > 0}   |   hi·b·cn].

[Back to Text]
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Supplement to Inductive Logic

Proof that the EQI for cn is the sum of EQI for the 
individual ck

Theorem: The EQI Decomposition Theorem:

When the Independent Evidence Conditions are satisfied,

EQI[cn | hi/hj | b] =
n
	

k = 1
EQI[ck | hi/hj | b]. 

[Back to Text]

Proof:

EQI[cn | hi/hj | b]
 = 	{en} QI[en | hi/hj | b·cn] × P[en | hi·b·cn]
 = 	{en} log[P[en | hi·b·cn]/P[en | hj·b·cn]] × P[en | hi·b·cn]
 = 	{en�1} 	{en}(log[P[en | hi·b·cn·(cn�1·en�1)]/P[en | hj·b·cn·(cn�1·en�1)]]

+ log[P[en�1 | hi·b·cn·cn�1]/P[en�1 | hj·b·cn·cn�1]]) ×
P[en | hi·b·cn·(cn�1·en�1)] × P[en�1 | hi·b·cn·cn�1]

 = 	{en�1} 	{en} (log[P[en | hi·b·cn]/P[en | hj·b·cn]]
+ log[P[en�1 | hi·b·cn�1]/P[en�1 | hj·b·cn�1]])  ×

P[en | hi·b·cn]  × P[en�1 | hi·b·cn�1]
 = (	{en} log[P[en | hi·b·cn]/P[en | hj·b·cn]] × P[en | hi·b·cn]  ×

	{en�1} P[en�1 | hi·b·cn�1])
+ (	{en�1} log[P[en�1 | hi·b·cn�1]/P[en�1 | hj·b·cn�1]] × P[en�1 | hi·b·cn�1] ×

	{en} P[en | hi·b·cn])
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 = EQI[cn | hi/hj | b] + EQI[cn�1 | hi/hj | b]
 = …   (iterating this decomposition process)

 = 

n
	

k = 1
EQI[ck | hi/hj | b].

Copyright © 2011 by
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Supplement to Inductive Logic

The Effect on EQI of Partitioning the Outcome Space 
More Finely — Including Proof of the Nonnegativity 
of EQI

Given some experiment or observation (or series of them) c, is there any special 
advantage to parsing the space of possible outcomes O into more alternatives rather 
than fewer alternatives? Couldn't we do as well at evidentially evaluating hypotheses 
by parsing the space of outcomes into just a few alternatives — e.g., one possible 
outcome that hi says is very likely and hj says is rather unlikely, one that hi says is 
rather unlikely and hj says is very likely, and perhaps a third outcome on which hi and 
hj pretty much agree? The answer is “No !”. Parsing the space of outcomes into a larger 
number of empirically distinct possible outcomes always provides a better measure of 
evidential support. 

To see this intuitively, suppose some outcome description o can be parsed into two 
distinct outcome descriptions, o1 and o2, where o is equivalent to (o1�o2), and suppose 
that hi differs from hj much more on the likelihood of o1 than on the likelihood of o2. 
Then, intuitively, when o is found to be true, whichever of the more precise 
descriptions, o1 or o2, is true should make a difference as to how strong the 
comparative support for the two hypotheses turns out to be. Reporting whichever of o1
or o2 occurs will be more informative than simply reporting o. That is, if the outcome 
of the experiment is only described as o, relevant information is lost.

It turns out that EQI measures how well possible outcomes can distinguish between 
hypotheses in a way that reflects the intuition that a finer partition of the possible 
outcomes is more informative. The numerical value of EQI is always made larger by 
parsing the outcome space more finely, provided that the likelihoods for outcomes in 
the finer parsing differ at least a bit from some of the likelihoods for outcomes of the 
less refined parsing. This is important for our main convergence result because in that 
theorem we want the average value of EQI for the whole sequence of experiments and 
observations to be positive, and the larger the better.
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The following Partition Theorem implies the Nonnegativity of EQI result as well. It 
show that each EQI[ck | hi/hj | b] must be non-negative; and it will be positive just in 
case for at least one possible outcome oku, P[oku | hj·b·ck]  �  P[oku | hi·b·ck]. This 
theorem will also show that EQI[ck | hi/hj |b] generally becomes larger whenever the 
outcome space is partitioned more finely. It follows immediately that the average value 
of EQI for a sequence of experiments or observations, EQI[cn | hi/hj | b], averaged over 
the sequence of observations cn, is non-negative, and must be positive if for even one 
of the ck that contribute to it, at least one possible outcome oku distinguishes between 
the two hypotheses by making P[oku | hj·b·ck]  �  P[oku | hi·b·ck].

Partition Theorem: 
For any positive real numbers r1, r2,s1, s2: 

(1) if r1/s1 > (r1+r2)/(s1+s2), then
(r1+r2)×log[(r1+r2)/(s1+s2)] <r1×log[r1/s1] + r2×log[r2/s2];

and

(2) if r1/s1 = (r1+r2)/(s1+s2), then
r1×log[r1/s1] + r2×log[r2/s2] = (r1+r2)×log[(r1+r2)/(s1+s2)].

To prove this theorem first notice that 

r1/s1 = (r1+r2)/(s1+s2) iff r1s1 + r1s2 = s1r1 + s1r2

iff r1/s1 = r2/s2.

We'll draw on this little result immediately below. It is clearly relevant to the 
antecedent of case (2) of the theorem we want to prove.

We establish case (2) first. Suppose the antecedent of case (2) holds. Then, from the 
little result just proved, we have

r1 log[r1/s1] +r2 log[r2/s2]
= r1 log[(r1+r2)/(s1+s2)] + r2 log[(r1+r2)/(s1+s2)]
= (r1 + r2) log[(r1+r2)/(s1+s2)].
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That establishes case (2).

To get case (1), consider the following function of p: 

f(p) = p log[p/u] + (1�p) log[(1�p)/v],
where we only assume that u > 0, v > 0, and 0 < p < 1. 

This function has its minimum value when p = u/(u+v). (This is easily verified by 
setting the derivative of f(p) with respect to p equal to 0 to find the minimum value of f
(p); and it is easy to verified that this is a minimum rather than a maximum value.) At 
this minimum, where p = u/(u+v), we have

f(p) = �u/(u+v) log[u+v] � v/(u+v) log[u+v]

= �log[u+v].

Thus, for all values of p other than u/(u+v), 

�log[u+v] < f(p)

= p log[p/u] + (1�p) log[(1�p)/v].

That is, if p � u/(u+v), �log[u+v] < p log[p/u] + (1�p) log[(1�p)/v]. 

Now, let p = r1/(r1+r2), let u = s1/(r1+r2), and let v = s2/(r1+r2). Plugging into the 
previous formula, and multiplying both sides by (r1+r2), we get: 

  if 
r1/(r1+r2) �s1/(s1+s2) (i.e., equivalently, ifr1/s1 � (r1+r2)/(s1+s2)),

  then 
   log[(r1+r2)/(s1+s2)] < [r1/(r1+r2)] log[r1/s1] + (1�[r1/(r1+r2)]) log[r2/s2]
   (i.e. equivalently, (r1+r2) log[(r1+r2)/(s1+s2)] <r1 log[r1/s1] + r2log[r2/s2]).

Thus, from the two equivalents, we've proved case 2: 
  if 

r1/s1 � (r1+r2)/(s1+s2)), 
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  then 
   (r1+r2) log[(r1+r2)/(s1+s2)] <r1 log[r1/s1] + r2log[r2/s2]).

This completes the proof of the theorem.

To apply this result to EQI[ck | hi/hj |b] recall that

EQI[ck | hi/hj |b]
= 	{u: P[oku | hj·b·ck] > 0} log[P[oku | hi·b·ck]/P[oku | hj·b·ck]]

×P[oku | hi·b·ck]. 

Suppose ck has m alternative outcomes oku on which both

P[oku | hj·b·ck] > 0  and  P[oku | hi·b·ck] > 0. 

Let's label their likelihoods relative to hi (i.e., their likelihoods P[oku | hi·b·ck]) as r1, r2, 
…, rm. And let's label their likelihoods relative to hj as s1, s2, …, sm. In terms of this 
notation,

EQI[ck | hi/hj | b] =
m
	

u = 1
ru×log[ru/su]. 

Notice also that (r1+r2+r3+…+rm) = 1 and (s1+s2+s3+…+sm) = 1.

Now, think of EQI[ck | hi/hj | b] as generated by applying the theorem in successive 
steps:

0 = 1× log[1/1] 

= (r1+r2+r3+…+rm)×log[(r 1+r2+r3+…+rm)/(s1+s 2+s3+…+sm)]


 r1×log[r1/s1] + (r2+r3+…+rm)× log[(r2+r3+…+rm)/(s2+s 3+…+sm)]


 r1×log[r1/s1] +r2×log[r2/s2] + (r3+…+rm)×log[(r3+…+rm)/(s 3+…+sm)]


 …
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 m
	

u = 1
ru×log[ru/su]

= EQI[ck | hi/hj |b].

The theorem also says that at each step equality holds just in case 

ru/su = (ru+ru+1+…+rm)/(su+su+1+…+s m), 

which itself holds just in case

ru/su = (ru+1+…+rm)/(su+1+…+sm). 

So,

EQI[ck | hi/hj |b] = 0 

just in case

1 = (r1+r2+r3+…+rm)/(s1+s 2+s3+…+sm)

= r1/s1

= (r2+r3+…+rm)/(s2+s3+…+s m)

= r2/s2

= (r3+…+rm)/(s3+…+sm)

= r3/s3

= …

= rm/sm.

That is,

EQI[ck | hi/hj |b] = 0 
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just in case for all oku such that P[oku | hj·b] > 0 and P[oku | hi·b] > 0, 

P[oku | hi·b·ck]/P[oku | hj·b·c k] = 1. 

Otherwise,

EQI[ck | hi/hj | b] > 0; 

and for each successive step in partitioning the outcome space to generate 
EQI[ck | hi/hj | b], if

ru/su  �  (ru+ru+1+…+rm)/(su+su+1+…+sm), 

we have the strict inequality:

(ru+ru+1+…+rm) × log[(ru+ru+1+…+rm)/(su+s u+1+…+sm)] < 
ru×log[ru/su] + (ru+1+…+rm)×log[(ru+1+…+rm)/(su+1+…+sm)].

So each such division of (oku�oku+1�…�okm) into two separate tatements, oku and 
(oku+1�…�okm), adds a strictly positive contribution to the size of 
EQI[ck | hi/hj | b] just when P[oku | hi·b·ck] / P[oku | hj·b·c k]  � 
P[(oku+1�…�okm) | hi·b·ck] / P[(oku+1�…�okm) | hj·b·c k].

[Back to Text]

Copyright © 20011 by
James Hawthorne<hawthorne@ou.edu>
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Supplement to Inductive Logic

Proof of the Non-Falsifying Refutation Theorem

The proof of Convergence Theorem 2 requires the introduction of one more concept, 
that of the variance in the quality of information for a sequence of experiments or 
observations, VQI[cn | hi/hj | b]. The quality of the information QI from a specific 
outcome sequence en may vary somewhat from the expectedquality of information for 
conditions cn. A common statistical measure of how widely individual values tend to 
vary from an expected value is given by the expected squared distance from the 
expected value, which is called the variance.

Definition: VQI — the Variance in the Quality of Information.
For hj outcome-compatible with hi on ck, define
VQI[ck | hi/hj | b] =

	u (QI[oku | hi/hj | b·ck] � EQI[ck | hi/hj | b])2 × P[oku | hi·b·ck].
For a sequence cn of observations on which hj is outcome-compatible with 
hi, define
VQI[cn | hi/hj | b] = 

	{en} (QI[en | hi/hj | b·cn] � EQI[cn | hi/hj | b])2× P[en | hi·b·cn].

Clearly VQI will be positive unless hi and hj agree on the likelihoods of all possible 
outcome sequences in the evidence stream, in which case both EQI[cn | hi/hj | b] and 
VQI[cn | hi/hj | b] equal 0.

When both Independent Evidence Conditions hold, VQI[cn | hi/hj | b] decompose into 
the sum of the VQI for individual experiments or observations ck.

Theorem: The VQI Decomposition Theorem for Independent Evidence on Each 
Hypothesis:
Suppose both condition independenceand result-independence hold. Then
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VQI[cn | hi/hj | b] = n
	
k=1

VQI[ck | hi/hj | b].

For the Proof, we employ the following abbreviations: 

Q[ek] = QI[ek | hi/hj | b·ck]

Q[ek] = QI[ek |hi/hj | b·ck]

E[ck] = EQI[ck | hi/hj | b]

E[ck] = EQI[ck | hi/hj | b]

V[ck] = VQI[ck | hi/hj | b]

V[ck] = VQI[ck | hi/hj | b]

The equation stated by the theorem may be derived as follows:

V[cn]
= 	{en} (Q[en] � E[cn])2 × P[en | hi·b·cn]
= 	{en} ((Q[en]+Q[en�1]) � (E[cn]+E[cn�1]))2

× P[en | hi·b·cn]×P[en�1 | hi·b·cn�1]
= 	{en�1} 	{en} ((Q[en]�E[cn]) + (Q[en�1]�E[cn�1]))2

× P[en | hi·b·cn]×P[e n�1 | hi·b·cn�1]
= 	{en�1} 	{en} ( (Q[en]�E[cn])2 + (Q[en�1]�E[cn�1])2   + 

2×(Q[en]�E[cn])×(Q[en�1]�E[c n�1]) ) × P[en | hi·b·cn]×P[en�1 | hi·b·cn�1]
= 	{en�1} 	{en} (Q[en]�E[cn])2 × P[en | hi·b·cn]×P[en�1 | hi·b·cn�1] + 

	{en�1} 	{en}(Q[en�1]�E[cn�1])2 × P[en | hi·b·cn]×P[en�1 | hi·b·cn�1] + 
	{en�1} 	{en} 2×(Q[en]�E[cn])·(Q[en�1]�E[c n�1]) ×

P[en | hi·b·cn] × P[en�1 | hi·b·cn�1]
=
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V[cn] + V[cn�1] + 
2×	{en�1} 	{en}(Q[en]×Q[en�1] �Q[en]×E[cn�1] � E[cn]×Q[en�1] +

E[cn]×E[cn�1]) × P[en | hi·b·cn]×P[e n�1 | hi·b×cn�1]
= V[cn] + V[cn�1] + 

   2× (	{en�1} 	{en} Q[en]×Q[en�1]× P[en | hi·b·cn]×P[e n�1 | hi·b×cn�1] � 
	{en�1} 	{en} Q[en]×E[cn�1]× P[en | hi·b·cn]×P[e n�1 | hi·b×cn�1] �
	{en�1} 	{en} E[cn]×Q[en�1]× P[en | hi·b·cn]×P[e n�1 | hi·b×cn�1] +
	{en�1} 	{en} E[cn]×E[cn�1] × P[en | hi·b·cn]×P[e n�1 | hi·b×cn�1])

= V[cn] + V[cn�1] +  
2 × (E[cn]×E[cn�1] �E[cn]×E[cn�1] � E[cn]×E[cn�1] + E[cn]×E[cn�1])

= V[cn] + V[cn�1]
= … 

=
n
	

k = 1
VQI[ck | hi/hj | b].

By averaging the values of VQI[cn | hi/hj | b] over the number of observations n we 
obtain a measure of the average variance in the quality of the information due to cn. 
We represent this average by overlining ‘VQI’.

Definition: The Average Variance in the Quality of Information
VQI[cn |hi/hj |b] = VQI[cn | hi/hj |b] ÷ n.

We are now in a position to state a very general version of the second part of the 
Likelihood Ratio Convergence Theorem. It applies to all evidence streams not 
containing possibly falsifying outcomes for hj. That is, it applies to all evidence streams 
for which hj is fully outcome-compatible with hi on each ckin the evidence stream. This 
theorem is essentially a specialized version of Chebyshev's Theorem, which is a Weak
Law of Large Numbers.
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Likelihood Ratio Convergence Theorem 2*—The Non-Falsifying Refutation 
Theorem.
Suppose the evidence stream cn contains only experiments or observations on which hj
is fully outcome-compatible with hi — i.e. suppose that for each condition ck in 
sequence cn, for each of its possible outcomes possible outcomes oku, either 
P[oku | hi·b·ck] = 0 or P[oku | hj·b·ck] > 0. And suppose that the Independent Evidence 
Conditions hold for evidence stream cn with respect to each of these hypotheses. Now, 
choose any positive � < 1, as small as you like, but large enough (for the number of 
observations n being contemplated) that the value of EQI[cn | hi/hj | b] > �(log �)/n. 
Then:

P[�{en : P[en | hj·b·cn] / P[en | hi·b·cn] < �}   |   hi·b·cn] 

>  1 �
1
n

×
VQI[cn | hi/hj | b]

(EQI[cn | hi/hj | b] + (log �)/n )2

Thus, provided that the average expected quality of the information, EQI[cn | hi/hj | b],
for the stream of experiments and observations cn doesn't get too small (as n increases), 
and provided that the average variance, VQI[cn | hi/hj | b], doesn't blow up (e.g. it is 
bounded above), hypothesis hi (together with b·cn) says it is highly likely that 
outcomes of cn will be such as to make the likelihood ratio against hj as compared to hi
as small as you like, as n increases.

Proof: Let 

V = VQI[cn | hi/hj | b]

E = EQI[cn | hi/hj | b]

Q[en] = QI[en | hi/hj | b·cn] = log(P[en | hi·b·cn]/P[en | hj·b·cn])

Choose any small � > 0, and suppose (for n large enough) that E > �(log �)/n. Then we 
have
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V = 	{en: P[en | hj·b·cn] > 0} (E �Q)2 × P[en | hi·b·cn]
� 	{en: P[en|hj·b·cn] > 0 & Q[en] 
 �(log �)} (E � Q)2 × P[en | hi·b·cn]
� (E + (log �))2× 	{en: P[enhj·b·cn] > 0 & Q[en] 
 �(log �)} P[en | hi·b·cn]
= (E + (log �))2 × P[�{en: P[en | hj·b·cn] >0 & Q[en]
log(1/�)} | hi·b·cn]
= (E + (log �))2 × P[�{en: P[en | hj·b·cn]/P[en | hi·b·cn] � �} | hi·b·cn]

So,

V
n×(E + (log �)/n)2 = V/(E + (log �))2

� P[�{en: P[en | hj·b·cn]/P[en | hi·b·cn] � �} | hi·b·cn] 

= 1 � P[�{en: P[en | hj·b·cn]/P[en | hi·b·cn] < �} | hi·b·cn]

Thus, for any small � > 0,

P[�{en: P[en| hj·b·cn]/P[en | hi·b·cn] < �} | hi·b·cn] � 1 �
V

n×(E + (log �)/n)2

(End of Proof)

This theorem shows that when VQI is bounded above and EQI has a positive lower 
bound, a sufficiently long stream of evidence will very likely result in the refutation of 
false competitors of a true hypothesis. We can show that VQI will indeed be bounded 
above when a very simple condition is satisfied. This gives us the version of the 
theorem stated in the main text.
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Likelihood Ratio Convergence Theorem 2—The Non-Falsifying Refutation 
Theorem.
Suppose the evidence stream cn contains only experiments or observations on which hj
is fully outcome-compatible with hi — i.e. suppose that for each condition ck in 
sequence cn, for each of its possible outcomes possible outcomes oku, either 
P[oku | hi·b·ck] = 0 or P[oku | hj·b·ck] > 0. In addition (as a slight strengthening of the 
previous supposition), for some � > 0 a number smaller than 1/e2 (� .135; where ‘e’ is 
the base of the natural logarithm), suppose that for each possible outcome oku of each 
observation condition ck in cn, either P[oku | hi·b·ck] = 0 or P[oku | hj·b·ck] / 
P[oku | hi·b·ck] � �. And suppose that the Independent Evidence Conditions hold for 
evidence stream cn with respect to each of these hypotheses. Now, choose any positive 
� < 1, as small as you like, but large enough (for the number of observations n being 
contemplated) that the value of EQI[cn | hi/hj | b] > �(log �)/n. Then:

P[�{en : P[en | hj·b·cn] / P[en | hi·b·cn] < �}   |   hi·b·cn] 

>  1 �
1
n

×
(log �)2

(EQI[cn | hi/hj | b] + (log �)/n )2

Proof: This follows from Theorem 2* together with the following observation:

If for each ck in cn, for each of its possible outcomes oku, either P[oku | hj·b·ck] = 0 or 
P[oku | hj·b·ck]/P[oku | hi·b·ck] � � > 0, for some lower bound � < 1/e2 (� .135; where 
‘e’ is the base of the natural logarithm), then V = VQI[cn | hi/hj | b]
  (log �)2.

To see that this observation holds, assume its antecedent.

1. First notice that when 0 < P[ek | hj·b·ck] < P[ek | hi·b·ck] we have

(log[P[ek | hi·b·ck]/P[e k | hj·b·ck]])2 × P[ek | hi·b·ck]

  (log �)2 × P[ek | hi·b·ck].

111

So we only need establish that when P[ek | hj·b·ck] > P[ek | hi·b·ck] > 0, we will 
also have this relationship — i.e., we will also have

(log[P[ek | hi·b·ck]/P[ek | hj·b·ck]])2 × P[ek | hi·b·ck]

  (log �)2 × P[ek | hi·b·ck]. 

(Then it will follow easily that VQI[cn | hi/hj | b] 
 (log �)2, and we'll be done.)

2. To establish the needed relationship, suppose that P[ek | hj·b·ck] > P[ek | hi·b·ck]
> 0. Notice that for all p 
 q, p and q between 0 and 1, the function 
g(p) = (log(p/q))2 × p has a minimum at p = q, where g(p) = 0, and (for p < q) 
has a maximum value at p = q/e2 — i.e., at p/q = 1/e2. (To get this, take the 
derivative of g(p) with respect to p and set it equal to 0; this gives a maximum 
for g(p) at p = q/e2.)

So, for 0 < P[ek | hi·b·ck] < P[ek | hj·b·ck] we have

(log(P[ek | hi·b·ck]/P[e k | hj·b·ck]))2 × P[ek | hi·b·ck]

  (log(1/e2))2 × P[ek | hj·b·ck]  
  (log �)2 × P[ek | hj·b·ck] 

(since, for � 
 1/e2 we have log � 
  log(1/e2)  < 0; so (log �)2 � (log(1/e 2))2

> 0).

3. Now (assuming the antecedent of the theorem), for each ck,

VQI[ck | hi/hj | b]
= 	{oku: P[oku | h j·b·ck] > 0} (EQI[ck] � QI[ck])2 × P[oku | hi·b·ck]
= 	{oku: P[oku | hj·b·ck] > 0}(EQI[ck]2 � 2×QI[ck]×EQI[ck] + QI[ck]2) × P[oku |

hi·b·ck]
= 	{oku: P[oku | hj·b·ck] > 0}EQI[ck]2× P[oku | hi·b·ck] � 

2×EQI[ck] × 	{oku: P[oku | hj·b·ck] > 0} QI[ck]× P[oku | hi·b·ck] + 
	{oku: P[oku | hj·b·ck] > 0} QI[ck]2 × P[oku | hi·b·ck]

= 	{oku: P[oku | hj·b·ck] > 0}QI[ck]2 × P[oku | hi·b·ck] �EQI[ck]2
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	{oku: P[oku | hj·b·ck] > 0}QI[ck]2 × P[oku | hi·b·ck]

 	{oku: P[oku | hj·b·ck] > 0}(log �)2 × P[oku | hi·b·ck]

 (log �)2.

So, 

VQI[ck | hi/hj | b] = (1/n) ×
n
	

k = 1
VQI[ck|hi/hj | b] 
 (log �)2. 

[Back to Text]

Copyright © 2011 by
James Hawthorne<hawthorne@ou.edu>
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Notes to Inductive Logic
1. Although enumerative inductive arguments may seem similar to what classical 
statisticians call estimation, they are not really the same thing. As classical statisticians 
are quick to point out, estimation does not use the sample to inductively support a 
conclusion about the whole population. Estimation is not supposed to be a kind of 
inductive inference. Rather, estimation is a decision strategy. The sample frequency will 
be within two standard deviations of the population frequency in about 95% of all 
samples. So, if one adopts the strategy of accepting as true the claim that the population 
frequency is within two standard deviations of the sample frequency, and if one uses this 
strategy repeatedly for various samples, one should be right about 95% of the time. I will 
discuss enumerative induction in much more detail later in the article. 

2. Another way of understanding axiom (5) is to view it as a generalization of the 
deduction theorem and its converse. The deduction theorem and converse says this: 
C � (B�A) if and only if (C·B) � A. Given axioms (1-4), axiom (5) is equivalent to the 
following:

5*.    (1 � P�[(B�A) | C])  =  (1 � P�[A | (B·C)]) × P�[B | C]. 

The conditional probability P�[A | (B·C)] completely discounts the possibility that B is 
false, whereas the probability of the conditional P�[(B�A) | C] depends significantly on 
how probable B is (given C), and must approach 1 if P�[B | C] is near 0. Rule (5*) 
captures how this difference between the conditional probability and the probability of a 
conditional works. It says that the distance below 1 of the support-strength of C for 
(B�A) equals the product of the distance below 1 of the support strength of (B·C) for A
and the support strength of C for B. This makes good sense: the support of C for (B�A) 
(i.e., for (~B�A)) is closer to 1 than the support of (B·C) for A by the multiplicative 
factor P�[B | C], which reflects the degree to which C supports ~B. According to Rule 
(5*), then, for any fixed value of P�[A | (B·C)] < 1, as P�[B | C] approaches 0, 
P�[(B�A) | C] must approach 1.

3. This is not what is commonly referred to as countable additivity. Countable additivity 
requires a language in which infinitely long disjunctions are defined. It would then 
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specify that P�[((B1�B2)�…) | C] = 	i P�[Bi | C]. The present result may be derived 
(without appealing to countable additivity) as follows. For each distinct i and j, let C � ~
(Bi·Bj); and suppose that P�[D | C] < 1 for at least one sentence D. First notice that we 
have, for each i greater than 1 and less than n, C � (~(B1·Bi+1)·…· ~(Bi·Bi+1)); so 
C � ~(((B1�B2)� …�Bi)·Bi+1). Then, for any finite list of the first n of the Bi (for each 
value of n),

P�[(((B1�B2)� …�Bn�1)�Bn) | C]

By definition,

4. Here are the usual axioms when unconditional probability is taken as basic:

P� is a function from statements to real numbers between 0 and 1 that 
satisfies the following rules:

1. if  �A (i.e. if A is a logical truth), then P�[A] = 1; 
2. if  �~(A·B) (i.e. if A and B are logically incompatible), then 

P�[(A�B)] = P�[A] + P�[B];

 = P�[((B1�B2)�… �Bn�1) | C] + P�[Bn | C]

 =  …

 = 
n
	   P�[Bi | C].
i=1



	 P�[Bi | C]
i=1

= limn

n
	 P�[Bi | C].
i=1

So, limn P�[((B1� B2)�…�Bn) | C] = 


	 P�[Bi | C]
i=1

115

Definition: if P�[B] > 0, then P�[A | B] = P�[(A·B)] / P�[B].

5. Bayesians often refer to the probability of an evidence statement on a hypothesis, 
P[e | h·b·c], as the likelihood of the hypothesis. This can be a somewhat confusing 
convention since it is clearly the evidence that is made likely to whatever degree by the 
hypothesis. So, I will disregard the usual convention here. Also, presentations of 
probabilistic inductive logic often suppress c and b, and simply write ‘P[e | h]’. But c and 
b are important parts of the logic of the likelihoods. So I will continue to make them 
explicit.

6. These attempts have not been wholly satisfactory thus far, but research continues. For 
an illuminating discussion of the logic of direct inference and the difficulties involved in 
providing a formal account, see the series of papers (Levi, 1977), (Kyburg, 1978) and 
(Levi, 1978). Levi (1980) develops a very sophisticated approach. 

Kyburg has developed a logic of statistical inference based solely on logical direct 
inference probabilities (Kyburg, 1974). Kyburg's logical probabilities do not satisfy the 
usual axioms of probability theory. The series of papers cited above compares Kyburg's 
approach to a kind of Bayesian inductive logic championed by Levi (e.g., in Levi, 1967).

7. This idea should not be confused with positivism. A version of positivism applied to 
likelihoods would hold that if two theories assign the same likelihood values to all 
possible evidence claims, then they are essentially the same theory, though they may be 
couched in different words. In short: same likelihoods implies same theory. The view 
suggested here, however, is not positivism, but its inverse, which should be much less 
controversial: different likelihoods implies different theories. That is, given that all of the 
relevant background and auxiliaries are made explicit (represented in ‘b’), if two 
scientists disagree significantly about the likelihoods of important evidence claims on a 
given hypothesis, they must understand the empirical content of that hypothesis quite 
differently. To that extent, though they may employ the same syntactic expressions, they 
use them to express empirically distinct hypotheses.

8. Call an object grue at a given time just in case either the time is earlier than the the 
first second of the year 2030 and the object is green or the time is not earlier than the first 
second of 2030 and the object is blue. Now the statement ‘All emeralds are green (at all 
times)’ has the same syntactic structure as ‘All emeralds are grue (at all times)’. So, if 
syntactic structure determines priors, then these two hypotheses should have the same 
prior probabilities. Indeed, both should have prior probabilities approaching 0. For, there 
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are an infinite number of competitors of these two hypotheses, each sharing the same 
syntactic structure: consider the hypotheses ‘All emeralds are gruen (at all times)’, where 
an object is gruen at a given time just in case either the time is earlier than the first second 

of the nth day after January 1, 2030, and the object is green or the time is not earlier than 
the first second of the nth day after January 1, 2030, and the object is blue. A purely 
syntactic specification of the priors should assign all of these hypotheses the same prior 
probability. But these are mutually exclusive hypotheses; so their prior probabilities must 
sum to a value no greater than 1. The only way this can happen is for ‘All emeralds are 
green’ and each of its gruen competitors to have prior probability values either equal to 0 
or infinitesimally close to it.

9. This assumption may be substantially relaxed without affecting the analysis below; we 
might instead only suppose that the ratios P�[cn | hj·b]/P�[cn | hi·b] are bounded so as not 
to get exceptionally far from 1. If that supposition were to fail, then the mere occurrence 
of the experimental conditions would count as very strong evidence for or against 
hypotheses — a highly implausible effect. Our analysis could include such bounded 
condition-ratios, but this would only add inessential complexity to our treatment.

10. For example, when a new disease is discovered, a new hypothesis hu+1 about that 
disease being a possible cause of patients’ symptoms is made explicit. The old catch-all 
was, “the symptoms are caused by some unknown disease — some disease other than h1,
…, hu”. So the new catch-all hypothesis must now state that “the symptoms are caused by 
one of the remaining unknown diseases — some disease other than h1,…, hu, hu+1”. And, 
clearly, P�[hK | b] = P�[~h1·…·~hu | b] = P�[~h1·…·~hu· (hu+1�~hu+1) | b] = 
P�[~h1·…·~hu·~hu+1 | b] + P�[hu+1 | b] = P�[hK* | b] + P�[hu+1 | b]. Thus, the new 
hypothesis hu+1 is “peeled off” of the old catch-all hypothesis hK, leaving a new catch-all 
hypothesis hK* with a prior probability value equal to that of the old catch-all minus the 
prior of the new hypothesis.

11. This claim depends, of course, on hi being evidentially distinct from each alternative 
hj. I.e., there must be conditions ck with possible outcomes oku on which the likelihoods 
differ: P[oku | hi·b·ck]  � P[oku | hj·b·ck]. Otherwise hi and hj are empirically equivalent, 
and no amount of evidence can support one over the other. (Did you think a confirmation 
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theory could possibly do better? — could somehow employ evidence to confirm the true 
hypothesis over evidentially equivalent rivals?) If the true hypothesis has evidentially 
equivalent rivals, then convergence result just implies that the odds against the 
disjunction of the true hypothesis with these rivals very probably goes to 0, so the 
posterior probability of this disjunction goes to 1. Among evidentially equivalent 
hypotheses the ratio of their posterior probabilities equals the ratio of their priors: 
P�[hj | b·cn·en] / P�[hi | b·cn·en]  =  P�[hj | b] / P�[hi | b]. So the true hypothesis will have 
a posterior probability near 1 (after evidence drives the posteriors of evidentially 
distinguishable rivals near to 0) just in case plausibility arguments and considerations 
(expressed in b) make each evidentially indistinguishible rival so much less plausible by 
comparison that the sum of each of their comparative plausibilities (as compared to the 
true hypothesis) remains very small.

One more comment about this. It is tempting to identify evidential distinguishability (via 
the evidential likelihoods) with empirical distinguishability. But many plausibility 
arguments in the sciences, such as thought experiments, draw on broadly empirical 
considerations, on what we know or strongly suspect about how the world works based 
on our experience of the world. Although this kind of “evidence” may not be 
representable via evidential likelihoods (because the hypotheses it bears on don't 
deductively or probabilistically imply it), it often plays an important role in scientific 
assessments of hypotheses — in assessments of whether a hypothesis is so extraordinary 
that only really extraordinary likelihood evidence could rescue it. It is (arguably) a 
distinct virtue of the Bayesian logic of evidential support that it permits such 
considerations to be figured into the net evaluation of support for hypotheses.

12. This is a good place to describe one reason for thinking that inductive support 
functions must be distinct from subjectivist or personalist degree-of-belief functions. 
Although likelihoods have a high degree of objectivity in many scientific contexts, it is 
difficult for belief functions to properly represent objective likelihoods. This is an aspect 
of the problem of old evidence.

Belief functions are supposed to provide an idealized model of belief strengths for agents. 
They extend the notion of ideally consistent belief to a probabilistic notion of ideally 
coherent belief strengths. There is no harm in this kind of idealization. It is supposed to 
supply a normative guide for real decision making. An agent is supposed to make 
decisions based on her belief-strengths about the state of the world, her belief strengths 
about possible consequences of actions, and her assessment of the desirability (or utility) 
of these consequences. But the very role that belief functions are supposed to play in 
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decision making makes them ill-suited to inductive inferences where the likelihoods are 
often supposed to be objective, or at least possess inter-subjectively agreed values that 
represent the empirical import of hypotheses. For the purposes of decision making, 
degree-of-belief functions should represent the agent's belief strengths based on 
everything she presently knows. So, degree-of-belief likelihoods must represent how 
strongly the agent would believe the evidence if the hypothesis were added to everything
else she presently knows. However, support-function likelihoods are supposed to 
represent what the hypothesis (together with explicit background and experimental 
conditions) says or implies about the evidence. As a result, degree-of-belief likelihoods 
are saddled with a version of the problem of old evidence – a problem not shared by 
support function likelihoods. Furthermore, it turns out that the old evidence problem for 
likelihoods is much worse than is usually recognized.

Here is the problem. If the agent is already certain of an evidence statement e, then her 
belief-function likelihoods for that statement must be 1 on every hypothesis. I.e., if Q� is 
her belief function and Q�[e] = 1, then it follows from the axioms of probability theory 
that Q�[e | hi·b·c] = 1, regardless of what hi says — even if hi implies that e is quite 
unlikely (given b·c). But the problem goes even deeper. It not only applies to evidence 
that the agent knows with certainty. It turns out that almost anything the agent learns that 
can change how strongly she believes e will also influence the value of her belief-function
likelihood for e, because Q�[e | hi·b·c] represents the agent's belief strength given 
everything she knows.

To see the difficulty with less-than-certain evidence, consider the following example. Let 
e be any statement that is statistically implied to degree r by a hypothesis h together with 
experimental conditions c (e.g. e says “the coin lands heads on the next toss” and h·c says 
“the coin is fair and is tossed in the usual way on the next toss”). Then the correct 
objective likelihood value is just P[e | h·c] = r (e.g. for r = 1/2). Let d be a statement that 
is intuitively not relevant in any way to how likely e should be on h·c (e.g. let d say “Jim 
will be really pleased with the outcome of that next toss”). Suppose some rational agent 
has a degree-of-belief function Q for which the likelihood for e due to h·c agrees with the 
objective value: Q[e | h·c] = r (e.g. with r = 1/2).

Our analysis will show that this agent's belief-strength for d given ~e·h·c will be a 
relevant factor; so suppose that her degree-of-belief in that regard has any value s other 
than 1: Q[d | ~e·h·c] = s < 1 (e.g., suppose s = 1/2). This is a very weak supposition. It 
only says that adding ~e·h·c to everything else the agent currently knows leaves her less 
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than certain that d is true.

Now, suppose this agent learns the following bit of new information in a completely 
convincing way (e.g. I seriously tell her so, and she believes me completely): (d�e) (i.e., 
Jim will be really pleased with the outcome of the next toss unless it comes up heads).

Thus, on the usual Bayesian degree-of-belief account the agent is supposed to update her 
belief function Q to arrive at a new belief function Qnew by the updating rule:

Qnew[S] = Q[S | (d�e)], for each statement S. 

However, this update of the the agent's belief function has to screw up the objectivity of 
her new belief-function likelihood for e on h·c, because she now should have: 

Qnew[e | h·c] = Qnew[e·h·c] / Qnew[h·c] = Q[e·h·c | (d�e)] / Q[h·c | (d�e)]
= Q[(d�e)·(e·h·c)] / Q[(d�e)·(h·c)] = Q[(d�e)·e | h·c] / Q[(d�e) | h·c] = 
Q[e | h·c] / Q[((d·~e)�e) | h·c] = Q[e | h·c] / [Q[e | h·c] + Q[d·~e | h·c]] = 
Q[e | h·c] / [Q[e | h·c] + Q[d | ~e · h·c] × Q[~e | h·c]] = r / [r + s×(1� r)] = 1 / 
[1 + s×(1� r)/r]. 

Thus, the updated belief function likelihood must have value Qnew[e | h·c] = 
1 / [1 + s×(1� r)/r].> This factor can be equal to the correct likelihood value r just in case 
s = 1. For example, for r = 1/2 and s = 1/2 we get Qnew[e | (h·c] = 2/3. 

The point is that even the most trivial knowledge of disjunctive claims involving e may 
completely upset the value of the likelihood for an agent's belief function. And an agent 
will almost always have some such trivial knowledge. Updating on such conditionals can 
force the agent's belief functions to deviate widely from the evidentially relevant 
objective values of likelihoods on which scientific hypotheses should be tested.

More generally, it can be shown that the incorporation into a belief function Q of almost 
any kind of evidence for or against the truth of a prospective evidence claim e — even 
uncertain evidence for e, as may come through Jeffrey updating — completely 
undermines the objective or inter-subjectively agreed likelihoods that a belief function 
might have expressed before updating. This should be no surprise. The agent's belief 
function likelihoods reflect her total degree-of-belief in e, based on a hypothesis h
together with everything else she knows about e. So the agent's present belief function 
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may capture appropriate public likelihoods for e only if e is completely isolated from the 
agents other beliefs. And this will rarely be the case.

One Bayesian subjectivist response to this kind of problem is that the belief functions
employed in scientific inductive inferences should often be “counterfactual” belief 
functions, which represent what the agent would believe if e were subtracted (in some 
suitable way) from everything else she knows (see, e.g., Howson & Urbach, 1993). 
However, our examples show that merely subtracting e won't do. One must also subtract 
any disjunctive statements containing e. And it can be shown that one must subtract any 
uncertain evidence for or against e as well. So the counterfactual belief function idea 
needs a lot of working out if it is to rescue the idea that subjectivist Bayesian belief 
functions can provide a viable account of the likelihoods employed by the sciences in 
inductive inferences.

13. To see the point more clearly, consider an example. To keep things simple, let's 
suppose our background b says that the chances of heads for tosses of this coin is some 
whole percentage between 0% and 100%. Let c say that the coin is tossed in the usual 
random way; let e say that the coin comes up heads; and for each r that is a whole 
fraction of 100 between 0 and 1, let h[r] be the simple statistical hypothesis asserting that 
the chance of heads on each random toss of this coin is r. Now consider the composite
statistical hypothesis h[>.65], which asserts that the chance of heads on each random 
(independent) toss is greater than .65. From the axioms of probability we derive the 
following relationship: P�[e | h[>.65]·c·b]  =   P[e | h[.66]·c·b] × P�[h[.66] | h[>.65]·c·b]
+  P[e | h[.67]·c·b] × P�[h[.67] | h[>.65]·c·b] + …+ P[e | h[1]·c·b] × P�[h[1] | h[>.65]·c·b].
The issue for the likelihoodist is that the values of the terms of form P�[h[r] | h[>.65]·c·b]
are not objectively specified by the composite hypothesis h[>.65] (together with c·b), but 
the value of the likelihood P�[e | h[>.65]·c·b] depends essentially these non-objective 
factors. So, likelihoods based on composite statistical hypotheses fail to possess the kind 
of objectivity that likelihoodists require.

14. The Law of Likelihood and the Likelihood Principle have been formulated in 
slightly different ways by various logicians and statisticians. The Law of Likelihood was 
first identified by that name in Hacking (1965), and has been invoked more recently by 
the likelihoodist statisticians A.F.W. Edwards (1972) and R. Royall (1997). R.A. Fisher 
(1922) argued for the Likelihood Principle early in the 20th century, though he didn't 
call it that. One of the first places it is discussed under that name is (Savage, et al., 1962). 
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It is also advocated by Edwards (1972) and Royall (1997).

15. What it means for a sample to be randomly selected from a population is 
philosophically controversial. Various analyses of the concept have been proposed, and 
disputed. For our purposes an account of the following sort will suffice. To say 

S is a random sample of population B with respect to attribute A

means that 

the selection set S is generated by a process that has an objective chance (or 
propensity) r of choosing individual objects that have attribute A from 
among the objects in population B, where on each selection the chance value 
r agrees with the value r of the frequency of As among the Bs, F[A,B]. 

Defined this way, randomness implies probabilistic independence among the outcomes of 
selections with regard to whether they exhibit attribute A, on any given hypothesis about 
the true value of the frequency r of As among the Bs.

The tricky part of generating a randomly selected set from the popualtion is to find a 
selection process for which the chance of selecting an A each time matches the true 
frequency without already knowing what the true frequency value is — i.e. without 
already knowing what the value of r is. However, there clearly are ways to do this. Here 
is one way:

the sample S is generated by a process that on each selection gives each 
member of B an equal chance of being selected into S (like drawing balls 
from a well-shaken urn). 

Here, schematically, is another way:

find a subclass of B, call it C, from which S can be generated by a process 
that gives every member of C an equal chance of being selected into S, 
where C is representative of B with respect to A in the sense that the 
frequency of A in C is almost precisely the same as the frequency of A in B. 

Polsters use a process of this kind. Ideally a poll of registered voters, population B, 
should select a sample S in a way that gives every registered voter the same chance of 
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getting selected into S. But that may be impractical. However, it suffices if the sample is 
selected from a representative subpopulation C of B — e.g., from registered voters who 
answered the telephone between the hours of 7 PM and 9 PM in the middle of the week. 
Of course, the claim that a given subpopulation C is representative is itself a hypothesis 
that is open to inductive support by evidence. Professional polling organizations do a lot 
of research to calibrate their sampling technique, to find out what sort of subpopulations 
C they may draw on as highly representative. For example, one way to see if registered 
voters who answer the phone during the evening, mid-week, are likely to constitute a 
representative sample is to conduct a large poll of such voters immediately after an 
election, when the result is known, to see how representative of the actual vote count the 
count from of the subpopulation turns out to be.

Notice that although the selection set S is selected from B, S cannot be a subset of B, not 
if S can be generated by sampling with replacement. For, a specific member of B may be 
randomly selected into S more than once. If S were a subset of B, any specific member of 
B could only occur once in S. That is, consider the case where S consists of n selections 
from B, but where the process happens to select the same member b of B twice. Then, 
were S a subset of B, although b is selected into S twice, S can only possess b as a 
member once, so S has at most n�1 members after all (even fewer if other members of B
are selected more than once). So, rather than being members of B, the members of S must 
be representations of members of B, like names, where the same member of B may be 
represented by different names. However, the representations (or names) in S technically 
may not be the sorts of things that can possess attribute A. So, technically, on this way of 
handling the problem, when we say that a member of S exhibits A, this is shorthand for 
the referent of S in B possesses attribute A.

16. This is closely analogous to the Stable-Estimation Theorem of (Edwards, Lindman, 
Savage, 1993). Here is a proof of Case 1, i.e. where the number of members of the 
reference class B is finite and where for some integer u at least as large as the size of B
there is a specific (perhaps very large) integer K such that the prior probability of a 
hypothesis stating a frequency outside region R is never more than K times as large as a 
hypothesis stating a frequency within region R. (The proof is Case 2 is almost exactly the 
same, but draws on integrals wherever the present proof draws on sums using the ‘	’ 
expression.)

A few observations before proceeding to the main derivation:

1. The hypotheses under consideration consist of all expressions of form F[A,B] = k/u, 
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where u is as described above and k is a non-negative integer between 0 and u. 
2. R is some set of fractions of form k/u for a contiguous sequence of non-negative 

integers k that includes the sample frequency m/n. 
3. In the following derivation all sums over values r in R are abbreviations for sums 

over integers k such that k/u is in R; similarly, all sums over values s not in R are 
abbreviations for sums over integers k such that k/u is not in R. The sum over {s | 
s=k/u} represents the sum over all integers k from 0 through u. 

4. Define L to be the smallest value of a prior probability P�[F[A,B]=r | b] for r a 
fraction in R. Notice that L > 0 because, by supposition, finite 
K � P�[F[A,B]=s | b] / P�[F[A,B]=r | b] for the largest value of P�[F[A,B]=s | b] for 
which s is outside of R and the smallest value of P�[F[A,B]=r | b] for which r is 
outside of region R. 

5. Thus, from the definition of L and of K, it follows that: K � P�[F[A,B]=s | b] / L for 
each value of P�[F[A,B]=s | b] for which s is outside of R; and 
1 
 P�[F[A,B]=r | b] / L for each value of P�[F[A,B]=r | b] for which r is inside of 
R. 

6. It follows that: 

	 sm×(1�s)n�m×(P�[F[A,B]=s | b] / L)
s�R


  	 sm×(1�s)n�m×P�[F[A,B]=s | b] × K
s�R

and

	   rm×(1�r)n�m × (P�[F[A,B]=r | b] / L)
s�R

�  	   rm×(1�r)n�m × P�[F[A,B]=r | b].
r�R

7. For �[R, m+1, n�m+1] defined as �R rm (1�r)n�m dr / �0
1 r m (1�r)n�m dr, when u is 

large, its an established mathematical fact that 
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is extremely close to the value of �[R, m+1, n�m+1].

We now proceed to the main part of the derivation. 

From the Odds Form of Bayes' Theorem (Equation 10) we have,

��[F[A,B]�R | F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n · b] 

	   rm×(1�r)n�m

r�R
/ 	   sm×(1�s)n�m

s�{s | s=k/u} 

= 

	 
s�R

P�[F[A,B]=s | F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n · b] 

	 
r�R

P�[F[A,B]=r | F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n · b] 

=

	
s�R

P[F[A,S]=m/n | F[A,B]=s · Rnd[S,B,A] · Size[S]=n · b] × P�[F[A,B]=s | b]

	
r�R

P[F[A,S]=m/n | F[A,B]=r · Rnd[S,B,A] · Size[S]=n · b] × P�[F[A,B]=r | b]

=

	
s�R

sm×(1�s)n�m × P�[F[A,B]=s | b]

	
r�R

rm×(1�r)n�m × P�[F[A,B]=r | b]

=

	
s�R

sm×(1�s)n�m × (P�[F[A,B]=s | b] / L)

	
r�R

rm×(1�r)n�m × (P�[F[A,B]=r | b] / L)
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� K×[(1/�[R, m+1, n�m+1]) � 1]. 

Thus, 

��[F[A,B]�R | F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n · b] 
 
   K×[(1/�[R, m+1, n�m+1]) � 1]. 

Then by equation (11), which expresses the relationship between posterior probability
and posterior odds against, 

P�[F[A,B]�R | F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n · b]   

= 1 / (1 + ��[F[A,B]�R | F[A,S]=m/n · Rnd[S,B,A] · Size[S]=n · b] 

�   1 / (1 + K×[(1/�[R, m+1, n�m+1]) � 1]). 

17. To get a better idea of the import of this theorem, let's consider some specific values. 
First notice that the factor r×(1�r) can never be larger than (1/2)×(1/2) = 1/4; and the 




	
s�R

sm×(1�s)n�m × K

	
r�R

rm×(1�r)n�m

= K  ×

	
s�R

sm×(1�s)n�m � 	
r�R

rm×(1�r)n�m

	
r�R

rm×(1�r)n�m

= K  ×

	
s�R

sm×(1�s)n�m

	
r�R

rm×(1�r)n�m
� 1 
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closer r is to 1 or 0, the smaller r×(1�r) becomes. So, whatever the value of r, the factor 
q/((r×(1�r)/n)½ 
 2×q×n½. Thus, for any chosen value of q,

P[r�q < F[A,S] < r+q |  F[A,B] = r·Rnd[S,B,A]·Size[S] = n]
� 1 � 2×�[�2×q×n½].

For example, if q = .05 and n = 400, then we have (for any value of r),

P[r�.05 < F[A,S] < r+.05 |  F[A,B] = r·Rnd[S,B,A]·Size[S] = 400] � .95. 

For n = 900 (and margin q = .05) this lower bound raises to .997:

P[r�.05 < F[A,S] < r+.05 | F[A,B] = r·Rnd[S,B,A]·Size[S] = 900] � .997. 

If we are interested in a smaller margin of error q, we can keep the same sample size and 
find the value of the lower bound for that value of q. For example,

P[r�.03 < F[A,S] < r+.03 | F[A,B] = r·Rnd[S,B,A]·Size[S] = 900] � .928. 

By increasing the sample size the bound on the likelihood can be made as close to 1 as 
we want, for any margin q we choose. For example:

P[r�.01<F[A,S] <r+.01 | F[A,B] = r·Rnd[S,B,A]·Size[S] = 38000]  � .9999. 

As the sample size n becomes larger, it becomes extremely likely that the sample 
frequency will come to within any specified region close to the true frequency r, as close 
as you wish.

18. That is, for each inductive support function P�, the posterior P�[hj | b·cn·en] must go 

to 0 as the ratio P�[hj | b·cn·en] / P�[hi | b·cn·en] goes to 0; and that must occur if the 

likelihood ratios P[en | hj·b·cn] / P[en | hi·b·cn] approach 0, provided that and the prior 
probability P�[hi | b] is greater than 0. The Likelihood Ratio Convergence Theorem will 
show that when hi·b is true, it is very likely that the evidence will indeed be such as to 
drive the likelihood ratios as near to 0 as you please, for a long enough (or strong enough) 
evidence stream. (If the stream is strong in that the likelihood ratios of individual bits of 
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evidence are small, then to bring about a very small cumulative likelihood ratio, the 
evidence stream need not be as long.) As likelihood ratios head towards 0, the only way a 
Bayesian agent can avoid having her inductive support function(s) yield posterior 
probabilities for hj that approach 0 (as n gets large) is to continually change her prior 
probability assessments. That means either continually finding and adding new 
plausibility arguments (i.e. adding to or modifying b) that on ballance favor hj over hi, or 
continually reassessing the support strength due to plausibility arguments already 
available, or both. 

Technically, continual reassessments of support strengths that favor hj over hi based on 
already extant arguments (in b) means switching to new support functions (or new 
vagueness sets of them) that assign hj ever higher prior probabilities as compared to hi
based on the same arguments in b. In any case, such revisions of argument strengths may 
avoid the convergence towards 0 of the posterior probability of hj only if it proceeds at a 
rate that keeps ahead of the rate at which the evidence drives the likelihood ratios towards 
0.

For a thorough presentation of the most prominent Bayesian convergence results and a 
discussion of their weaknesses see (Earman, 1992, Ch. 6). However, Earman does not 
discuss the convergence theorems under consideration here (due to the fact that the 
convergence results discussed here first appeared in (Hawthorne, 1993), just after 
Earman's book came out).

19. In scientific contexts all of the most important kinds of cases where large components 
of the evidence fail to be result-independent of one another are cases where some part of 
the total evidence helps to tie down the numerical value of a parameter that plays an 
important role in the likelihood values the hypothesis specifies for other large parts of the 
total evidence. In cases where this only happens rather locally, where the evidence for a 
parameter value influences the likelihoods of only a very small part of the total evidence 
that bears on the hypothesis, we can treat the conjunction of the evidence for the 
parameter value with the evidential outcomes whose likelihood the parameter value 
influences as a single chunk of evidence, which is then result-independent of the rest of 
the evidence (on each alternative hypothesis). This is the sort of chuncking of the 
evidence into result-independent parts suggested in the main text. 

However, in cases where the value of a parameter left unspecified by the hypothesis has a 
wide-ranging influence on many of the likelihood values the hypothesis specifies, another 
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strategy for obtaining result-independence among these components of the evidence will 
do the job. A hypothesis that has an unspecified parameter value is in effect equivalent to 
a disjunction of more specific hypotheses, where each disjunct consists of a more precise 
version of the original hypothesis, a version in which the value for the parameter has been 
“filled in”. Relative to each of these more precise hypotheses, any evidence for or against 
the parameter value that hypothesis specifies is evidence for or against that more precise 
hypothesis itself. Furthermore, the evidence whose likelihood values depend on the 
parameter value (and because of that, failed to be result-independent of the parameter 
value evidence relative to the original hypothesis) is result-independent of the parameter 
value evidence relative to each of these more precise hypotheses — because each of the 
precise hypotheses already identifies precisely what (it claims) the value of the parameter 
is. Thus, wherever the workings of the logic of evidential support is made more 
perspicuous by treating evidence as composed of result-independent chunks, one may 
treat hypotheses whose unspecified parameter values interfere with result-independence
as disjunctively composite hypotheses, and apply the evidential logic to these more 
specific disjuncts, and thereby regain result-independence.

20. Technically, suppose that Ok can be further “subdivided” into more outcome-

descriptions by replacing okv with two “mutually exclusive parts”, okv
* and okv

#, to 

produce new outcome space Ok
$ = {ok1,…,okv

*,okv
#,…,okw}, where P[okv

*·okv
# | hi·b·ck]

= 0 and P[okv
*  | hi·b·ck] + P[okv

# | hi·b·ck] = P[okv | hi·b·ck]; and suppose similar 

relationships hold for hj. Then the new EQI* (based on Ok
*) is greater than or equal to 

EQI (based on Ok); and EQI* > EQI just in case at least one of the new likelihood ratios, 

e.g., P[okv
*  | hi·b·ck] / P[okv

* | hj·b·ck], differs in value from the “undivided” outcome's 

likelihood ratio, P[okv  | hi·b·ck] / P[okv  | hi·b·ck]. A supplement linked to this article 
proves this claim.

21. The likely rate of convergence will almost always be much faster than the worst case 
bound provided by Theorem 2. To see the point more clearly, let's look at a very simple 
example. Suppose hi says that a certain bent coin has a propensity for “heads” of 2/3 and 
hj says the propensity is 1/3. Let the evidence stream consist of outcomes of tosses. In 
this case the average EQI equals the EQI of each toss, which is 1/3; and the smallest 
possible likelihood ratio occurs for “heads”, which yields the value � = ½. So, the value 
of the lower bound given by Theorem 2 for the likelihood of getting an outcome 
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sequences with a likelihood ratio below � (for hj over hi) is

1 � (1/n)(log ½)2/((1/3) + (log �)/n)2  = 1 � 9/(n×(1 + 3(log �)/n)2.

Thus, according to the theorem, the likelihood of getting an outcome sequence with a 
likelihood ratio less than � = 1/16 (=.06) when hi is true and the number of tosses is n = 
52 is at least .70; and for n = 204 tosses the likelihood is at least .95.

To see the amount by which the lower bound provided by the theorem is in fact overly
cautious, consider what the usual binomial distribution for the coin tosses in this example 
implies about the likely values of the likelihood ratios. The likelihood ratio for exactly k
“heads” in n tosses is ((1/3)k (2/3)n�k) / ((2/3)k (1/3)n�k) = 2n�2k; and we want this 
likelihood ratio to have a value less than �. A bit of algebraic manipulation shows that to 
get this likelihood ratio value to be below �, the percentage of “heads” needs to be k/n > 
½ � ½(log �)/n. Using the normal approximation to the binomial distribution (with mean 
= 2/3 and variance = (2/3)(1/3)/n) the actual likelihood of obtaining an outcome sequence 
having more than ½ � ½(log �)/n “heads” (which we just saw corresponds to getting a 
likelihood ratio less than �, thus disfavoring the 1/3 propensity hypothesis as compared to 
the 2/3 propensity hypothesis by that much) when the true propensity for “heads” is 2/3 is 
given by the formula

�[(mean � (½ � ½(log �)/n))/(variance)½] = �[(1/8)½n½(1 + 3(log �)/n)]

(where �[x] gives the value of the standard normal distribution from �
 to x). Now let � 
= 1/16 (= .0625), as before. So the actual likelihood of obtaining a stream of outcomes 
with likelihood ratio this small when hi is true and the number of tosses is n = 52 is 
�[1.96] > .975, whereas the lower bound given by Theorem 2 was .70. And if the number 
of tosses is increased to n = 204, the likelihood of obtaining an outcome sequence with a 
likelihood ratio this small (i.e., � = 1/16) is �[4.75] > .999999, whereas the lower bound 
from Theorem 2 for this likelihood is .95. Indeed, to actually get a likelihood of .95 that 
the evidence stream will produce a likelihood ratio less than � >.06, the number of tosses 
needed is only n = 43, rather than the 204 tosses the bound given by the theorem requires 
in order to get up to the value .95. (Note: These examples employ “identically 
distributed” trials — repeated tosses of a coin — as an illustration. But Convergence 
Theorem 2 applies much more generally. It applies to any evidence sequence, no matter 
how diverse the probability distributions for the various experiments or observations in 
the sequence.)
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22. It should now be clear why the boundedness of EQI above 0 is important. 
Convergence Theorem 2 applies only when EQI[cn  | hi/hj | b]  >  �(log �)/n. But this 
requirement is not a strong assumption. For, the Nonnegativity of EQI Theorem shows 
that the empirical distinctness of two hypotheses on a single possible outcome suffices to 
make the average EQI positive for the whole sequence of experiments. So, given any 
small fraction � > 0, the value of �(log �)/n (which is always greater than 0 when � < 0) 
will eventually become smaller than EQI, provided that the degree to which the 
hypotheses are empirical distinct for the various observations ck does not on average 
degrade too much as the length n of the evidence stream increases.

When the possible outcomes for the sequence of observations are independent and 
identically distributed, Theorems 1 and 2 effectively reduce to L. J. Savage's Bayesian 
Convergence Theorem [Savage, pg. 52-54], although Savage's theorem doesn't supply 
explicit lower bounds on the probability that the likelihood ratio will be small. 
Independent, identically distributed outcomes most commonly result from the repetition 
of identical statistical experiments (e.g., repeated tosses of a coin, or repeated 
measurements of quantum systems prepared in identical states). In such experiments a 
hypothesis will specify the same likelihoods for the same kinds of outcomes from one 
observation to the next. So EQI will remain constant as the number of experiments, n, 
increases. However, Theorems 1 and 2 are much more general. They continue to hold 
when the sequence of observations encompasses completely unrelated experiments that 
have different distributions on outcomes — experiments that have nothing in common 
but their connection to the hypotheses they test.

23. In many scientific contexts this is the best we can hope for. But it still provides a very 
reasonable representation of inductive support. Consider, for example, the hypothesis that 
the land masses of Africa and South America separated and drifted apart over the eons, 
the drift hypothesis, as opposed to the hypothesis that the continents have fixed positions 
acquired when the earth first formed and cooled and contracted, the contraction
hypothesis. One may not be able to determine anything like precise likelihoods, on each 
hypothesis, for the evidence that: (1) the shape of the east coast of South America 
matches the shape of the west coast of Africa as closely as it in fact does; (2) the geology 
of the two coasts match up so closely when they are “fitted together” in the obvious way; 
(3) the plant and animal species on these distant continents should be as similar as they 
are, as compared to how similar species are among other distant continents. Although 
neither the drift hypothesis nor the contraction hypothesis supplies anything like precise 
likelihoods for these evidential claims, experts readily agree that each of these 
observations is much more likely on the drift hypothesis than on the contraction
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hypothesis. That is, the likelihood ratio for this evidence on the contraction hypothesis as 
compared to the drift hypothesis is very small. Thus, jointly these observations constitute 
very strong evidence for drift over contraction. 

Historically, the case of continental drift is more complicated. Geologists tended to 
largely dismiss this evidence until the 1960s. This was not because the evidence wasn't 
strong in its own right. Rather, this evidence was found unconvincing because it was not 
sufficient to overcome prior plausibility considerations that made the drift hypothesis
extremely implausible — much less plausible than the contraction hypothesis. The 
problem was that there seemed to be no plausible mechanism by which drift might occur. 
It was argued, quite plausibly, that no known force could push or pull the continents 
apart, and that the less dense continental material could not push through the denser 
material that makes up the ocean floor. These plausibility objections were overcome 
when a plausible mechanism was articulated — i.e. the continental crust floats atop 
molten material and moves apart as convection currents in the molten material carry it 
along. The case was pretty well clinched when evidence for this mechanism was found in 
the form of “spreading zones” containing alternating strips of magnetized material at 
regular distances from mid-ocean ridges. The magnetic alignments of materials in these 
strips corresponds closely to the magnetic alignments found in magnetic materials in 
dateable sedimentary layers at other locations on the earth. These magnetic alignments 
indicate time periods when the direction of earth's magnetic field has reversed. And this 
gave geologists a way of measuring the rate at which the sea floor might spread and the 
continents move apart. Although geologists may not be able to determine anything like 
precise values for the likelihoods of any of this evidence on each of the alternative 
hypotheses, the evidence is universally agreed to be much more likely on the drift
hypothesis than on the alternative contraction hypothesis. The likelihood ratio for this 
evidence on the contraction hypothesis as compared to the drift hypothesis is somewhat 
vague, but extremely small. The vagueness is only in regard how extremely small the 
likelihood ratio is. Furthermore, with the emergence of a plausible mechanism, the drift
hypothesis hypothesis is no longer so overwhelmingly implausible prior to taking the 
likelihood evidence into account. Thus, even when precise values for individual 
likelihoods are not available, the value of a likelihood ratio range may be objective
enough to strongly refute one hypothesis as compared to another. Indeed, the drift
hypothesis is itself strongly supported by the evidence; for, no alternative hypothesis that 
has the slightest amount of comparative plausibility can account for the available 
evidence nearly so well. (That is, no plausible alternative makes the evidence anywhere 
near so likley.) Given the currently available evidence, the only issues left open (for now) 
involve comparing various alternative versions of the drift hypothesis (involving 
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differences of detail) against one another. 

24. To see the point of the third clause, suppose it were violated. That is, suppose there 
are possible outcomes for which the likelihood ratio is very near 1 for just one of the two 
support functions. Then, even a very long sequence of such outcomes might leave the 
likelihood ratio for one support function almost equal to 1, while the likelihood ratio for 
the other support function goes to an extreme value. If that can happen for support 
functions in a class that represent likelihoods for various scientists in the community, 
then the empirical contents of the hypotheses is either too vague or too much in dispute 
for meaningful empirical evaluation to occur.

25. If there are a few directionally controversial likelihood ratios, where P� says the ratio 
is somewhat greater than 1, while and P� assigns a value somewhat less than 1, these may 
not greatly effect the trend of P� and P� towards agreement on the refutation and support 
of hypotheses provided that the controversial ratios are not so extreme as to overwhelm 
the stream of other evidence on which the likelihood ratios do directionally agree. Even 
so, researches will want to get straight on what the hypothesis says or implies about such 
cases. While that remains in dispute, the empirical content of the hypothesis remains 
unsettling vague. 
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