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Degree-of-Belief and Degree-of-Support: Why Bayesians Need Both Notions 
 
JAMES HAWTHORNE    (forthcoming in Mind) 
 

I argue that Bayesians need two distinct notions of probability. We need the usual degree-of-belief 
notion that is central to the Bayesian account of rational decision. But Bayesians also need a separate 
notion of probability that represents the degree to which evidence supports hypotheses. Although 
degree-of-belief is well suited to the theory of rational decision, Bayesians have tried to apply it to 
the realm of hypothesis confirmation as well. This double duty leads to the problem of old evidence, 
a problem that, we will see, is much more extensive than usually recognized. I will argue that 
degree-of-support is distinct from degree-of-belief, that it is not just a kind of counterfactual 
degree-of-belief, and that it supplements degree-of-belief in a way that resolves the problems of old 
evidence and provides a richer account of the logic of scientific inference and belief. 

 
1. Introduction 
 
 I contend that Bayesians need two distinct notions of probability. We need the usual degree-of-belief 
notion that is central to the Bayesian account of rational decision. But Bayesians also need a separate 
notion of probability that represents the degree to which evidence supports hypotheses. Although 
degree-of-belief is well suited to the theory of rational decision, Bayesians have tried to apply it in the 
realm of hypothesis confirmation as well. This double duty leads to the problem of old evidence, a 
problem that, we will see, is much more extensive than usually recognized. 
 Degree-of-support is closely akin to the notion of logical probability. That notion has gotten short shrift 
because of the failure of attempts like those of Keynes and Carnap to explicate it in terms of syntactic structure. 
But unlike logical probability, degree-of-support is not a purely formal notion. Its logical nature is most evident 
it the Bayesian treatment of the likelihoods, the conditional probabilities that express what hypotheses or 
theories say about evidential claims. I will argue that degree-of-support is distinct from degree-of-belief, that it 
is not just a kind of counterfactual degree-of-belief, and that it supplements degree-of-belief in a way that 
resolves the problems of old evidence and provides a richer account of the logic by which scientific hypotheses 
should be evaluated. 
 My argument basically runs as follows: 

1. Bayesian accounts of how evidence supports hypotheses in the sciences usually rely on the 
objectivity or ‘publicness’ of the likelihoods that occur in Bayes’s theorem. 

2. However, old evidence problems show that the numerical values taken by the likelihoods in an 
agent’s degree-of-belief function must often deviate considerably from the objective or public 
values that likelihoods are supposed to have. 

3. Thus, if a Bayesian account is to model both the agent’s belief strengths and the role of objective 
likelihoods in the evidential support of hypotheses in of scientific contexts, and if such support is 
supposed to influence the agent’s belief strengths, then the account will have to draw on two 
separate probability functions, and it will need to tell us how the agent’s support function is 
supposed to influence his belief function. 

Finally, I will describe how, on a two-function model of scientific inference, Bayesian support should 
inform Bayesian belief.1 

                                                      
1 The idea that Bayesian epistemology should draw on two distinct probability functions is not new. 
Carnap (1971) suggested a two-function Bayesian model. He calls the degree-of-belief notion ‘rational 
credence’ and calls the degree-of-support notion ‘credibility’. He takes initial credence functions to 
derive from credibility functions, which should themselves be logical probability functions. Brian 
Skyrms largely adopts this Carnapian idea in the third edition of Choice and Chance (1986, Ch. 1, Ch. 6, 
Sects. 7 and 8), but does not identify his version of credibility functions with Carnapian logical 
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 Let me elaborate a bit. The Bayesian account of how evidence supports hypotheses in scientific 
contexts often relies on the objectivity or ‘publicness’ of the likelihoods that occur in Bayes’s theorem. 
The likelihoods are supposed to represent the empirical content of hypotheses, what hypotheses say 
about the evidence. The principal reason that Bayesians appeal to Bayes’s theorem to evaluate the 
support hypotheses receive from evidence is that Bayes’s theorem expresses evidential support in terms 
of objective, or ‘public’, or ‘better known’ likelihoods. In section 2 I describe the Bayesian account of 
evidential support in a way that emphasizes the centrality of the likelihoods. In section 3 I argue that the 
objectivity or publicness of likelihoods is vital to the kind of scientific objectivity articulated by the 
Bayesian account of confirmation. 
 Then, in section 4 I show how old evidence problems undermine the objectivity of the likelihoods as 
they are expressed by agents’ degrees-of-belief. I show that belief function likelihoods should almost 
inevitably deviate from the objective or public values that likelihoods are often supposed to have in 
Bayesian confirmational contexts. For, belief function likelihoods represent how strongly the agent is 
supposed to believe an evidence claim when a given hypothesis is added to everything else the agent 
knows. So, when the agent is already certain of an evidence statement, her belief-function likelihoods for 
that statement must be 1 on every hypothesis. Moreover, I describe new versions of the old evidence 
problem that arise in cases in which the agent is uncertain of the truth of an evidence claim but possesses 
some bit of information relevant to its truth. Agents will almost always possess such information, usually 
of a quite trivial kind. I show that when they do, their belief function likelihoods should almost surely 
deviate from objective or public values. Thus, if objective or public likelihoods are to maintain their role 
in Bayesian accounts of evidential support, these likelihoods must be part of a Bayesian probability 
function that is distinct from the agent’s belief function. I call this second probability function a support 
function. I also argue that support functions are not some sort of counterfactual belief functions. Rather, 
they are more closely akin to a certain conception of logical probability. 
 Bayesian belief functions represent agents’ belief-strengths, which are the probabilities they use in 
decision-making. However, in scientific contexts support functions play an important role in supporting 
or justifying the agent’s belief strengths for hypotheses. In section 5 I argue this point further. Thus, a 
more complete Bayesian model of scientific inference should employ a distinct probability function for 
each notion and describe how evidential support should influence belief. In section 6 I flesh out how this 
should work. 
 
2. Bayesian induction 
 
 In this section I will give an overview of Bayesian confirmation that emphasizes the central role of 
the likelihoods. This will mostly be old hat to aficionados; but I want to make sure we are all on the same 
page. And the reader may find a few unfamiliar wrinkles. So please bear with me. 
 Let � be a Bayesian agent and let P� be a probability function that represents for her the degree to 
which some statements support others. I prefer to think of P� as a semantic conditional probability 
function defined on a language for predicate logic — in particular, I prefer to treat them formally as 
Popper-functions, as described by Hartry Field (1977). But what I’ll say here doesn’t much depend on 
this. So let P� be defined on sentences or propositions in your favorite Bayesian way. And although I’ll 
refer to P� as a degree-of-support function, you may for now think of it as one of the usual Bayesian 
degree-of-belief functions, if you wish. 

                                                                                                                                                                           
probabilities. (Skyrms’s fourth edition moves the chapter 1 material to chapter 2 and completely drops 
the relevant chapter 6 material.) Skyrms calls the degree-of-belief notion ‘epistemic probability’, and 
calls the degree-of-support notion ‘inductive probability’. More recently Marc Lange (1999) also argues 
for a two-function Bayesian model. On Lange’s view support functions provide a basis for justificatory 
arguments for the agent’s belief strengths. The two-function model I’ll present resembles Lange’s and 
Skyrms’s approaches in certain respects, but also differs in important ways. I’ll say more about this later. 
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 Let {H1, H2, …} be a mutually exclusive and exhaustive set of hypotheses or theories about some subject 
matter. It may be finite or infinite. If finite, it may contain a catch-all hypothesis, HK that says that none of the 
other hypotheses are true: (¬H1·…·¬Hm). Let ‘C ’ represent a description of observational or experimental 
Conditions and let ‘E’ represent a description of an Evidential outcome or observation that may result. In 
addition, let ‘B ’ represent explicit Background information and auxiliary hypotheses that are not at issue in the 
assessment of hypotheses Hi, but mediate the connection between hypotheses and evidence. When Hi is 
deductively related to the evidence, B supplies whatever auxiliaries mediate the logical entailments: Hi·B·C |= E 
or Hi·B·C |= ¬E. When Hi is related to the evidence statistically rather than deductively (either because Hi is 
explicitly statistical or because an auxiliary statistical hypothesis connects Hi to the evidence), B supplies 
whatever auxiliaries mediate the so-called direct inference likelihoods of the evidence on the hypothesis: 
P[E | Hi·B·C] = r. Although presentations of Bayesian inference often suppress C and B, they are an important 
part of the logic of the likelihoods. So I’ll continue to make them explicit.2 
 A likelihood is a probability that expresses how likely the evidence is on a given hypothesis. If a hypothesis 
together with auxiliaries and observation conditions deductively entails the evidence, the axioms of probability 
make the likelihood completely objective: P[E | Hi·B·C] = 1 if Hi·B·C |= E; P[E | Hi·B·C] = 0 if Hi·B·C |= ¬E. For 
statistical direct inferences, where Hi·B specifies a statistical hypothesis that bears directly on E via C, most 
Bayesians also take the likelihoods ‘P[E | Hi·B·C] = r’ to be highly objective. Indeed, some Bayesian logicians 
have attempted to spell out the logic of statistical direct inferences in terms of the logical forms of the sentences 
involved.3 But regardless of whether statistical direct inferences can be formalized, Bayesians tend to consider 
them and many of the other likelihoods that arise in scientific contexts to have highly objective or 
inter-subjectively agreed values. That is, although various Bayesian agents, �, �, etc., may widely disagree 
about the plausibility of various hypotheses, they tend to largely agree on the likelihoods. (I’ll say much more 
about this in the next section.) I will mark the high degree of objectivity or inter-subjective agreement on the 
values of the likelihoods by dropping the subscript ‘�’ from expressions that represent them. 
 One more wrinkle before looking closely at Bayes’s Theorem. Evidence typically accumulates over time. 
That is, hypotheses are tested by a sequence of experiments or observations, C1, C2, …, Cn, that result in 
corresponding outcomes E1, E2, …, En. I will abbreviate the conjunction of the first n experimental or 
observation conditions as ‘Cn’ and the conjunction of their outcomes as ‘En’.  
 Now let us take a look at several forms of Bayes’s Theorem that Bayesians rely on to capture the logic of 
confirmation. The simplest form is this: 

 
(1) P�[Hi | B·Cn·En]  =  P[En | Hi·B·Cn] · P�[Hi | B·Cn] / P�[En | B·Cn]. 

 
Equation (1) expresses the posterior probability of Hi on evidence and background in terms of the likelihood of 
the evidence on the hypothesis, the prior probability of the hypothesis on background and observation 
conditions, and the simple probability of the evidence on background and observation conditions. This latter 
probability is sometimes called the expectedness of the evidence. Typically, the prior probability of the 
hypothesis and the expectedness of the evidence are highly subjective. Bayesians are often willing to accept the 
subjectivity of the prior probabilities. But they find the subjectivity of the expectedness more troubling, and 
seek a remedy. 
 One way to avoid the subjective expectedness of the evidence is to consider a ratio form of Bayes’s 
theorem, a form that compares hypotheses one pair at a time: 
                                                      
2 Background information may, at least in part, consist of auxiliary hypotheses that are themselves 
subject to confirmation on some additional body of evidence. If we can treat each Hi as a super-
hypothesis that contains all auxiliaries it needs to speak to the evidence, then just let ‘B’ be a tautology. 
3 These attempts have not been completely satisfactory. But I think the project can succeed. (I hope to offer a 
specific proposal elsewhere.) The series of papers by Levi (1977), Kyburg (1978), and Levi’s response 
(1978) provides an illuminating discussion of the logic of direct inference and the difficulties involved in 
providing a formal treatment. See Levi (1980) and Harper (1981) for sophisticated proposals. 
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P�[Hj | B·Cn·En]  P[En | Hj·B·Cn] P�[Hj | B] P�[Cn | Hj·B] 

(2)  -------------------- = -------------------  · ------------  · ---------------- 
P�[Hi | B·Cn·En]  P[En | Hi·B·Cn] P�[Hi | B] P�[Cn | Hi·B] 

 
P[En | Hj·B·Cn] P�[Hj | B] 

= -------------------  · ------------ 
P[En | Hi·B·Cn] P�[Hi | B] 

 
assuming the conditions Cn are no more likely on Hi than on Hj — i.e. that P�[Cn | Hj·B] = P�[Cn | Hi·B]. 
(This amounts to supposing that the occurrence of the observation conditions does not itself constitute 
evidence for or against the hypotheses. This supposition may be substantially relaxed without affecting 
anything I’ll say here; but doing so would add inessential complexity.) 
 

Thus, the only really subjective element that contributes to the ratio of posterior probabilities is the ratio of the 
prior probabilities. 
 In Bayesian confirmation theory the prior probability of a hypothesis represents how plausible the agent 
takes the hypothesis to be prior to taking the evidence (Cn·En) into account. Critics point out that such 
plausibility ratings are usually highly subjective, and claim that these factors completely undermine the 
objectivity of Bayesian confirmation. In the sciences, however, plausibility assessments are not mere subjective 
whims. They are often backed by forceful conceptual arguments (e.g., thought experiments). Such arguments 
tend to be particularly useful in bringing the scientific community into agreement on the extreme implausibility 
of various ‘logically possible’ alternatives. Agents may often disagree on the relative strengths of 
plausibility arguments for the remaining, viable hypotheses, and so may disagree widely on prior 
plausibility assessments. However, such diversity need cause no particular difficulty for the objectivity of 
hypothesis confirmation, provided that the likelihoods are fairly objective, and that sufficient empirical 
evidence becomes available. For, Bayesians point out, empirical evidence often tends to override, or 
‘wash out’ the diversity among the plausibility assessments of agents. 
 To see how ‘washing out’ may occur, notice that if, as evidence accumulates, the ratios of likelihoods 
P[En | Hj·B·Cn] / P[En | Hi·B·Cn] approach 0, then the posterior probability of Hj must approach 0 as well — the 
evidence comes to strongly refute Hj. One kind of Bayesian convergence theorem shows that if (Hi·B·Cn) is 
true, these likelihood ratios will very probably approach 0 as the evidence accumulates. Thus, by equation (2), 
the posterior probability of Hj must very probably approach 0 as well, as evidence accumulates. Call this result 
the Likelihood Ratio Convergence Theorem. It is a version of the Weak Law of Large Numbers. Let’s consider 
what this theorem says in a bit more detail. 
 Choose any value of �, as small as you like. The expression ‘{En : P[En | Hj·B·Cn] / P[En | Hi·B·Cn] < �}’ 
represents the set of all statements En describing possible sequences of outcomes of the sequence of 
experiments or observations Cn that would yield a likelihood ratio P[En | Hj·B·Cn] / P[En | Hi·B·Cn] with a value 
less than �. Now, let the expression ‘∨{En : P[En | Hj·B·Cn] / P[En | Hi·B·Cn] < �}’ represent the statement formed 
by taking the disjunction of all such outcome sequences En. The Likelihood Ratio Convergence Theorem says 
that the likelihood of this disjunctive sentence,  
 

P[∨{En : P[En | Hj·B·Cn] / P[En | Hi·B·Cn] < �} | Hi·B·Cn],  
 
must be at least 1−(q/n), where the value of q is an explicitly calculable factor greater than zero.4 Thus, the true 
hypothesis Hi (aided by B·Cn) says (via a likelihood) that it becomes highly likely (as close to 1 as you please) 
that as evidence increases, one of the possible outcome sequences En will occur that yields a likelihood ratio 
                                                      
4 In (Hawthorne 2004b, Sect. 5) I show how the value of q may be explicitly computed from � together with 
an information theoretic measure of how empirically distinct Hj is from Hi on the possible outcomes of the Ck. 
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P[En | Hj·B·Cn] / P[En | Hi·B·Cn] less that any chosen value of �. As this happens the posterior probability of Hi’s 
false competitors, Hj, must approach 0.5 
 If we consider the ratio versions of Bayes’s Theorem in equation (2) applied to each of Hi’s competitors, 
and add these together, we get a form of Bayes’s Theorem in terms of the odds against Hi (where the odds for A 
given B is defined as Ω�[A | B] = P�[A | B] / P�[¬A | B]): 
 

P[En | Hj·B·Cn] P�[Hj | B]  P�[En | HK·B·Cn]  P�[HK | B] 
(3) Ω�[¬Hi | B·Cn·En]  =  �j≠i -------------------  · -------------   + ---------------------   · ------------- 

P[En | Hi·B·Cn] P�[Hi | B]  P[En | Hi·B·Cn]  P�[Hi | B]  . 
 
Notice that if a catch-all hypothesis is needed, the likelihood of evidence relative to it will not generally enjoy 
the same kind of objectivity as the likelihoods for specific hypotheses. I’ve left the subscript ‘�’ on the 
likelihood for the catch-all to mark its subjectivity. 
 As new hypotheses are discovered, they are ‘peeled off’ of the catch-all hypothesis. That is, when a new 
hypothesis Hm+1 becomes explicit, the old HK is replaced by a new catch-all, HK*, of form (¬H1·…·¬Hm·¬Hm+1). 
The axioms of probability require that the prior probability of this new catch-all hypothesis comes from 
diminishing the prior of the old catch-all: P�[HK* | B]  =  P�[HK | B] − P�[Hm+1 | B]. So the influence of the 
catch-all term may diminish towards 0 over time as new alternative hypotheses are made explicit. 
 If increasing evidence drives the likelihood ratios comparing Hi with each of its competitors towards 0, 
then the odds against Hi, Ω�[¬Hi | B·Cn·En], approaches 0 — provided the priors of catch-all terms, if needed, 
approach 0 as new hypotheses become explicit and are peeled off. And as Ω�[¬Hi | B·Cn·En] goes to 0, the 
posterior probability of Hi goes to 1. The relationship between the odds against Hi and its posterior probability 
is this: 
 
 (4)  P�[Hi | B·Cn·En]  =  1/(1 + Ω�[¬Hi | B·Cn·En]). 
 
 The Likelihood Ratio Convergence Theorem implies that if Hi·B·Cn is true, then indeed each of the 
likelihood ratios in equation (3) will very probably approach 0 as the evidence increases.6 Thus, if the 
                                                      
5 The result described here is one of two parts of the Likelihood Ratio Convergence Theorem. It applies to 
the sub-sequence of the total evidence that satisfies the following condition: for each Ck in sequence Cn, 
whenever Hj says that outcome Okv is impossible (i.e. P[Okv | Hj·B·Ck] = 0), Hi also says that Okv is 
impossible. The other part of the theorem applies to whatever remaining sub-sequence of the evidence 
violates this condition. It says: if for some � > 0, a the remaining sub-sequence Ch is made up of 
individual observations Ck that violate the above condition in that Hj says an outcome Okv is impossible 
but Hi gives it a likelihood as great as � (i.e., P[Okv | Hi·B·Ck] � �), then P[∨{Eh : P[Eh | Hj·B·Ch] / P[Eh | 
Hi·B·Ch] = 0} | Hi·B·Ch]  �  1−(1−�)h, which approaches 1 as h increases. Thus, for this sub-sequence the 
true hypothesis Hi says that as evidence of this sort accumulates, it is highly likely (as near 1 as you 
please) that one of the outcome sequences En will occur that yields a likelihood ratio P[En | Hj·B·Cn] / 
P[En | Hi·B·Cn] = 0, which would result in a posterior probability of 0 for Hj. See Hawthorne (1993) or 
(2004b, Sect. 5) for more details, including proof of the theorem. 
 Notice that this convergence theorem does not involve second-order probabilities — it does not 
involve the probability of a probability. Rather, the theorem merely expresses the likelihood that some 
particular disjunctive sentences will be true. This theorem does not require that evidence consists of 
identically distributed events (like repeated tosses of a coin), it does not draw on countable additivity, and 
the explicit lower bounds on convergence means that there is no need to wait for the infinite long run for 
convergence to occur. Indeed, since this result only relies on the likelihoods, it applies even if the 
Bayesian agent updates his support function from time to time by reassessing the prior plausibilities of 
hypotheses. (Earman (1992, Ch. 6) provides a thorough analysis of other Bayesian convergence results.) 
6 This depends, of course, on Hi being empirically distinct from Hj in the sense that for some conditions 
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conditions for Bayesian convergence are satisfied (and the catch-all, if there is one, diminishes towards 0 
through peeling off), then the posterior probability of the true hypothesis will very probably approach 1 as 
evidence increases. 
 In any case, regardless of whether some Bayesian convergence theorem applies, equations (2), (3), and (4) 
show the crucial role played by the likelihoods in the Bayesian assessment of evidential support for scientific 
hypotheses. They show that if the likelihoods (or, at least, the ratios of likelihoods) are objective or have 
publicly agreed values, then the only subjective factors in the assessment of the posterior probabilities of 
hypotheses are their prior plausibilities. Furthermore, if hypotheses are empirically distinct enough that 
evidence can drive the likelihood ratios to extremes, then subjective prior plausibility assessments become 
completely overridden by the evidence. This, at least, is what Bayesian inductivists hope for. 
 
3. Likelihoods  
 
 The distinctive mark of a Bayesian support function is the logical or quasi-logical character of its 
likelihoods. That is, the likelihoods in Bayesian support functions are supposed to express what the hypothesis 
or theory says about the evidence. Bayesian logicians like Keynes and Carnap recognized this logical character, 
and it led them to the idea that inductive probability might be completely logicized, if only logic could be made 
to determine the values of prior probabilities as well. Keynes and Carnap each tried to implement this idea 
through syntactic versions of the principle of indifference. But logical form alone cannot determine reasonable 
values for prior probabilities, as examples employing Goodmanian grue-predicates illustrate. Still, the 
quasi-logical nature of the likelihoods is often apparent, especially when a hypothesis is deductively or 
statistically related to the evidence by direct inference likelihoods. 
 Even the most staunchly subjectivist Bayesians tend to rely on the special status of likelihoods. Consider, 
for instance, the following passages from the well-known Bayesian personalist paper by Edwards, Lindman, 
and Savage — the paper where they introduce the theory of stable estimation, a kind of Bayesian convergence 
result. Referring to a form of Bayes’s Theorem, P[H | D] = P[D | H]·P[H] / P[D], as ‘Equation 2’, they say this: 
 

 In particular, all probabilities are conditional. Thus, P[H] is the probability of the hypothesis H for you 
conditional on all that you know, or knew, about H prior to learning D; and P[H | D] is the probability of H 
conditional on that same background knowledge together with D. 
 Again, the four probabilities in Equation 2 are personal probabilities. … But some are, so to speak, 
more personal than others. In many applications practically all concerned find themselves in substantial 
agreement with regard to P[D | H], or P[D | H] is public, as we say. This happens when P[D | H] flows from 
some simple model that the scientist, or others, concerned accept as an approximate description of their 
opinion about the situation in which the datum was obtained. 
… The other probabilities in Equation (2) are not at all public. Reasonable men may differ about them, 
even if they share a statistical model that specifies P[D | H]. People do, however, often differ much more 
about P[H] and P[D] than about P[H | D], for evidence can bring initially divergent opinions into near 
agreement. 
 The probability P[D] is usually of little direct interest, and intuition is often silent about it. It is 

                                                                                                                                                                           
Ck there are possible outcomes Okv on which the likelihoods differ: P[Okv | Hi·B·Ck] ≠ P[Okv | Hj·B·Ck]. 
Otherwise Hi and Hj are empirically equivalent and no amount of evidence can support one over the 
other. If the true hypothesis has empirically equivalent rivals, then the convergence theorem shows that 
the odds against the disjunction of it with these rivals very probably goes to 0, and the posterior 
probability of the disjunction goes to 1. Among empirically equivalent hypotheses, the ratio of posterior 
probabilities equals the ratio of their priors: P�[Hj | B·Cn·En] / P�[Hi | B·Cn·En]  =  P�[Hj | B] / P�[Hi | B]. So the 
true hypothesis comes to have a posterior probability near 1 (upon driving the posteriors of empirically 
distinguishable rivals near 0) just in case non-evidential plausibility considerations make its prior 
plausibility much higher for the agent than the sum of the priors of its empirically equivalent rivals. 
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typically calculated or eliminated as follows. When there is a statistical model, H is usually regarded as 
one of a list, or partition, of mutually exclusive and exhaustive hypotheses Hi such that P[D | Hi] are all 
equally public, or part of the statistical model. Since �i P[Hi | D] = 1, Equation 2 implies that P[D] = 
�i P[D | Hi] P[Hi]. (Edwards, Lindman, Savage, pp. 199-200) 

 
 Notice how much these Bayesians rely on the publicness and intuitiveness of likelihoods. Even the 
expectedness, P[D], is to be calculated in terms of likelihoods, because the agent’s intuitions are often silent 
about its value, whereas the likelihoods are better known — intuitions are far from silent about them. It is this 
tendency of likelihoods to be objective to a greater degree than other factors that gives Bayesian induction its 
distinctive character. Although subjectivist Bayesians often say they take probabilistic coherence (i.e. 
consistency with the standard probabilistic axioms) as the only constraint on a rational agent’s belief strengths, 
mere probabilistic coherence cannot account for the central role Bayes’s Theorem plays in the Bayesian 
account of hypothesis testing. Bayes’s Theorem is central to Bayesians precisely because they treat the 
likelihoods as more objective than the posterior probabilities that likelihoods are used to calculate. Bayesians 
treat the likelihoods as stable points to which prior and posterior probabilities must coherently conform. 
 Where scientific hypotheses are concerned, the high degree of objectivity enjoyed by likelihoods is not just 
some fortunate accident. Recall the Popperian view that the demarcation between science and non-science rests 
with the falsifiability of scientific hypotheses, due to their logical entailment of evidential claims (Popper, 
1959). This view is clearly too extreme. But there does seem to be something in it. The objectivity of science 
does seem to rely to a great extent on the objectivity of the connection between scientific hypotheses and the 
evidential claims that test them. For Bayesians, the likelihoods are supposed to capture this connection. 
 Imagine what a science would be like if the likelihoods were highly subjective. Its practitioners proceed by 
interpreting each theory to see what it says is likely to happen in specific circumstances. Although they 
carefully specify the auxiliaries and other background information they use, their interpretations of what the 
theory says about empirical matters are highly personal. So, in the assessment of the evidential support for 
competing hypotheses, it may well happen that likelihood ratios P�[En | H1·B·Cn] / P�[En | H2·B·Cn] become quite 
large for scientist �, strongly supporting H1 over H2, whereas the corresponding likelihood ratios 
P�[En | H1·B·Cn] / P�[En | H2·B·Cn] for her colleague � become very small, refuting H1 relative to H2. The very 
same evidence stream that supports H1 and refutes H2 for � does just the opposite for �. Under such 
circumstances theories do not speak for themselves about empirical matters. Rather, each practitioner is a sort 
of medium through which the theory speaks, and it says quite different things through each of its messengers. 
Although they employ the same theoretical sentences, each scientist understands the empirical import of these 
sentences so differently that each has in effect a distinct theory.7 
 My point is that the objectivity of the sciences rests largely on the abilities of scientific theories to speak 
for themselves about the evidence — to express largely the same empirical content to all members of a 
scientific community. The old deductivist/falsificationist ideal would have them do just that. Theories speak to 
the evidence via logical entailment; so there is no room for ‘interpretative disagreement’ over empirical 
content. But the deductivist ideal is clearly too strict. Presumably, hypotheses that bear on the evidence via 
statistical direct inferences may speak to the evidence in a somewhat similar, logically or quasi-logically 
objective manner. Even in cases where scientific theories are somewhat less formally rigorous, and so are tied 
to the data somewhat more loosely, the empirical objectivity of the science largely relies on a high degree of 
inter-subjective agreement about how likely evidence claims should be on various alternative hypotheses. It is 
primarily through such likelihoods that the empirical content of scientific theories is expressed. 
 In mathematically rigorous sciences an essential part of learning a theory involves acquiring the ability to 
logically deduce useful empirical consequences and statistical relationships. And even in less mathematically 
formal sciences, an essential part of learning a theory involves acquiring the ability to discern what the theory 
                                                      
7 This claim should not be confused with logical positivism. Positivists say ‘same empirical import 
implies same theory’. I am asserting the much less controversial claim, ‘distinct empirical import implies 
(effectively) distinct theories’. 
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says or implies about observable phenomena. Students are trained up on examples that instill a capacity to 
correctly perceive the implications. This training ultimately tends to provide a high degree of expert agreement 
regarding what a theory says about specific cases — i.e. a high degree of expert agreement on the values of the 
likelihoods, or at least on values of likelihood ratios.8 These agreed likelihoods do not simply represent an 
expert’s individual degree-of-belief that an event has or will occur if a given theory is true — at least not in the 
first instance. Rather, it seems, experts consult the likelihoods they have internalized through their training to 
help them determine what to believe in specific cases, and how strongly to believe it.  
 Likelihoods are not conditional degrees-of-belief. They are much more like logical or analytic 
relationships.9 They represent what the hypothesis says or implies about the evidence, not how strongly the 
agent would believe the evidence if the hypothesis were added to everything else she knows. Degree-of-belief 
probabilities, even so-called counterfactual ones, are ill suited to this kind of objectivity or inter-subjective 
agreement required of the likelihoods. In the next section I will try to convince you of this. My point will be 
that there is important work for the degree-of-belief notion to do, but the degree-of-support notion associated 
with objective or public likelihoods does different work. Taking degree-of-support probabilities to be degrees 
of belief, even counterfactual ones, forces the degree-of-belief conception into a mold that doesn’t suit it given 
the other work it does. Better to have two distinct notions and an account of how they interact. 
 
4. Old evidence and related problems for the objectivity of degree-of-belief likelihoods 
 
 In typical Bayesian fashion, let Q� represent an agent �’s rational degree-of-belief function. It is a 
probability function satisfying the usual axioms that represents the agent’s present belief-strengths in various 
statements. Belief functions provide an idealized model of belief strength, and � is modeled as an ideally 
probabilistically rational agent. For example, Q� assigns degree-of-belief 1 to all logical truths, so the agent is 
supposed to be logically omniscient and probabilistically coherent to an extent beyond the capabilities of real 
people. Belief functions extend the notion of ideally consistent belief. There is no harm in such idealization. We 
know how it is supposed to apply as a normative guide to real decision-making. An agent is supposed to 
attempt to make decisions based on her belief-strengths about the state of the world, her belief strengths about 
possible consequences of actions, and her assessment of the utilities of these consequences. This is all standard 
Bayesian fare. 
 
4.1 The standard problem of old evidence applied to likelihoods 
 On the Bayesian model of belief, Q� represents �’s net degree of belief in each statement. The agent’s 
belief strength for a hypothesis, Q�[H], is constrained by her belief strengths in other statements, including her 
belief strength in evidence statements, Q�[E]. Indeed, Q�[H] incorporates the net impact of all information 
possessed by � on her belief strength in H . This is just what Q� should do for the purposes of decision-making. 
For that purpose Q� needs to represent �’s present belief strength for each statement that may be relevant to a 
decision. However, this tends to make Q� ill-suited to represent the degree to which individual pieces of already 
known evidence support a hypothesis. For, if � is certain of some bit of evidence E, then Q�[E] must be 1. In 

                                                      
8 Equations (2)-(4) of section 2 show that on the Bayesian account of confirmation the influence of the 
evidence is completely captured by ratios of likelihoods. So, although agreement on the likelihoods 
themselves is highly desirable, it will often suffice if we can get fairly objective or public values for 
likelihood ratios. Often in the softer sciences this may be the best one can do. The problems I will raise 
for the objectivity of degree-of-belief likelihoods apply equally to degree-of-belief likelihood ratios. 
9 The standard axioms for Bayesian probability functions would have all conditional probabilities, 
including likelihoods, defined as ratios of unconditional probabilities. This may raise the worry that 
likelihoods must inherit whatever subjectivity there is in the unconditional probabilities that define them. 
To avoid such worries I think that degree-of-support functions are best understood as semantic 
conditional probability functions like those explicated by Field (1977). For more on this point see the 
discussion by Hajek (2003). 
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that case Q�[H | E] must equal Q�[H].10 Thus, the way in which evidence E supports H by increasing �’s belief 
strength in H does not overtly show up in Q�. This is just the standard problem of old evidence.11 
 Notice that when � is certain that E, the likelihood Q�[E | H] must also be 1, even though H itself may say 
that E is quite unlikely. This wreaks havoc with the use of likelihoods and likelihood ratios in the assessment of 
the support of H by E. For, given any alternative hypothesis, the likelihood ratio Q�[E | H*]/Q�[E | H] = 1/1. 
This undermines the point of drawing on Bayes’s theorem to tell us how the evidence supports a hypothesis.  
 Consider an example. Suppose E states that the coin turns up heads 10 times in 10 tosses, and H says that 
the coin has a propensity r < 1 (e.g. ½) to come up heads when tossed. And suppose it happens that E is true 
and the agent knows it. The likelihood we want to use in assessing the evidence for H is P[E | H] = r10, not 
Q�[E | H] = 1. Where certain evidence is concerned, the likelihoods and likelihood ratios expressed by Q� 
utterly fail to capture the way in which what hypotheses say about the evidence is supposed to bring about their 
evidential refutation or support. This difficulty for Bayesian confirmation theory is part and parcel of the 
standard problem of old evidence. 
 The standard old evidence problem applies only to evidence that the agent knows with certainty. Some 
Bayesians may hope to live with this problem, confident that for all evidence not yet known with certainty Q� 
still captures correct likelihoods and permits Bayes’s theorem to express the appropriate confirmation relation. 
However, the standard problem of old evidence is only the tip of an iceberg. It turns out that the incorporation 
into Q� of even very weak information ‘involving’ possible evidence E may completely undermine the public 
or objective values of likelihoods expressed by Q�. This should be no surprise. The agent’s belief function 
likelihoods Q�[E | H] reflect her total degree-of-belief in E, based on H together with everything else she 
believes about E. So the agent’s present belief function may capture appropriate, public likelihoods for E only 
if E is completely isolated from the agent’s other beliefs. And this will rarely be the case. To see the point, let’s 
look at two kinds of information about E that fails to make E certain, but nevertheless undermines the ability of 
belief functions to capture appropriate evidential likelihoods. 
 
4.2 The problem of old disjunctively-entangled evidence 
 Suppose the agent isn’t at all certain of E, and her present belief-function likelihood is Q�[E | H] = r < 1. 
And suppose she is also less-than-certain about whether some disjunctive claim (E∨D) will hold if H does — 
i.e. Q�[E∨D | H] = s < 1. If the agent then becomes certain that (E∨D) (and if this is her strongest newly certain 
belief), then her belief function should be updated in the usual Bayesian way. Her new belief function Q�-new is 
related to her previous belief function by the formula: Q�-new[S] = Q�[S | E∨D]. Thus, Q�-new[E | H] = 
Q�[E | H·(E∨D)] = Q�[(E∨D)·E | H] / Q�[E∨D | H]  = Q�[E | H] / Q�[E∨D | H] = r/s > r. So, where the old 
likelihood was Q�[E | H] = r, the updated likelihood must become Q�-new[E | H] =  r/s. 
 This kind of belief updating is devastating to the objectivity of the likelihoods. For example, let H say that 
a specific coin is fair and E say that a specific toss comes up heads. And let us suppose that �’s belief function 
likelihood is the usual objective likelihood for heads on tosses of a fair coin, Q�[E | H] = 1/2. Now, � learns 
from a friend who has been tossing the coin recently that either the coin has come up heads on the specific toss 
at issue or it came up heads on the three previous tosses — i.e., � learns (E∨D), where D states that the past 
three tosses were heads. And let’s suppose � takes the outcomes of each toss to be independent given H. Then 
Q�[E∨D | H] = Q�[E | H] + Q�[D | H] − Q�[E | H] · Q�[D | H] = (1/2) + (1/8) − (1/2) · (1/8) = 9/16. Thus, 
Q�-new[E | H] = (1/2)/(9/16) = 8/9. That is, �’s degree-of-belief likelihood for heads on the toss of the fair coin, 
given everything else she now know, has become 8/9. 
 Don’t get me wrong. Given what she knows, Q�-new[E | H] =  8/9 may be exactly the right betting quotient 
on heads for �. But this is clearly not the kind of objective or public likelihood that Bayesians want to draw on 
when using E as evidence for or against the fairness hypothesis H.  
                                                      
10 It is usual in such discussions to suppress B and C; perhaps they are supposed to have degree-of-belief 
1, or very nearly 1. For the sake of simplicity I will follow this convention for now. 
11 The problem of old evidence was first raised by Glymour in his, ‘Why I Am Not a Bayesian,’ (1980, 
Ch. 3). See Eells (1985) and Earman (1992, Ch. 5) for very thorough analyses of the problem. 
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 The problem is not that using this likelihood would necessarily give the wrong confirmational 
result. Indeed, provided she started out with the correct objective likelihood, and then updated it as in the 
example, she may get the correct confirmational result from her new likelihood together with her updated 
‘prior’ probability Q�-new[H].12 Rather, the problem is that if such personal belief-function likelihoods 
were the only likelihoods a Bayesian could draw on, and if we had to use these in scientific 
confirmational contexts, then each member of the scientific community would generally have his or her 
own distinct personal likelihood for the evidence, depending on what else he or she knows about the 
evidence. This would make a complete hash of scientific hypothesis testing. What should a researcher 
report in a scientific journal? That, given what she knows, she takes the likelihood of the experimental 
outcome E on H to be r, but that you should consult everything that you know to come up with your own 
likelihood value for E on H? Presumably not. Rather, in discussing the evidence she should refer to 
public, support function likelihoods, not personal degree-of-belief likelihoods. I’ll return to this point in 
the next section, after we first see that things are even worse than this example suggests. 
 To see how troublesome this effect can be, let us consider one further example. As part of a periodic 
physical exam a physician intends to have her patient tested for hepatitis with a standard blood test. She 
knows from medical studies that there is a 5% false positive rate for this test; so her belief strength that 
the test result will be positive, E, given hepatitis is not present is Q�[E | ¬H] = .05. Now, the lab is 
normally very reliable. So, if asked, the physician would say her belief strength that the lab would mix up 
the blood work for her patients, D, is very small. Indeed, given that her patient is free of the disease, she 
takes the likelihood of a mix-up to be around .01 (i.e. Q�[D | ¬H] = .01), and she finds it equally likely 
regardless of whether her patient’s test is positive (i.e. Q�[D | ¬H·E] = .01). Then the physician receives a 
call from the lab. The technician, seems unsure of the reliability of the result, and says, ‘your patient 
came up positive or we’ve mixed up his results. Do you want to take another blood sample and have us 
run the test again?’ The physician’s new belief-function-likelihood for a false positive on her patient 
becomes Q�-new[E | ¬H] = Q�[E | ¬H·(E∨D)] = Q�[E | ¬H] / Q�[E∨D | ¬H] = Q�[E | ¬H]/(Q�[E | ¬H] + 
Q�[D | ¬H] − Q�[D | ¬H·E] · Q�[E | ¬H]) = .05/(.05+.01−(.05)(.01))  =  1/1.19 ≈ .84. 
 Indeed, even rather trivial knowledge of disjunctive claims involving E may, when learned with 
certainty, completely upset the likelihoods for an agent’s belief function. And an agent will almost always 
have some such trivial knowledge. For example, the physician may also learn such new disjunctive facts 
involving E as, ‘the patient’s insurance company won’t cover additional tests and treatment unless the 
test turns out positive’ and ‘either the test is positive or it turns out that thirty-seven of my patients will 
have had a negative hepatitis test this year’, etc. Updating on such information can force a physician’s 
belief function to deviate widely from the evidentially relevant objective, textbook values of test result 
likelihoods. This is not just the usual problem of old evidence; let’s call it the problem of old 
disjunctively-entangled evidence. 
 
4.3 The problem of old uncertain evidence 
 Consider the following situation. A physician’s objective, textbook values for the likelihood of a 
positive sputum test, O, if the patient has lung cancer, H, is Q�[O | H] = .9; and her objective likelihood 
for a positive test when no cancer is present is Q�[O | ¬H] = .01. Based on this particular patient’s risk 
factors, she assigns a prior probability for lung cancer of Q�[H] = .1. While examining the patient, she 
notices his persistent cough. Based on the cough and other clinical impressions, she fears that the sputum 
test may well come back positive. On this basis her ‘intuitive’ new belief strength for a positive test 
becomes Q�-new[O] = .5 — this is how strongly she has now come to believe that the test will be positive, 
based on her examination. However, she recognizes the result of a sputum test to be definitive enough to 
                                                      
12 For example, if testing H against alternative H*, it will turn out that Q�-new[H* | E]/Q�-new[H | E] = 
Q�[H* | E]/Q�[H | E], since Q�-new[H* | E]/Q�-new[H | E] = (Q�-new[E |H* ]/Q�-new[E | H]) · Q�-new[H*]/Q�-new[H] = 
[(Q�[E | H* ]/Q�[E∨D | H*]) / (Q�[E |H ]/Q�[E∨D | H])] · Q�[H* | E∨D]/Q�[H | E∨D] = (Q�[E |H*]/Q�[E |H ]) · 
(Q�[H*]/Q�[H]) = Q�[H* | E]/Q�[H | E]. 
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screen off 13 the cancer hypothesis from the observed cough and other clinical impressions: Q�-new[H | O] 
= Q�[H  | O] and Q�-new[H | ¬O] = Q�[H | ¬O]. It turns out that under these circumstances, as she sends the 
sample off to the lab, her new belief-function likelihood must become Q�-new[O | H] = .988 for a true 
positive test — significantly higher than the .9 textbook value. Similarly, her new false positive rate must 
become Q�-new[O | ¬H] = .084 — more than eight times higher than the textbook rate of .01.14 This 
produces a significant change in her likelihood ratios as well, from Q�[O | H]/Q�[O | ¬H] = 90 to the 
much lower value Q�-new[O | H]/Q�-new[O | ¬H] = 11.76. Let’s call this problem, where updating the belief 
strengths of possible evidential outcomes wrecks the public values of degree-of-belief likelihoods, the problem 
of old uncertain evidence.  
 The general form of this problem is this. The agent � is faced with a partition (i.e. a mutually exclusive and 
exhaustive set) of alternative hypotheses {Hk}. Among the evidence claims that may bear on these hypotheses 
are the alternative outcomes in a partition {Oi}. At a time before the relevant observation is made the agent’s 
present degree-of-belief function is Q�. Let’s suppose for now that the belief function likelihoods Q�[Oi | Hk] 
have proper public or objective values. The agent then learns some ‘new bit of information’ that changes her 
degrees of belief (from Q�[Oi] to Q�-new[Oi]) regarding which of the outcomes Oi will be found when the 
appropriate observation is eventually made. (This new information may involve ‘hard data’ relevant to the 
possible outcomes Oi, or it may just be a hunch; for our purposes it doesn’t matter.) Furthermore, suppose this 
new information does not affect what the agent’s belief strengths for hypotheses would become if some one of 
the Oi were found to be true. Then, in almost all cases updating must cause at least some of the agent’s 
likelihoods to deviate from their public values. 
 More formally, what I’m claiming is this. Suppose that the new information changes the agent’s 
degree-of-belief function from Q� to Q�-new, updating her belief strengths in at least some of the possible 
outcomes, Q�-new[Oi] ≠ Q�[Oi]; and also suppose that the conditional belief strengths for the Hk on the various Oi 
are maintained, Q�-new[Hk | Oi] = Q�[Hk | Oi].15 It turns out that in the presence of this kind of belief updating, 
whenever a very plausible additional condition holds,16 some of the agent’s likelihoods must change — at least 
some of the new likelihoods Q�-new[Oi | Hk] must differ from the corresponding old likelihoods Q�[Oi | Hk]. If 
her original likelihoods were public, at least some of them must turn private after updating. This means that 
once � updates to Q�-new she can no longer account for her present belief strength for Hk given Oi in terms of 
Bayes’s theorem together with the public or objective likelihoods. 
 How bad is this for Bayesians? After all, although the agent’s likelihoods are no longer public, as stated 
this problem takes her posterior-probability-belief-strengths for hypotheses, Q�-new[Hk | Oi] = Q�[Hk | Oi], to 

                                                      
13 To say that Oi screens off Hk from propositionally expressible information E just means that Hk is 
probabilistically independent of E given Oi — i.e. Q�[Hk | Oi·E] = Q�[Hk | Oi]. Intuitively the idea is that the 
information content of Oi makes the addition of E irrelevant to Hk. The same idea applies to cases of Jeffery 
Updating, where the information that brings about an update from Q� to Q�-new is not propositionally expressed, 
but maintains the relationship Q�-new[Hk | Oi] = Q�[Hk | Oi]. In this case we simply say that Oi screens off Hk 
from the new-update information. 
14  To calculate Q�-new[O|H] first notice that Q�[O] = Q�[O|H]·Q�[H] + Q�[O|¬H]·Q�[¬H] = .099. Now let 
R = Q�-new[¬O|H]/Q�-new[O|H] = (Q�-new[H|¬O]·Q�-new[¬O])/(Q�-new[H|O]·Q�-new[O]) = 
(Q�[H|¬O]/Q�[H |O])·(Q�-new[¬O]/Q�-new[O]) = Q�[¬O|H]/Q�[O|H])·(Q�[O]/Q�[¬O])·(Q�-new[¬O]/Q�-new[O]) 
= 11/901. Then Q�-new[O|H] = 1/(1+ R) = 901/912 = .988. Q�-new[O|¬H] may be calculated similarly. 
15 This is the condition that Richard Jeffrey calls rigidity (1965, 1970, 1988, 1991). It is an essential feature 
of his well-known account of updating on uncertain evidence. In (Hawthorne, 2004a) I discuss rigidity in more 
detail, and extend Jeffrey-updating to sequences of updates in a way that makes it independent of update order. 
16 Each of several plausible additional conditions would suffice. One such condition is this: at least one 
of the hypotheses assigns a non-zero likelihood to each outcome — i.e. an Hk makes Q�[Oi | Hk] > 0 for all 
Oi. A different sufficient condition is this: some outcome gets a non-zero likelihood from each hypothesis — 
i.e. an Oi makes Q�[Oi | Hk] > 0 for all Hk. These two conditions are each special cases of a much weaker 
condition, which is spelled out in the Appendix. The Appendix also contains a proof of this result.  



 12

 

retain the values they had for the earlier belief function, where the likelihoods were (assumed to be) public. 
The problem is that in general the agent’s original belief-strength likelihoods might well not be public. The 
point of the above discussion is to show that even if they were objective or public, updating would change the 
likelihoods, destroying whatever objectivity they had. Furthermore, even in cases where an earlier belief 
function had public likelihoods, additional updates on other evidence will usually change the values of the 
posterior-probability-belief-strengths. (That’s the point of gathering evidence, isn’t it?) After that happens, the 
posterior-probability-belief-strengths loose all apparent relationship to any earlier public belief-strength-
likelihoods there may have been.17  
 Consider a further effect of this kind of uncertain updating of evidence claims. In a given confirmational 
context, due to their individual experiences, different agents each have somewhat different partial evidence for 
evidence claims Oi; so, each updates his belief strengths in the Oi differently. Thus, even if these agents start out 
with the same likelihoods for the possible evidence claims, the values of their current degree-of-belief 
likelihoods will come to disagree. Then, when outcome Oj is finally ‘observed’ and the agents all become 
certain of it, each agent must employ his own personal current belief function likelihood for Oj to update his 
belief strengths for the hypotheses. This makes a hash of the usual view of Bayesian confirmation, where 
likelihoods are supposed to be public, and where the only significant disagreement among agents is supposed 
to be over prior probabilities. 
 
4.4 Counterfactual belief-strengths? 
 Section 4.1 described the standard problem of old evidence. The most prominent Bayesian response to this 
problem is that to see the influence of old evidence on a hypothesis we should employ some alternative 
degree-of-belief function — not the agent’s current belief function. As Howson and Urbach explain it, we 
should employ a counterfactual degrees-of-belief function that gauges the support of H by E, ‘…according to 
the effect which one believes a knowledge of E would now have on one’s degree of belief in H, on the 
(counter-factual) supposition that one does not yet know E.’ (1993, pp. 404-5) 
 Howson and Urbach acknowledge that there will often be no uniquely correct way to subtract E from the 
agent’s current stock of knowledge; so there is no uniquely correct counterfactual degree-of-belief function that 
expresses the proper effect of E on H. But, they claim, there will often be a ‘satisfactory’ way to subtract E 
from current knowledge. The idea is that in realistic cases a person’s total body of knowledge is the set of 
logical consequences of some set of sentences K, which are, in effect, the person’s axioms for her body of 
knowledge. And, they contend, E will often be an independent axiom of K. When this is the case, K−{E} picks 
out the revised stock of knowledge uniquely. But, they admit, in cases where E is not an independent item in K, 
‘…we may just have to conclude that what the probability of E, and of E given H, would be, were one 
counter-factually assumed not to know E, is not defined. But that such counter-factually based probabilities do 
not always exist should not blind us to the fact that in many cases they do, and consequently that in many cases 
support relative to known evidence is also perfectly meaningful.’ (1993, p. 406) 
 Howson and Urbach’s attempt is valiant, and I would welcome it as an explication of degree-of-support 
functions, if it worked. But I don’t think that it can work. With regard to the standard problem of old evidence, 
even if E is an independent member of K, simply removing it doesn’t tell us what the revised, counterfactual 
belief function CFQ� should be. Whereas Q�[E] = 1, CFQ�[E] should be less than 1; but what should its value 
be? And what value should CFQ�[H] and CFQ�[E | H] have if we remove E from K? Howson and Urbach give 

                                                      
17 That is, after updating the belief strengths of the Oi by first updating from Q� (whose likelihoods are public) 
to Q�-new (whose likelihoods are not public), the values of Q�-new[Hk | Oi] still agreed with the values of 
Q�[Hk | Oi], which are the values one would have gotten from the public likelihoods. But additional updating on 
other, unrelated evidence will usually make the most current belief function, Q�-newest exhibit a quite different 
posterior probability — e.g. on learning that D, Q�-newest[Hk | Oi] = Q�−new[Hk | Oi·D] ≠ Q�−new[Hk | Oi] = 
Q�[Hk | Oi]. So, at that point the agent’s current belief function likelihoods are no longer public, and her 
posterior probabilities for her current belief function, Q�-newest[Hk | Oi], no longer have the same values she 
would have gotten from the belief function Q� by employing public likelihoods. 
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us no guidance on this. I suppose the idea is that once the agent moves to a stock of knowledge where the 
degree of belief in E is less than 1, everything else will fall into place. Her counterfactual-belief-likelihoods 
CFQ�[E | H] will automatically assume appropriate public values. 
 In response to this proposal I first want to point out that in many cases we seem able to assess the values of 
likelihoods perfectly well without considering whether E is an independent axiom of our stock of knowledge. 
And it seems to me that in many cases where we do know the appropriate likelihoods, E is not an independent 
axiom of our current stock of certain knowledge. So it seems rather implausible that our likelihoods are gotten 
by removing E from a stock of knowledge, and then assessing the resulting belief strengths. 
 Worse yet, the problems of old disjunctively-entangled evidence and of old uncertain evidence show that 
simply making CFQ�[E] less than 1 (e.g. by removing E from K) will not generally leave the likelihoods 
CFQ�[E | H] sufficiently unconstrained to permit them to assume the appropriate public values. Section 4.2 
shows that if the agent is certain of almost any contingent claim of form ‘(E∨D)’, and if this claim remains 
certain for her counterfactual belief function, then the counterfactual likelihood cannot take on the public value 
it might otherwise have. (And contingent claims of form ‘(¬E∨D)’ cause similar problems.) So, if the 
counterfactual belief function idea is to work, then, at the very least, the agent must remove all disjunctive 
sentences (and material-conditional sentences) involving E from her stock of knowledge as well. But, as 
Howson and Urbach point out in the case of removing E, this may work only if all such conditional claims 
occur as ‘independent axioms’ in K. It seems doubtful that this is often the case. 
 If the problem with conditional entanglements isn’t bad enough, the problem of old uncertain evidence 
makes matters almost impossible for the counterfactual belief function idea. If the counterfactual likelihood, 
CFQ�[E | H] is to take an appropriate public value, then the counterfactual probability must be based on a stock 
of knowledge from which all information relevant to E has been removed, and this must be done in a way that 
leaves the rest of the stock of knowledge intact. It would be difficult enough to do this for all propositionally 
expressible knowledge D that bears on E. But we must also remove any non-propositional knowledge or 
experiential influences that make the degree of belief in E different than it would be in the absence of such 
knowledge or influences. How are we to do that? 
 It looks like we are left only with the following strategy: if the agent knows the objective or public values 
that likelihoods should have, then she is to select a counterfactual belief function that gets the likelihoods right. 
That is, we simply legislate that the counterfactual likelihoods CFQ�[E | H] are to take on the public values we 
know they should have. Perhaps the agent is to consider the closest world in which her likelihoods have the 
right values, and her counterfactual belief function should then assign probability 1 to all of the knowledge she 
would still have at that world. But in order to take advantage of this strategy the agent must already have the 
objective or public likelihoods at her disposal, independently of the counterfactual belief function she is 
supposed to construct. And, to the extent that she already has access to the public likelihoods, she has the 
essential part of a degree-of-support function already at hand. 
 The idea that likelihoods are counterfactual belief strengths looks by now like quite a stretch. And it seems 
psychologically unrealistic as well. We don’t seem to actually determine likelihoods by stripping away 
interfering information from our body of knowledge, adding H to whatever remains, and then figuring out how 
much confidence we would have in E. So, public or objective likelihoods are not based on counterfactual belief 
strengths either in principle or in fact. But we do often seem to have objective or public likelihoods available to 
us, especially in the sciences. And the empirical objectivity of the sciences apparently demands them. 
 
5. Why Bayesian confirmation requires both functions 
 
 I think that support functions are best understood as a kind of logical or quasi-logical probability. But 
unlike the kind of logical function championed by Keynes and Carnap, it does not depend only on the 
logical structure of sentences. Clearly logical form alone cannot dictate appropriate probabilities of all 
statements. Rather, the likelihoods seem to be logical or quasi-logical in a sense somewhat analogous to 
the sense in which the ‘analytic entailment’ of some sentences by others is logical. Likelihoods represent 
the empirical content of hypotheses — what the hypotheses say about the evidence — rather than what 
an agent is supposed to believe when the hypothesis is added to everything else she believes. 



 14

 

 However, this interpretational issue is not the most important point I’m trying to make. My central 
contention is that a proper Bayesian model of scientific inference should represent agents as possessing 
two distinct probability functions. The first function represents the agent’s total doxastic state — his 
current belief-strengths for statements, based on everything he knows. This is the function that Bayesians 
associate with decision-making. The main goal of scientific inquiry is to update this function, with the 
aim of ultimately producing high belief strengths for true hypotheses and low belief strengths for false 
ones. I maintain that in scientific contexts the updating of this function is mediated by a second, more 
static function that represents objective or public likelihoods. In this section I want to further press the 
argument for this two-function model. I hope to convince you of this, regardless of whether you buy my 
conception of the second function as logical or quasi-logical. So, for present purposes I want to 
disentangle the primary point about the need for the two-function model from my view about the logical 
nature of support functions. Thus, for now you may take a support function to be some kind of ‘second 
belief function’ — e.g. a ‘counterfactual’ belief function — if you wish. 
 My main contention is that in order to adequately model how belief strengths for hypotheses are 
influenced by evidence in scientific confirmational contexts, Bayesians need to supplement the usual 
current-belief-strength functions with a second probability function that maintains objective or public 
(perhaps counterfactual) likelihoods. I will spell out the formal details of how, on this two-function 
model, support functions should inform belief functions in the next section. But here I will further press 
the point that an adequate Bayesian model of how belief is altered by evidence in scientific contexts 
requires a role for support functions. Indeed, it would be nearly impossible for science to proceed as it 
does without drawing on something very much like support function likelihoods. 
 
5.1 Modeling scientific practice 
 When new evidence becomes available, real scientific agents (regardless of whether they are 
Bayesians) do seem to draw on objective or public likelihoods, shared by the scientific community, to 
assess how strongly they now believe hypotheses based on that evidence. But, I have argued, these public 
likelihoods cannot normally come from an agent’s present or past actual belief function (if he has such a 
thing), because those likelihoods are plagued by old evidence problems. So the likelihoods on which 
hypotheses are evaluated must be carried by a second function, which I call a support function. 
 A traditional subjectivist Bayesian might respond to this point as follows: 

 
Sure, real scientists tend to appeal to public likelihoods. But there is no very good reason for 
scientific Bayesianism to model this particular facet of scientific practice. Standard Bayesian 
kinematics — i.e. the process of updating on new information D via the algorithm Q�-new[S] = 
Q�[S | D], for all sentences S — shows how successive updates may occur through direct 
transformations from one current belief function to the next, with no need to appeal to a second, 
supporting probability function. The conditional probability Q�[S | D] on which the update of �’s belief 
strengths are based need only employ �’s current belief function likelihoods; and that’s all � needs in 
order to perform her Bayesian update, regardless of whether these likelihoods are objective or public. 
So the Bayesian approach doesn’t really need this second function to account for the updating of 
belief. Why not stick with standard kinematics? Why bring this second probability function into 
Bayesian belief updating? 
 

 I want to say several things in answer to this point. First, don’t get me wrong. I’m not claiming that 
the standard updating kinematics necessarily gives the wrong values for updated current belief functions. 
The kinematics of updating via support functions that I’m proposing should (under normal 
circumstances) result in precisely the same updated current belief functions as standard kinematics, but 
through a different, more realistic algorithm.18 Indeed, standard kinematics is in some ways more general 

                                                      
18 Isn’t that exactly how ‘counterfactual’ probabilities are supposed to behave? Isn’t the application of an 
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than support function kinematics in that the standard approach applies to updates of individual belief 
functions even in cases where there are no underlying (counterfactual) support functions to tie together 
the belief functions of diverse agents.19 The requirement that the agents in a scientific community update 
their belief functions in accord with their underlying support functions places additional constraints on 
the agents’ belief functions. That is, much as the axioms of probability place coherence constraints on an 
individual agent’s rational belief strengths, the requirement that the belief function of each agent in a 
given scientific community is tied to an underlying support function that shares likelihoods with the 
support functions of other agents places additional coherence constraints on his rational belief strengths. 
 What do I mean by the claim that updating mediated by support functions employs a ‘more realistic’ 
updating algorithm than standard Bayesian kinematics? Suppose scientists were to actually update belief 
strengths for hypotheses by following the standard kinematics process. The only likelihoods they would 
employ in belief updating would be their current belief function likelihoods. And, as we’ve seen, these will 
seldom maintain objective or public values. So, when various scientists disagree about the likelihoods 
hypotheses impart to evidence claims, the proper attitude is simply, ‘that’s your likelihood value, and here’s 
mine.’ That is, if the usual story were right, the only relevant discussion among scientists about the values of 
likelihoods would concern whether each agent’s likelihood values fit coherently with the other personal belief 
strengths he has at the moment, and whether his updates from previous belief functions have been carried out 
properly. But this is not how real scientists behave, nor is it how they should behave. Rather, when scientists 
disagree about the likelihood values imparted by hypotheses, they usually try to convince one another about 
what the appropriate (counterfactual) values should be. They do so because they take getting the likelihoods 
right, and public, to be central to the way evidence is used to update beliefs about hypotheses in the sciences. 
 If scientists actually updated their belief-strengths for hypotheses according to the standard kinematics 
story, imagine how the discussion might go at a scientific conference where a new experimental or 
observational result O is first announced. You might overhear a snippet of �’s conversation with her colleague � 
that runs like this:  
 

Great news that they’ve observed O! This result changes my confidence in H1 quite a bit, since my most 
recent likelihood for O on H1 was Q�[O | H1] = .9 while my most recent likelihood for this result on H1’s 
strongest competitor, H2, was only Q�[O | H2] = .2. How about you, �? How likely was O according to H1 
for you, and how likely did you take O to be on H2? Were your likelihoods for these two hypotheses also 
different enough for O to count as significant evidence for H1 over H2? … Or, was O perhaps more likely 
on H2 than on H1 for you? 

 
That is, when it comes to the updating of belief-strengths for hypotheses, standard Bayesian kinematics can 
only draw on consideration of your likelihood and my likelihood. But in reality scientists often use common, 
publicly agreed (counterfactual?) likelihoods in the updating of their belief strengths. Indeed, if each scientist 
had only his own personal likelihoods, and they tended to disagree widely with the likelihoods of others, 
conducting empirical research and publishing it would hardly seem worth the investment of time and resources. 
 Standard kinematics is not even close to how real scientific agents update belief strengths for 
hypotheses; and there is no good reason to think that they should proceed that way. Rather, real agents 
update by appealing directly to support function likelihoods, or something very much like them. It should 

                                                                                                                                                                           
agent’s ‘counterfactual’ probability function to all evidence used in the sequence of standard updates 
supposed to result in the same current belief function he arrived at through the standard update 
sequence? 
19 However, support function kinematics does have some advantages. For instance, standard updating 
fails for cases where the agent changes his mind about the evidence and wants to retract some previous 
update. It can be shown that current belief functions have no ‘memory’ of the previous belief functions 
from which they came — so a one-function model doesn’t permit retractions. But the support-function 
update model handles retractions easily. 
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be quite apparent that this is at least implicitly how its done, since: (1) the public likelihoods real agents 
often use cannot (on pain of the old evidence problems) generally be current belief function likelihoods; 
and (2) agents in scientific confirmational contexts almost never compute current belief function 
likelihoods, much less use them to update their current belief functions on additional evidence. So, while 
I concede that the usual Bayesian kinematics story about getting each successive current belief function 
from the previous current belief function could be carried out in principle, I contend that this story is far 
removed from what real agents actually do, or should do, when updating their beliefs regarding scientific 
hypotheses. Thus, the two-function model of Bayesian belief formation, which draws on 
support-functions, is well worth pursuing in more detail. 
 
5.2 Bayesian networks 
 Before turning to a discussion of the formal workings of how support functions should inform belief, 
one more point is worth thinking about. Let’s consider how automated Bayesian networks are employed 
by real agents to determine appropriate belief strengths for hypotheses. Any automated Bayesian 
network, say a network designed to aid physicians in diagnosing patients on the basis of symptoms and 
test results, is essentially a network of objective or public (‘counterfactual’, if you insist) likelihoods. 
Physicians who use such a system accept the likelihoods built into it as having correct, publicly agreed 
values. Why else would a whole medical community be willing to employ the same network system 
(together with each patient’s symptoms and test results) to assess appropriate belief strengths for disease 
hypotheses about their patients? 
 Notice that the support function built into a Bayesian diagnostic system cannot (on pain of old 
evidence problems) itself be intended to represent the physician’s current belief function about her 
patient. Rather, the built-in support function is a logical tool that aids the agent in fleshing out her 
personal belief-strengths. Based on her own observation of the patient and on reports from lab tests, the 
physician comes to believe evidence claims about the patient’s symptoms and test results. On a Bayesian 
model, the physician’s belief-strengths for evidential claims are part of her current belief function. (In 
general the physician need not be certain of the symptoms and test results. Well-designed Bayesian 
network systems should have a built-in version of Jeffrey updating to handle uncertain evidence. See 
Jeffrey’s (1991) and Hawthorne (2004a) for more details.) However, it is not easy for the physician to 
ascertain what her current belief strengths should be for all of the various possible diagnostic hypotheses 
about her patient. To do so she would need to internalize the textbook values of likelihoods connecting 
the various possible diseases to symptoms and test results, and then perform a lot of calculation. That’s 
where the automated system comes in. She uses its support function, with its built-in textbook 
likelihoods, which she accepts as her own support function, to help her ascertain what her current belief 
strengths for disease hypotheses should be. 
 An automated Bayesian network typically operates by maintaining two distinct probability functions. 
It maintains the original network support function, the one with the public likelihoods, and it maintains a 
current belief function, which represents the belief strengths the system recommends as appropriate on 
the totality of the evidence it has been given. When updating on new evidence, such systems never 
overwrite their original support function. Rather, the system continues to employ likelihoods from the 
original support function to perform each new update on additional evidence. Indeed, such systems 
almost never compute current belief function likelihoods — i.e., they don’t compute the likelihoods 
evidence claims would have if a disease hypothesis were added to everything else currently believed by 
the system with certainty. They could do so; but users seldom care about the values of these likelihoods. 
Such likelihoods are neither particularly useful to the agent, nor are they needed for use by the system. 
Rather, with the right algorithm, the original support function likelihoods suffice for all updating; and 
they turn out to be absolutely essential to updating in cases where the agent changes her mind about some 
bit of evidence, and wishes to retract a previous update. 
 Automated Bayesian networks generally have built-in prior probabilities for the various disease 
hypotheses, which represent the base rates of diseases in the general population. But before evidential 
updating begins, the system my permit the physician to override its built-in priors. She may input her 
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own prior probabilities for disease hypotheses — those she considers appropriate to her particular 
patient, based on information about his risk group. The physician then inputs her current belief strengths 
(usually certainties) about the presences of symptoms and test results. The system responds by computing 
updated current belief strengths of its own for the various disease hypotheses, based on its objective 
likelihoods. When the physician has entered into the system all of the relevant evidence she knows about 
her patient, she may then adopt the system’s updated belief strengths as her own. 
 Bayesian subjectivists often treat counterfactual belief strengths as though they are only useful 
retrospectively, to show how some pieces of old evidence may count as support for a given hypothesis. 
On the standard model of Bayesian kinematics this is all that counterfactual belief functions are good for. 
But that model does not accurately reflect how real agents who employ automated Bayesian networks 
proceed. And it does not reflect how real agents proceed in scientific confirmational contexts more 
generally. In many contexts the scientific community is in wide agreement about what hypotheses or 
theories say or imply about various evidence claims, and thus about the appropriate values for support 
function likelihoods. When such likelihoods are available, scientists generally appeal to them to update 
their belief functions. Thus, if support functions are counterfactual belief functions, then counterfactual 
belief should play a central role in the Bayesian model of how evidence informs scientific belief. 
 
6. The belief-support connection 
 
 Let us suppose that each member of a community of Bayesian agents possesses both a belief function 
and a support function. Presumably the degree to which the evidence supports a hypothesis, as 
represented by the agent’s support function, should govern her belief strengths for hypothesis. Exactly 
how is this supposed to work? I will address this issue directly in a moment. But I think the answer will 
make better sense if we first attend to the nature of the agents we are discussing. 
 Ideal Bayesian agents are components of a formal model of probabilistic inference and decision. In such 
models we describe these agents in terms of their utility functions, belief functions, support functions, etc., and 
in terms of how these functions transform through updating on new information. Like all formal logics, the 
logic of such Bayesian models is normative. Bayesian logicians try to show that the ideal agents of their models 
gain certain benefits (e.g. they avoid Dutch book), and suggest that real agents may gain similar benefits 
through emulating the logic of their ideal brethren. 
 The agents in the following discussion are such Bayesian idealizations. I will proceed by constructing a 
formal model of scientific inference and belief that shows how support functions should inform the belief 
strengths of ideal Bayesian agents. Then I’ll point out properties of this model that make it worthy of emulation 
by real agents. 
 
6.1 Support functions and empirical contexts 
 Agents seldom share a support function. For they often disagree over the prior plausibilities of 
hypotheses. But all who understand the empirical import of hypotheses in the same way will possess 
identical (or nearly identical) support function likelihoods. More specifically, let us say that any two agents � 
and � share an empirical context for hypothesis partition {H1, H2, …}, background B, and observation 
conditions C1, …, Cn, …, with respective outcome partitions {O1u}, … ,{Onv}, …,  just in case for each 
possible sequence of outcomes from the partitions, they agree on the values of support function likelihoods — 
i.e., P�[O1u·…·Onv | Hi·B·Cn] = P�[O1u·…·Onv | Hi·B·Cn] = P[O1u·…·Onv | Hi·B·Cn]. For example, all physicians 
who employ the same Bayesian network share the same likelihoods, which are built into the network. So 
they share an empirical context even if each is permitted to input different prior plausibility assessments 
for disease hypotheses. 
 Bayes’s theorem says that support-function likelihoods together with an agent’s prior plausibility 
assessments for hypotheses, P�[Hi | B], determine how strongly for her a hypothesis is supported on the 
evidence, P�[Hi | B·Cn·O1u·…·Onv]. We might well call this her posterior plausibility assessment for the 
hypothesis on the evidence. I think we have a good handle on where the numerical values of likelihoods or 
likelihood ratios that contribute to posterior plausibilities are supposed to come from. But perhaps it will be 
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helpful to say a bit more about how an agent may assess numerical values for prior plausibilities. 
 To understand the numerical values for priors more fully, consider the following method by which an agent 
might make such assessments. She first chooses a hypothesis to use as a basis of comparison. Any hypothesis 
in the empirical context will do; but a hypothesis she takes to be highly plausible, perhaps the most plausible, 
will do very nicely. Suppose she chooses H1. Then, discounting all information she has that can be screened off 
by possible evidence claims from the evidence partitions in the empirical context,20 but taking into account the 
weight of all of the various plausibility considerations she regards as relevant, she assesses how many times 
more or less plausible than H1 she considers each alternative hypothesis to be (given B). This yields, for each 
alternative hypothesis Hj, a number rj for the ratio P�[Hj | B]/P�[H1 | B]. And that’s it. The prior probabilities 
themselves are just a way of re-describing these prior plausibility ratio values.21 Similarly, posterior 
plausibilities for hypotheses are just re-descriptions of posterior plausibility ratios. Indeed, the whole Bayesian 
evaluative enterprise may be understood in terms of probability ratios (as equation 2-4 of section 2 make clear). 
The posterior plausibility ratios are gotten by multiplying prior plausibility ratios by likelihood ratios. 
 Agents have a great deal of discretion in assigning prior plausibility (ratio) values. But there are constraints 
of a sort. If, as evidence accumulates, the likelihood of the evidence on Hi is much greater than on Hj but the 
agent’s posterior plausibility for Hi on this evidence is much smaller than for Hj, then the agent must consider 
Hi far more plausible prior to the evidence than Hj. Such an assessment may be perfectly legitimate. But, when 
agents in a community that shares an empirical context disagree enough about priors to resist the evidential 
influence of the likelihood ratios, they may be expected to give some rationale, some plausibility arguments for 
their relative plausibility assessments. 
 Individual agents may not be confident in assessing precise values for priors. But this presents no problem. 
An individual’s imprecise values may be represented by a set of probability functions that covers the range of 
priors she would find acceptable. The set of priors that represent the variety of plausibility assessments for all 
members of a community of agents will be larger still. Thus, a community of Bayesian agents may be 
characterized by a wide-ranging set of prior plausibility assessments for the hypotheses of a context. 
 Plausibility arguments and the resulting assessments of priors are particularly important when the evidence 
is not yet sufficiently strong to distinguish among hypotheses, especially when hypotheses appear to be 
evidentially indistinguishable.22 However, when the true hypothesis differs from its rivals in what it says about 
the likelihoods of possible observations, an extremely wide range of prior plausibility assessments will very 
probably be overwhelmed by the accumulating evidence; and the community of agents will be brought to near 
agreement on posterior plausibility values — near 1 for the true hypothesis and near 0 for its competitors. This 
will happen even if agents revise their prior plausibilities from time to time — i.e. even if an agent switches 
from one support function to another due to a reassessment of the prior plausibilities of hypotheses — provided 
that the true hypothesis is not continually discounted by revising its prior ever downward, approaching zero. 
The Likelihood-Ratio Convergence Theorem discussed in section 2 assures us of this. So, where evidentially 
distinguishable hypotheses are concerned, assessments of priors may only exert a significant influence in the 
short run. This is one of the important benefits that accrue to Bayesian agents who employ support functions to 
govern the updating of their belief-strengths. 
 
6.2 Precisely how support should inform belief 
 Suppose that the members of a community of Bayesian agents share a common empirical context. 

                                                      
20  In assessing Hj’s prior plausibility, any information that can be covered by the evidence partitions must be 
discounted. Otherwise this information will be double-counted when evidence is brought to bear — both 
as contributing to the priors and as evidence for hypotheses. 
21 I.e., the values of the priors are supposed to sum to 1; and for each Hj other than H1, P�[Hj | B] = rj· P�[H1 | B]; 
so we have 1 = �i P�[Hi | B] = P�[H1 | B]·(1+�j rj); thus, P�[H1 | B] = 1/(1+�j rj) and P�[Hj | B] = rj /(1+�j rj). 
22 Consider, for example, arguments offered by proponents of various interpretations of quantum 
mechanics. Such plausibility arguments are seldom conclusive. But they may eliminate some views and 
provide some basis for agents’ plausibility rankings among those that remain. 
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Intuitively, each agent’s belief strength for a hypothesis should just be the degree to which the hypothesis is 
supported, according to her support function, by the totality of the evidence she has acquired together with 
whatever prior plausibility considerations she finds relevant. This is the scientific way for an agent to reason — 
it’s the epistemic point of the scientific enterprise. 
 This idea, that a scientific agent’s belief function should be governed in some way by a separate support 
function, is not entirely new. Carnap (1971) embraces a version of it, and Skyrms (1986) largely concurs, but 
suggests that the Carnapian account be extended to uncertain evidence. Carnap and Skyrms both describe two-
function versions of the now standard Bayesian update model. On this model the ideal agent begins (at birth?) 
with a support function. The agent’s initial belief function is his support function conditional on a tautology: 
Q�-initial[S] = P�[S | A∨¬A], for all statements S. Carnap seems to think that P� should be a Carnapian logical 
probability function, but Skyrms apparently sees no need for that. In any case, beginning with Q�-initial, as the 
agent learns each new bit of evidence E1, ..., En, he updates his belief function on that evidence as follows: if at 
a time t this is his total evidence, then his belief function should be Q�-t[S] = P�[S | E1·…·En]; and if at time t+1 
he becomes certain of new evidence En+1, his new belief strengths becomes Q�-t+1[S] = Q�-t[S | En+1] = 
P�[S | E1·…·En·En+1]. This is an adaptation to a two-function model of a now fairly standard diachronic 
Bayesian model of belief updating. Skyrms adds to this the suggestion that if the Ei are not believed with 
certainty, but the agent possesses some information about each of E1, ..., En, En+1, in that order, and possesses no 
information about other evidence claims, then Jeffrey updating should apply: Q�-t+1[S] = �{En+1} Q�-t[S | En+1] · 
Q�-t+1[En+1], where the sum is over Ek+1 and each of its possible alternatives. It turns out that the right way to 
pound this down to the founding support function is this: Q�-t+1[S] = �{En+1}…�{E1} P�[S·E1·…·En·En+1] · 
(Q�-1[E1]/P�[E1]) ·…· (Q�-t+1[En+1]/Q�-t[En+1]), (see Hawthorne, 2004a). When S is a hypothesis H for which there 
are objective or public likelihoods, this updating scheme may also be written as follows: Q�-t+1[H] = P�[H] · 
�{En+1}…�{E1} P[E1·…·En·En+1 | H] · (Q�-1[E1]/P�[E1]) ·…· (Q�-t+1[En+1]/Q�-t[En+1]). 
 Pretty as this picture is, it is not the most general account of how support should constrain belief in a model 
of scientific agents. For one thing, it supposes that each agent must stick with a single founding support 
function, and must only update it in the standard Bayesian or Jeffrey way. This may be an accurate account of 
how agents usually employ automated Bayesian networks. But it is a poor model of how scientist behave, or 
should behave. In particular, scientific agents should be free to reconsider their initial plausibility assessments 
from time to time as new plausibility arguments are introduced, and previous arguments are reevaluated. This 
seems a natural part of the conceptual development of a science. The Bayesian model of belief revision should 
accommodate this kind of updating, rather that rule it out of bounds. 
 Recently Marc Lange (1999) has suggested an alternative way of looking at the standard model of 
Bayesian updating. Lange’s idea is that the standard Bayesian updating scheme is best thought of not as a 
diachronic account of how agents should update their belief functions over time, but rather as a synchronic 
model of how an agent should justify his present belief strengths. The idea is that at any given time an 
agent should be prepared to provide justifying arguments for her present belief strengths for hypotheses. 
Such arguments should begin by citing a support function, which presumably has public likelihoods and 
some plausibility arguments for the selection of prior probabilities (though Lange doesn’t say much about 
this). From there a justificatory argument proceeds in a way that looks formally just like standard 
Bayesian updating. On Lange’s account each ‘update step’, Q�-t+1[S] = Q�-t[S | En+1], is taken to be a step in 
an argument that begins with the initial support function and adds in evidence piece by piece until all 
known relevant evidence has been added. The end result should be the agent’s current belief function, 
which has now been provided a justifying Bayesian argument. 
 I agree with what I take to be the core idea in Lange’s treatment — that a Bayesian support function 
should be the basis on which an agent’s belief strengths for scientific hypotheses are (synchronically) 
justified. The primary role of a support function in the two-function model I am proposing is to 
underwrite and justify the agent’s belief strengths for hypotheses. However, Lange also takes the step-by-
step process of ‘updating’ by adding in individual bits of evidence to be central to his account of the 
justificatory argument for an agent’s belief function. I see no need to draw on this in my account of the 
support-belief connection. Rather, as I see it, the justificatory argument may just as well come in a single 
step. Roughly, if Q�[Cn·En] = 1 and if this is the total evidence relevant to Hi and its alternatives on which � is 
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certain, then the agent’s belief function should be aligned with his support function on this evidence as 
follows: for each hypothesis, Q�[Hj | B·Cn·En] should equal P�[Hj | B·Cn·En] on this evidence. It then 
immediately follows that Q�[Hj | B] = P�[Hj | B·Cn·En]; and furthermore, if Q�[B] ≈ 1, then Q�[Hj] ≈ Q�[Hj |B].23  
 This idea works fine if all evidence is believed with certainty. But, as I argued earlier, we often 
possess some evidence for our evidence — i.e. we often possess uncertain evidence and 
disjunctively-entangled evidence. So a full account of how support informs and justifies belief should take 
uncertain evidence into account. Spelling out the details of how this should work is a bit more complicated. 
 I think it will prove helpful if we first spell out the above idea, which applies only to certain evidence, 
more formally. This should help elucidate the somewhat parallel treatment of uncertain evidence that follows. 
To first approximation a scientific agent’s support function should inform her belief function according the 
following rule: 
 

Approximate Belief-Support Alignment Condition: � is belief-support aligned (at a time) for a 
sequence of evidential conditions Cm of an empirical context just in case (at that time): 
(1) � considers one of Cm’s outcome sequences, (O1u·…·Omv), to be certain, given B·Cm (i.e. 

Q�[O1u·…·Omv | B·Cm] = 1), and �’s belief function Q� agrees with her support function P� on the 
posterior probabilities of hypotheses in the empirical context — i.e. Q�[Hi | B·Cm·O1u·…·Omv] = 
P�[Hi | B·Cm·O1u·…·Omv]; and 

(2) there is no more inclusive sequence of possible evidence, Cn, such that � considers one of its 
outcome sequences (O1u·…·Onv) to be certain, given B·Cn. 

 
This is just a more formal account of the idea stated two paragraphs back. Notice that when this condition is 
satisfied, the following formula follows: 
 

Approximate Belief-Support Connection Formula: For the Cm on which � is belief-support aligned 
and for its outcome sequence on which � is certain, given B·Cm (i.e. Q�[O1u·…·Omv | B·Cm] = 1), Q�[Hi | 
B·Cm] = P�[Hi | B·Cm·O1u·…·Omv]. 
Furthermore, if � is certain of Cm, then Q�[Hi | B] = P�[Hi | B·Cm·O1u·…·Omv]; and if � is certain of both 
B and Cm (or nearly certain of them), then Q�[Hi]  = P�[Hi | B·Cm·O1u·…·Omv] (or approximately so). 

 
 That would be all there is to it if agents never had partial evidence for evidence statements. But agents 
seldom find themselves in such an epistemically pristine state. To handle uncertain evidence, the right way for 
support to inform belief is roughly this: the agent’s belief strength for a hypothesis should be the weighted sum 
of the degrees to which each possible evidence sequence supports the hypothesis, weighted by the agent’s 
belief strengths for each of those possible evidence sequences. I’ll now spell out this idea more precisely. 
 Let us say that an agent � is belief-support aligned (at a time) for a given empirical context just in case 
each possible sufficiently long sequence of outcomes would, if conditionalized on, suffice to bring the agent’s 
belief function into agreement with her support function on the posterior probabilities of hypotheses in the 
empirical context. More formally: 
 

Belief-Support Alignment Condition: � is belief-support aligned (at a time) for a sequence of 
evidential conditions Cm of an empirical context just in case (at that time): 
(1)  for each of Cm’s outcome sequences (O1u·…·Omv) that � considers possible, given B·Cm (i.e. 

whenever Q�[O1u·…·Omv | B·Cm] > 0), �’s belief function Q� agrees with her support function P� on 
the posterior probability of hypotheses in the empirical context — i.e. Q�[Hi | B·Cm·O1u·…·Omv] = 
P�[Hi | B·Cm·O1u·…·Omv]; and 

(2) for each more inclusive sequence of evidence conditions Cn and each of its outcome sequences 
(O1u·…·Onv) that � considers possible, given B·Cn, �’s belief function Q� continues to agree with 

                                                      
23 This corresponds to what Skyrms (1986) calls the Certainty Model. 
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her support function P� on the posterior probabilities of hypotheses in the empirical context — 
i.e. Q�[Hi | B·Cn·O1u·…·Onv] = P�[Hi | B·Cn·O1u·…·Onv]. 

(3) no less inclusive subsequence of the evidence conditions in Cm satisfies both conditions (1) and (2).  
 
This alignment condition does not presuppose that the relevant possible outcome sequences, (O1u·…·Omv), are 
believed with certainty by the agent (though some or all of the outcomes Ojk may be certain for �). Rather, the 
idea is that each of these possible outcome sequences would be informationally complete enough to effectively 
override all of the evidential information, including partial information, the agent possesses that is relevant to 
the hypotheses under consideration. 
 What does it mean for a possible outcome sequence to be informationally complete enough to override the 
agent’s evidential information? (i) Suppose the agent is certain of outcome Ojk. Then each of the aligning 
possible outcome sequences considered possible by � must contain Ojk. (ii) Suppose the agent is not certain of 
Ojk, but is certain of a disjunctive sentence of form (Ojk∨D), where Ojk is considered possible by �. Then among 
the possible aligning outcome sequences will be those containing Ojk; and they override the information 
‘(Ojk∨D)’ because they entail it. In addition, any sequence containing an alternative to Ojk, say Ojl, will also 
override ‘(Ojk∨D)’ because it entails ‘¬Ojk’ (which together with ‘(Ojk∨D)’ entails D, which entails (Ojk∨D)). 
(iii) Finally, suppose that the agent has partial information of some other kind for Ojk — e.g., evidence for Ojk 
that makes Ojk a kind of uncertain evidence for the hypotheses. Then each outcome sequence that contains Ojk 
itself or contains one of its alternatives will override whatever partial information may be relevant to Ojk.  
 Another way of thinking about the general Belief-Support Alignment Condition is this. The condition 
effectively says that were the agent to become certain of any one of the outcome sequences of aligning 
condition Cm, but acquired no other information of relevance to the hypotheses, then her updated belief 
function, Q�-new[*] = Q�[* | O1u·…·Omv], would satisfy the Approximate Belief-Support Alignment Condition. 
The Approximate Belief-Support Connection Formula would then follow for that sequence of outcomes. 
 How should support inform belief under alignment when the agent is not certain of any single outcome 
sequence of the aligning condition Cm? The obvious idea is that belief should conform to the expected value of 
support — i.e. belief should correspond to the weighted average of the amount of support a hypothesis receives 
from each possible aligning outcome sequence, weighted by how strongly the agent believes each of the 
aligning outcome sequences. To see how this works, first notice that it is a theorem of probability theory that 
Q�[Hi | B·Cn] = �u …�v Q�[Hi | B·Cn·O1u·…·Onv] · Q�[O1u·…·Onv | B·Cn]. So, when an agent is belief-support 
aligned with respect to the possible outcomes of Cm, the next formula follows as a theorem: 
 

The Belief-Support Connection Formula: For the Cm on which � is belief-support aligned, 
Q�[Hi | B·Cm] = �u …�v P�[Hi | B·Cm·O1u·…·Omv] · Q�[O1u·…·Omv | B·Cm]. 
Furthermore, if � is certain of Cm, then Q�[Hi | B] = Q�[Hi | B·Cm]; and if � is certain of both B and Cm 
(or nearly certain of them), then Q�[Hi]  = Q�[Hi | B·Cm] (or approximately so).24 

 
 When alignment holds, the belief-support connection formula is a generalization of the traditional 
Bayesian total evidence requirement to cases where at least some of the evidence may be uncertain evidence. 
More specifically, the usual total evidence requirement says that an agent’s belief strength for a hypothesis 
should match the evidential support for the hypothesis by the totality of the agent’s certain evidence. And that 
is just what the approximate belief-support connection formula says. This would be right if, for each possible 
condition Ck, the agent is either certain of one of its possible outcomes, or has no information at all relevant to 
its outcomes. But agents often possess some inconclusive bits of evidence (or even just hunches) that alter their 
belief strengths in some of the possible outcomes of experiments or observations. When they do, the total 
evidence requirement as usually expressed misses out on some of the evidence that influences the agent’s belief 
strengths. Alignment together with the general connection formula extends the usual idea. It tells us that an 
                                                      
24 More generally, if B·Cn is uncertain, then there may be partitions of alternatives {Bv} and {Cu

n}. In that 
case we may have, Q�[Hi] = �v �u Q�[Hi | Bv·Cu

n] · Q�[Bv·Cu
n]. 
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agent’s belief strength for a hypothesis should match the evidential support for the hypothesis by the totality of 
the agent’s evidence, regardless of how certain that evidence is. 
 
6.3 The old evidence problems dissolve  
 The recognition of support functions as distinct from current belief functions, and of the connection of the 
two through alignment, dissolves the problems with old evidence. For, even if the agent is certain of E, so her 
belief function has Q�[E] = 1, it is her support function that measures the degree to which E supports Hi (given 
B·C). And her support function will not assign E support-strength 1 unless Hi and all of its alternatives yield 
degree-1 likelihoods for E. Thus, support functions provide a measure that satisfies the Bayesian intuitions 
about the basis of evidential support in public or objective likelihoods, and overcomes the old evidence 
problems that plague a Bayesianism that restricts itself entirely to current belief-strengths. 
 To see more precisely how the old evidence problems dissolve, consider the way in which Bayesians 
assess the degree to which individual pieces of evidence favor a hypothesis. To this end Bayesians have 
developed several measures of the incremental confirmation. Among the most prominent are the 
difference measure, Q�[H | B·C·E] − Q�[H | B], the ratio measure, Q�[H | B·C·E]/Q�[H | B], and the 
likelihood ratio measure, Q�[E | H·B·C]/Q�[E | ¬H·B·C]. However, whenever the belief strength of E 
changes, bringing about an update of Q� to a new belief function Q�-new, each of these measures of 
incremental confirmation, re-stated in terms of Q�-new, takes on a new value as well. For, each of these 
measures is sensitive to the agent’s current belief strength for E. Presumably, though, the amount of 
incremental confirmation that E affords Hi (given B·C) should not be sensitive to how strongly the agent 
happens to believe E at the moment Thus, couched in terms of current belief functions, none of these 
measures of incremental confirmation works properly. 
 This problem is easily overcome if we recognize the existence of support functions. Intuitively it 
makes better sense for incremental confirmation to be measured in terms of how much a specific 
evidential claim supports a hypothesis, not what the agent’s belief strengths regarding hypotheses and 
evidence claims happen to be at a given time. And agents’ support functions remain constant through 
evidential updating. So, when incremental confirmation is measured in terms of an agent’s support 
function, each of the proposed measures of incremental confirmation suggested above (with ‘P�’ in place 
of ‘Q�’) remains constant across belief updates.25 
 Taking support functions to be distinct from current belief functions also explains how the recognition of 
the appropriate public or objective degree-of-support likelihoods can result in new support for the hypothesis 
by evidence already known. Before these likelihoods are recognized, the empirical import of H for E remains 
vague for the agent. Formally, E does not belong to any of the evidence partitions included in the community’s 
present empirical context, and the various support functions represented in the context may disagree on the 
likelihood of E. When the objective or public likelihoods of E and its alternatives are acknowledged by the 
scientific community, the empirical context is expanded to include a new evidence partition, and only those 
support functions that take on the agreed public values for the likelihoods for that new partition are retained 
within the new empirical context. Then, alignment with the (restricted) support function for the extended 
empirical context, now informed by E, may change the agent’s belief strength for H.26 

                                                      
25 See (Fitelson, 1999) for an excellent comparative analysis of various incremental confirmation 
measures. 
26 In cases where the likelihoods for already known E are strictly logical (i.e. where either Hj·B·C 
logically entails E or where some proper account of direct inference completely specifies the appropriate 
likelihoods), the support function in the old empirical context must already specify precise values for the 
likelihoods. Even so, E and its alternatives may have escaped inclusion in the collection of evidence 
partitions in the empirical context because the relevance of E was not recognized — the logical 
relationship was overlooked. In such cases belief-support alignment based on that incomplete empirical 
context will fail to accord with the agent’s total available evidence, since E has been left out. Then, 
recognition of the logical relationship should bring about expansion to a new empirical context that 
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6.4 The benefits of alignment 
 Alignment provides a plausible model of the belief-support connection. And certain benefits accrue to 
agents who align in a shared empirical context. 
 Consider a community of agents who share an empirical context. Through the usual scientific process 
of acquiring and reporting evidence (authenticated through the usual review process), each of these 
agents may legitimately come to very strongly believe a sequence of true evidence claims that goes well 
beyond the evidence he might acquire on his own. Furthermore, Bayesian convergence results (such as the 
Likelihood Ratio Convergence Theorem described in section 2) say that as evidence accumulates, it becomes 
extremely likely that the true hypothesis will beat out each of its empirically distinct competitors in a 
contest of degree-of-support likelihood ratios. When this happens, the degree of support for false alternatives 
must fall towards zero, and the degree of support of the disjunction of the true hypothesis with its empirically 
equivalent rivals approaches 1. As a result, each aligned agent will come to strongly believe that the false 
empirically distinct alternatives are indeed false. And each such agent will come to strongly believe that the 
disjunction of the true hypothesis with its empirically equivalent rivals is true. Indeed, each aligned agent may 
come to strongly believe the true hypothesis itself if the community can find sufficiently probative plausibility 
considerations to lay low its empirically equivalent rivals. Thus, to the extent that an agent benefits from 
strongly believing that false hypotheses are false and that true hypotheses are true, there is good reason for him 
to align belief with support.27 
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Appendix 
 
Theorem: We restrict our attention to those hypotheses Hk and possible observational outcomes Oi (from 

their respective partitions) for which �’s belief strengths Q�[Hk] and Q�[Oi] are greater than 0. 
Suppose �’s belief updates from Q� to Q�-new don’t outright falsify any of these Hk or Oi — i.e., 
Q�-new[Hk] > 0 and Q�-new[Oi] > 0 (as is appropriate to updating with uncertain evidence). Suppose 

                                                                                                                                                                           
includes a partition containing E. This results in a new belief-support alignment relationship that better 
accounts for agents’ appropriate belief-strengths for the hypotheses.  
27 I am indebted to many friends and colleagues for helping me work through the ideas presented here. I 
especially thank Luc Bovens, Bas Van Fraassen, Adam Morton, Chris Swoyer, and the referees at Mind. I 
presented an early draft at the 31th Annual Meeting of the Society for Exact Philosophy, in Montreal, in 
May of 2001. Thanks to the participants for their helpful comments. Part of a sabbatical leave granted by 
the University of Oklahoma provided me the opportunity to do additional work on this project in the 
winter of 2002-2003, during a three-month stay with the research group on Philosophy, Probability, and 
Modeling at the University of Konstanz (supported by the Alexander von Humboldt Foundation, the 
Federal Ministry of Education and Research and the Program for Investment in the Future (ZIP) of the 
German Government through a Sofja Kovalevskaja Award). Thanks to the participants and research 
fellows in the group who discussed Bayesian inference with me, especially Stephan Hartmann, Franz 
Dietrich, and Franz Huber. 
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also that for each such Oi and Hk, Q�-new[Hk | Oi] = Q�[Hk | Oi] (which is the Jeffrey rigidity condition 
for updating on uncertain evidence). And suppose there is an Oi such that Q�-new[Oi] ≠ Q�[Oi] (i.e., 
there’s a change in the belief strength of at least one of the possible outcomes). Then, provided that 
there is at least one Og to which every Oi is connected (as specified below, relative to Q� and partition 
{Hk}), for some Oi and Hk, the likelihood must change — Q�-new[Oi | Hk] ≠ Q�[Oi | Hk]. 

 
Notice, we are not supposing that the likelihoods Q�-new[Oi | Hk] and Q�[Oi | Hk] are nonzero, nor are we 
supposing that the posterior probabilities Q�-new[Hk | Oi] and Q�[Hk | Oi] are non-zero. We assume only 
that for those Hk and Oi for which Q�[Hk] > 0 and Q�[Oi] > 0, their updates on uncertain evidence, 
Q�-new[Hk] and Q�-new[Oi], remain greater than 0. Throughout the following discussion and proof of the 
theorem we restrict our attention to those hypotheses Hk and possible outcomes Oi for which �’s belief 
strengths Q�[Hk] and Q�[Oi] are greater than 0. 
 The notion I call connectedness between pairs of outcomes Oi and Oj (relative to the hypotheses Hk 
for function Q�) is defined in terms of the notion of degree of separation between Oi and Oj, which is 
itself defined as follows: 
 

(read ‘[Oi sepn Oj]’ as ‘there are no more than n degrees of separation between Oi and Oj) 
(0) [Oi sep0 Oj] :  Oj just is Oi, and for some Hk, Q�[Oi | Hk] > 0 (this is a special case); 
(1) [Oi sep1 Oj] :  for some Hk, Q�[Oi | Hk] > 0 and Q�[Oj | Hk] > 0; 
(n>1) for each n>1, [Oi sepn Oj] :  for some Og, [Oi sepn-1 Og] and [Og sepn-1 Oj]; 
(∞) Oi is connected to Oj (i.e. Oi is not completely separated from Oj) :  for some n, [Oi sepn Oj]. 

 
Notice that since we are supposing Q�[Oi] > 0, for each Oi under discussion, it will always be the case 
that Q�[Oi | Hk] > 0 for some Hk under discussion (i.e. such that Q�[Hk] > 0): because Q�[Oi] = �k Q�[Oi | 
Hk] ·Q�[Hk]. So Clause (0) is automatically satisfied — all of the Oi are sep0 from themselves. However, 
satisfaction of Clause (1), of [Oi sep1 Oj], is not automatic, since it is generally possible that on each Hk 
for which Q�[Oi | Hk] > 0, Q�[Oj | Hk] = 0. For that to happen we would have to have the following 
situation: if either of the two possible outcomes occurred, and � became certain of it, all hypotheses 
compatible with the other possible outcome would become falsified. But even if [Oi sep1 Oj] were to fail, 
there may well be two hypotheses, Hu and Hv, such that Q�[Oi | Hu] > 0 and Q�[Oj | Hv] > 0, and such that 
each gives a positive likelihood to some third possible outcome, Og. In that case we would at least have 
[Oi sep2 Oj]. 
 It is easy to establish (by induction on n) that the sepn are cumulative (i.e., if [Oi sepn-1 Oj], then, 
because [Oj sepn-1 Oj], we have [Oi sepn Oj]). It is also easy to see (by induction) that each supn is 
reflexive and symmetric. So connectedness is also reflexive and symmetric. And although supn need not 
be transitive, connectedness is transitive: i.e., suppose Oi is connected to Oj and Oj is connected to Ok; 
then for some n, [Oi sepn Oj] and [Oj sepn Ok]; but then [Oi sepn+1 Ok]. Thus, connectedness is an 
equivalence relation. 
 Intuitively, connectedness works like this. Imagine the hypotheses Hk lined up horizontally, and 
imagine the possible outcomes Oi lined up some distance beneath them. Draw a link from each 
hypothesis to each of the outcomes to which it assigns a non-zero likelihood. Now, from any given 
outcome Oi try to draw a continuous path to another outcome Oj by following the links (up to a 
hypothesis, down to another outcome, up to another hypothesis, down to another outcome, etc.). If one 
can draw a path from Oi to Oj in this way, then Oi is connected to Oj. For example, when [Oi sep1 Oj] 
holds, only two links are required, one from Oi to some Hk and one from that Hk to Oj. Notice that if some 
Hk assigns non-zero likelihood to every Oi, then each pair of outcomes is sep1 related; so all Oi are 
connected. Similarly, if some Oi is assigned non-zero likelihood by every Hk, then each pair of outcomes 
is sep1 related; so all Oi are connected. In general, supn related outcomes might only be linked through 
some more complicated route. If the shortest route between Oi and Oj employs n+1 links, then [Oi sepn-1 
Oj] fails, but [Oi sepn Oj] succeeds. 
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Proof of the Theorem:  From this point forward let us assume that all outcomes are connected — i.e. 
there is an Oj such that for each Oi, Oi is connected to Oj. This condition will clearly be satisfied in many 
confirmational contexts in the sciences. Let us also suppose that updating maintains the same support for 
hypotheses on each given Oi (i.e. Q�-new[Hk | Oi] = Q�[Hk | Oi]) and maintains the same values for 
likelihoods (i.e. Q�-new[Oi | Hk] = Q�[Oi | Hk]). We will see that under these conditions, Q�-new[Oi] = Q�[Oi] 
for all Oi — so no updating of the Oi can have occurred after all. 
 The proof proceeds by first showing that if Oi is connected to Oj, then Q�-new[Oi]/Q�[Oi] = 
Q�-new[Oj]/Q�[Oj]. This follows from the fact that for each n, if [Oi sepn Oj], then Q�-new[Oi]/Q�[Oi] = 
Q�-new[Oj]/Q�[Oj], which is proved by induction, as follows: 
 

It clearly holds for sep0, but sep0 is a special case. So let’s have our basis step be for sep1. Suppose 
[Oi sep1 Oj]. Then for some Hk, Q�[Oi | Hk] > 0 and Q�[Oj | Hk] > 0. But notice that, for every Hm and 
all Og, Q�-new[Og | Hm]·Q�-new[Hm]/Q�-new[Og] = Q�-new[Hm | Og] = Q�[Hm | Og] = 
Q�[Og | Hm]·Q�[Hm]/Q�[Og]. Then, since Q�-new[Oi | Hk] = Q�[Oi | Hk] > 0, we have 
Q�-new[Hk]/Q�-new[Oi] = Q�[Hk]/Q�[Oi] — i.e. we have Q�-new[Oi]/Q�[Oi] = Q�-new[Hk]/Q�[Hk]. Similarly, 
since Q�-new[Oj | Hk] = Q�[Oj | Hk] > 0, we have Q�-new[Oj]/Q�[Oj] = Q�-new[Hk]/Q�[Hk]. Thus, 
Q�-new[Oi]/Q�[Oi] = Q�-new[Oj]/Q�[Oj]. 
 
The induction step is quite easy. Suppose the relationship holds for supn and suppose [Oi sepn+1 Oj]. 
Then for some Og, Oi sepn Og and Og sepn Oj; so Q�-new[Oi]/Q�[Oi] = Q�-new[Og]/Q�[Og] = 
Q�-new[Oj]/Q�[Oj]. 
 

Now, given our assumption that there is some Og to which all Oi are connected, we have, for all Oi, 
Q�-new[Oi]/Q�[Oi] = Q�-new[Og]/Q�[Og]. So, Q�-new[Oi]·Q�[Og] = Q�-new[Og]·Q�[Oi], for all Oi. Summing both 
sides of this equation over all Oi yields Q�[Og] = Q�-new[Og]. Factoring this equivalence out of the 
previous equation then yields Q�-new[Oi] = Q�[Oi], for every Oi. 
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