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Introduction 
 
Confirmation theory is the study of the logic by which scientific hypotheses may be confirmed or 
disconfirmed, or even refuted by evidence. A specific theory of confirmation is a proposal for 
such a logic. Presumably the epistemic evaluation of scientific hypotheses should largely depend 
on their empirical content – on what they say the evidentially accessible parts of the world are 
like, and on the extent to which they turn out to be right about that. Thus, all theories of 
confirmation rely on measures of how well various alternative hypotheses account for the 
evidence.1 Most contemporary confirmation theories employ probability functions to provide 
such a measure. They measure how well the evidence fits what the hypothesis says about the 
world in terms of how likely it is that the evidence should occur were the hypothesis true. Such 
hypothesis-based probabilities of evidence claims are called likelihoods. Clearly, when the 
evidence is more likely according to one hypothesis than according to an alternative, that should 
redound to the credit of the former hypothesis and the discredit of the later. But various theories 
of confirmation diverge on precisely how this credit is to be measured? 
 
A natural approach is to also employ a probabilistic measure to directly represent the degree to 
which the hypothesis is confirmed or disconfirmed on the evidence. The idea is to rate the degree 
to which a hypothesis is confirmed on a scale from 0 to 1, where tautologies are always assigned 
maximal confirmation (degree 1), and where the degree of confirmation of the disjunction of 
mutually incompatible hypotheses sum to the degrees of confirmation of each taken separately. 
This way of rating confirmation just recapitulates the standard axioms of probability theory, but 
applies them as a measure of degree-of-confirmation. Any theory of confirmation that employs 
such a measure is a probabilistic confirmation theory. However, confirmation functions of this 
sort will be of little value unless it can be shown that under reasonable conditions the 
accumulation of evidence tends to drive the confirmation values given by these functions 
towards 0 for false hypotheses and towards 1 for true hypotheses. 
 
How should confirmation values be related to what hypotheses imply about evidence claims via 
the likelihoods? The most straightforward idea would be to have the confirmation function 
assign to a hypothesis whatever numerical value is had by the likelihood the hypothesis assigns 
to the evidence. However, this idea won’t work. For one thing, in cases where the hypothesis 
logically entails the evidence, the likelihood is 1. But we cannot require the confirmational 

                                                 
1 I make no distinction here between scientific hypotheses and scientific theories. For our 
purposes a theory is just a large, complex hypothesis. We will suppose (as a formal logic must) 
that scientific hypotheses are expressible as sentences of a language – e.g. English, or a 
mathematically sophisticated dialect thereof. This supposition need not be in opposition to a 
“semantic view” of theories, since presumably, if scientists can express a theory well enough to 
agree about what it says about the world (or at least about its testable empirical content), it must 
be expressible in some bit of language. For instance, if a theory is taken to be a set of models, 
presumably that set of models (of whatever kind) may be described in mathematical English, 
perhaps employing set theory. In that case the empirical content of the theory will consist of 
various hypotheses about what parts of the world are modeled (to what degree of approximation) 
by some particular model or set of models. Such hypotheses should be subject to empirical 
evaluation. So a theory of confirmation should apply to them. 
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probability of each hypothesis that entails the evidence to be 1. For, some alternative hypotheses 
may also entail the evidence, and a probabilistic confirmation measure cannot assign probability 
1 to two (or more) alternative hypotheses based on the same evidence.2 
 
If both likelihoods and the degrees of confirmation for hypotheses are to be measured 
probabilistically, it seems natural to represent both by a common probability function. In that 
case what relationship does the degree to which a hypothesis is confirmed on evidence have to 
the likelihood of the evidence according to the hypothesis? This is where Bayes’ Theorem comes 
into play. Bayes’ Theorem follows from the standard axioms for probabilities; and it explicitly 
shows how the probabilistic degree of confirmation for a hypothesis depends on the likelihoods 
of evidence claims. Thus, any confirmation measure that satisfies the standard axioms of 
probability theory and employs the same probability function to represent likelihoods will have 
to be a Bayesian confirmation measure. Any theory of confirmation that employs such a 
probabilistic measure of confirmation will thus be a Bayesian confirmation theory. 
 
Various Bayesian approaches to confirmation primarily diverge with regard to how they 
understand the concept of probabilistic confirmation – i.e. with regard to how they interpret the 
notion of probability that is supposed to be captured by confirmational probability functions. Is 
the confirmation function supposed to represent the warranted degree of confidence (or degree 

of belief) an agent should have in hypotheses (based on the evidence), as the subjectivists and 
personalists would have it? Or, is the confirmation function some kind of objective logical 

relationship by which the evidence is supposed to probabilistically entail hypotheses, as many 
logical objectivists maintain? Or, might the confirmation function represent some other coherent 
conception of evidential support? 
 
These days the most prominent strain of Bayesian confirmation theory takes probabilistic 
confirmation functions to represent the rationally ideal agent’s subjective degrees of confidence, 
or degrees of belief in statements or propositions. This view has become so influential that the 
term ‘Bayesian confirmation theory’ is often taken to be synonymous with it. But to identify 
Bayesianism with the subjectivist view is a mistake. It tends to either mischaracterize or entirely 
disregard a host of non-subjectivist Bayesian accounts. Properly speaking, it is not the subjective 
interpretation of the confirmation function that makes a confirmation theory Bayesian. Rather, 
any confirmation theory that gives Bayes’ Theorem a central role in the representation of how a 
hypothesis is confirmed or refuted, based on what the hypothesis says about evidence, is a 
Bayesian confirmation theory. And any account that employs a common function to represent 
both confirmation and the likelihoods will give Bayes’ Theorem this central role. 
 
Historically, a number of differing proposals for objective Bayesian confirmation theories have 
been developed – e.g., the theories of Keynes (1921), Carnap (1950, 1952, 1971, 1980), Jeffreys 
(1939), Jaynes (1968); and more recently Rosenkrantz (1981), Maher (1996, 2006), Fitelson 
(2005), and Williamson (2007) defend objectivist accounts. The founding proponents of 
subjectivist Bayesianism include Ramsey (1926), de Finetti (1937), and Savage (1954). 

                                                 
2 The same argument applies whenever two alternative hypotheses assign the evidence a 
likelihood greater than 1/2 – and similarly, whenever n alternative hypotheses each assign the 
evidence likelihoods greater than 1/n. 
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Prominent contemporary subjectivist treatments include those of Jeffrey (1965, 1992), Levi 
(1967, 1980), Lewis (1980), Skyrms (1984), Earman (1992), Howson and Urbach (1993), 
Howson (1997) and Joyce (1999, 2003, 2004, 2005). Although all subjectivist approaches draw 
on a belief-strength notion of probability, there are important differences among some of them. 
For instance, some subjectivists hold that belief-strength should be constrained by epistemic 
norms beyond that of probabilistic coherence. 
 
In this article I will spell out the probabilistic logic that underlies most accounts of probabilistic 
confirmation functions. I’ll discuss what I take to be some important difficulties faced by 
objectivist and subjectivist views about the nature of these functions, and I’ll describe a view 
about the nature of Bayesian confirmation theory that I think avoids or overcomes the 
interpretative problems. Here is how I’ll proceed. 
 
In section 1 I will discuss the most basic features of this probabilistic logic. I’ll set down axioms 
that characterize these functions, but without yet describing how the logic is supposed to apply to 
the evaluation of scientific hypotheses.  
 
Section 2 will briefly describe two accounts of the nature of confirmation functions – views 
about what the confirmation functions are supposed to be, or what they are supposed to 
represent. We won’t be able to delve too far into this issue until after we see how the logic of 
confirmation functions represents the evidential support of hypotheses, which we’ll address in 
section 3. But the logic of confirmation described is section 3 will be more easily comprehended 
if we have some preliminary idea about what the confirmation functions represent. 
 
Section 3 shows how the logic of confirmation functions represents the evidential support of 
hypotheses. I will spell out several forms of Bayes’ Theorem, showing how the Bayesian 
formulae represent the role of the likelihoods and another important factor (i.e. the prior 

probabilities) in the logic of evidential support. 
 
In section 4 I will return to the issue of what confirmation functions are supposed to be. I’ll 
describe major problems with the two most prominent interpretations, and suggest an alternative 
view. In particular I’ll address the issue of how confirmation functions are supposed to inform 
our beliefs about the truth or falsity of hypotheses. 
 
Is there any good reason to think that, given a suitable amount of evidence, false hypothesis will 
become strongly disconfirmed and true hypotheses will become highly confirm? In section 5 I 
will explicate a Bayesian Convergence Theorem that establishes this. It shows that under 
reasonable conditions the accumulation of evidence should result in the near refutation of false 
hypotheses (i.e. in confirmational probability approaching 0), and should lead to a high degree of 
confirmation for the true alternative (i.e. to confirmational probability near 1).3  
 
The discussion throughout sections 3 through 5 will suppose that the likelihoods for evidence 

                                                 
3 This Bayesian Convergence Theorem avoids many of the usual objections to such theorems. It 
depends only on likelihoods; so those who are suspicious of prior probabilities may still find it 
of interest. And it provides explicit lower bounds on the likely rate of convergence. 
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statements on the various hypotheses, which express the empirical content of hypotheses, are 
either objective or intersubjectively agreed to by the relevant scientific community – so all 
confirmation functions employed by a scientific community will agree on the numerical values 
of the likelihoods. In section 6 I will weaken this supposition, but argue that the important truth-
acquiring features of probabilistic confirmation theory are nevertheless maintained. 
 
 
1. The Probabilistic Logic of Confirmation Functions 
 
Confirmation functions represent a logic by which scientific theories are refuted or supported by 
evidence. So they should be defined on an object language rich enough to fully express any 
scientific theory. The language for first-order predicate logic should suffice.4 All current 
scientific theories are expressible in such a language. The standard logical connectives and 

quantifiers for this language are as follows: “not”, ‘~’; “and”, ‘⋅’; “or”, ‘∨’; truth-functional “if-

then”, ‘⊃’; “if and only if”, ‘≡’; the quantifiers “all”, ‘∀’, and “some”, ‘∃’; and the identity 
relation, “is the same thing as”, ‘=’. These are the logical terms of the language. The meanings of 
all other terms, called non-logical terms (i.e., names, and predicate and relational expressions), 
are not specified in advance by the logic. Standard deductive logic neither depends on their 
meanings nor on the actual truth-values of sentences containing them. It only supposes that the 
non-logical terms are meaningful, and that sentences containing them can have truth-values.5 

                                                 
4 Everything I’ll say here also applies to languages for second-order and higher-order logics. 
Some confirmation theorists take the confirmation functions to apply directly to “propositions” 
rather than to sentences of a language, where propositions are supposed to be sets of possible 
worlds, or some other sort of non-linguistic entities. I prefer to define confirmation functions 
directly on a language. There are a number of reasons for preferring this approach. Among them 
are: (1) it avoids the sticky metaphysical issue of what a proposition is (indeed, on many 
accounts, all logical truths represent the same proposition – so a logic that directly employs such 
propositions may hide important logical structure); (2) it makes the approach more directly 
comparable to deductive logics; (3) although there is widespread agreement about how formal 
languages and their logics work, this may not be true for propositions; (4) all real scientific 
theories are expressed in language (including the language of set theory and mathematics), so if 
the results of a “propositional treatment” of confirmation are to be applicable to real scientific 
theories, they will have to be translated into results that apply to expressions in a language; (4) to 
the extent that the propositional approach is richer, and permits the proof of stronger results than 
the sentential approach, it isn’t at all clear that these stronger results are relevant to the 
confirmation of real scientific theories, which are always expressed in a language. So, when 
important results are stated and proved in terms of propositions, one may be left wondering what 
sort assumptions about the nature of propositions play a crucial role, and whether these results 
can really be translated into results about the confirmation of real scientific theories, expressed 
by statements in a language. 
5 This formal language permits the expression of set theory and all of mathematics, so it should 
be sufficiently rich to express all statements made by real scientific theories. But if you doubt the 
adequacy of this language for the expression of real scientific theories, then please think of the 
logic of confirmation presented here as a logician’s model of the real thing. Viewed this way, the 
logician’s model is, like any model employed by the sciences, an approximation that is intended 
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A degree of confirmation function represents a relationship between statements (i.e. declarative 
sentences) that is somewhat analogous to the deductive logical entailment relation. However, the 
logic of confirmation will have to deviate from the deductive paradigm in several ways. For one 
thing, deductive logical entailment is an absolute relationship between sentences, but 
confirmation comes in degrees. Deductive logical entailment is monotonic: when B logically 

entails A, adding a premise C cannot undermine the logical entailment – i.e., (C⋅B) must entail A 
as well. But confirmation is nonmonotonic. Adding a new premise C to B may substantially raise 
the degree to which A is confirmed, or may substantially lower it, or may leave it unchanged – 

i.e., for a confirmation function Pα, the value of Pα[A | C⋅B] may be much larger than Pα[A | B] 
(for some statements C), while it may be much smaller (for some other C), and it may have the 
same value, or nearly the same value (for some other statements C). 
 
Arguably, another very significant difference is this. A given deductive logic specifies a unique 
logical entailment relation, and that relation depends only on the meanings of the logical 
connectives and quantifiers. Is there, similarly, a uniquely good confirmation function? And does 
it depend only on the meanings of logical terms, and not on the specifics of what the individual 
sentences mean (due to the meanings of the names and predicates they contain)? Most 
confirmation theorists would answer “no” to both questions. (I’ll discuss some reasons for this 
later.) Rather, from the logician’s point of view, confirmation functions are technically 
somewhat analogous to truth-value assignments to sentences of a formal language. That is, 
holding the meanings of the logical terms (connectives and quantifiers) fixed, there are lots of 
ways to assign meanings to names and predicate terms of a language; and for each such meaning 
assignment, each of the various ways the world might turn out to be specifies a corresponding 
truth-value assignment for each sentence of the language. Similarly, keeping the meanings of 
logical terms fixed, each way of assigning meanings to names and predicate expressions may 
give rise to a distinct confirmation function – and perhaps to more than one. So, from the point of 
view of formal logic, there should be a host of different possible confirmation functions. 
 
In deductive logic the possible truth-value assignments to sentences of a formal language L are 
constrained by certain semantic rules, which are axioms regarding the meanings of the logical 
terms (‘not’, ‘and’, ‘or’, etc., the quantifiers, and the identity relation). The rules, or axioms, for 
confirmation functions play a similar role. They constrain each member of the family of possible 

confirmation functions, {Pβ, Pγ, …, Pδ, …}, to respect the meanings of the logical terms, but 
without regard for what the other terms of the language may mean. Although each confirmation 
function satisfies the same basic axioms, the further issue of which among them provides an 
appropriate measure of confirmation is not settled by these axioms alone. It presumably depends 
on additional factors, including the meanings of the non-logical terms of the language. 
 
Here are semantic rules (or axioms) that constrain probabilistic confirmation functions.6 

                                                                                                                                                             
to capture the essential features of it’s subject matter, which in this case is the nature of correct 
scientific inferences concerning hypotheses expressible in a scientific dialect of a natural 
language such as English. 
6 The language L in which scientific hypotheses and evidence claims are expressed is what 
logicians call the object-language. As logicians see it, confirmation functions are not themselves 
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Let L be a language for predicate logic with identity, and let ‘|=’ be the standard logical 
entailment relation for that logic (where ‘B |= A’ abbreviates ‘B logically entails A’, and 

‘|= A’ abbreviates ‘A is a logical truth’). A confirmation function is a function Pα from pairs 
of sentences of L to real numbers between 0 and 1 that satisfies the following rules:  

 

1.  Pα[D | E] < 1 for at least one pair of sentences D and E.  
 

For all sentence A, B, C, 
 

2.  if B |= A, then Pα[A | B] =1; 
 

3.  If |= (B≡C), then Pα[A | B] = Pα[A | C]; 
 

4.  If C |= ~(B⋅A), then either Pα[(A∨B) | C] = Pα[A | C] + Pα[B | C], or for every sentence D, 

Pα[D | C] = 1; 
 

5.  Pα[(A⋅B) | C] = Pα[A | (B⋅C)] ⋅ Pα[B | C]. 
 
This particular axiomatization takes conditional probability as basic. The conditional probability 
functions it characterizes agree with the more usual account of unconditional probability 

functions when the latter are defined: just let Pα[A] = Pα[A | (D∨~D)]. However, these axioms 

permit conditional probabilities Pα[A | C] to remain defined even when a condition statement C 

has probability 0 (e.g., even when Pα[C | (D∨~D)] = 0). However, this feature is not the primary 
reason for taking conditional probability as primitive for confirmation functions. 
 
The main reason is this. On the usual account, where unconditional probability is basic, 

conditional probability is defined as follows: P[A | B] = P[(A⋅B)] / P[B] if P[B] > 0, and is 
undefined otherwise. (This is closely related to axiom 5.) But if one takes conditional probability 
as defined in this way, the likelihood a hypothesis H assigns to some evidence statement E under 

experimental or observation conditions C, P[E | H⋅C], must be defined as follows: P[E | H⋅C] = 

P[E⋅H⋅C] / P[H⋅C]. However, in the context of confirmation functions it seems unnatural to take 
such likelihoods as defined like this. For, likelihoods often have very well-known, well-defined 
values all on their own, whereas the values of the probabilities in the numerator and denominator 

of ‘P[E⋅H⋅C] / P[H⋅C]’ are often only vaguely known or specified. 
 
For example, let H say “the coin is fair” (i.e. has a propensity to come up heads half the time 
when tossed in the usual way), let C say “the coin is tossed at present in the usual way”, and let E 
say “the coin lands heads on the present toss”. We may not be at all clear about the values of 

                                                                                                                                                             
part of the object-language L. Rather, we take confirmation functions, along with other semantic 
notions like truth and logical entailment, to reside in the metalanguage, which is the language 
where properties of object-language expressions are treated. Logicians distinguish object-
language from metalanguage in order to avoid certain kinds of paradoxes and logical 
incoherencies that can arise from applying semantic concepts to themselves. 
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P[E⋅H⋅C] (the probability that “the coin is fair, is presently tossed in the usual way, and lands 

heads) or of P[H⋅C] (the probability that “the coin is fair, and is presently tossed in the usual 

way”). Nevertheless, the value of P[E | H⋅C] seems to be perfectly well-defined and well-known 

(it should clearly equal 1/2), due to what H⋅C says about E.7 Thus, because confirmation 
functions are supposed to represent such relationships between hypotheses and evidence 
statements, and because such likelihoods are often “better defined” or “better known” than the 
probabilities that would “define them” via the usual ratio definition, it seems more natural to 
axiomatize confirmational probabilities in a way that takes conditional probabilities as basic.8 
 
One important special case where the present approach is especially helpful is this. Consider a 
statistical hypothesis that says that the chance (or measure) of an attribute X among systems in a 
state Y is 1. Formally, we might express such a hypothesis this way: ‘Ch(X,Y)=1’. Suppose it’s 

known that a physical system g is in state Y (i.e., g∈Y). This gives rise to a likelihood: 

Pα[g∈X | Ch(X,Y)=1 ⋅ g∈Y] = 1. Now, adding certain kinds of additional information to the 

premise should lower this likelihood – e.g., Pα[g∈X | Ch(X,Y)=1 ⋅ g∈Y ⋅ ~g∈X] = 0. The present 
approach to confirmation functions permits this, whereas on the usual approach to conditional 
probability this “lowering of the likelihood” cannot happen when the likelihood has value 1.9 
 
Let us now briefly consider each axiom, to see what sort of constraint it places on a measure of 
confirmation. First, notice that adopting a scale between 0 and 1 is merely a convenience. This 
scale is usual for probabilities, but another scale might do as well. 
 
Rule (1) is a non-triviality requirement. It says that some sentences must be supported by others 

to degree less than 1. We might instead have required that Pα[(A⋅~A) | (A∨~A)] < 1; but this turns 
out to be derivable from Rule (1) together with the other rules.  
 
Rule (2) says that if B logically entails A, then B must maximally confirm A. This makes each 
probabilistic confirmation function a kind of generalization of the deductive logical entailment 

                                                 
7 The idea that confirmation functions should agree on the values of such likelihoods is an 
additional supposition, not captured by the rules (axioms) for confirmational probabilities given 
above. I’ll say more about the nature of these direct inference likelihoods a bit later. 
8 See Hájek (2003a) for more reasons to take conditional probability as basic. Although this 
approach conceptually makes the best sense, the account of Bayesian confirmation in the 
remainder of the paper does not essentially depend on taking conditional probability as basic. 
The more usual axiomatization will suffice for most purposes. It goes like this: a confirmation 

function is a function Pα from sentences of L to real numbers between 0 and 1 that satisfies the 

following rules: (1) if |= A, then Pα[A] = 1; (2) if |= ~(A⋅B), then Pα[A∨B] = Pα[A] + Pα[B]; by 

definition Pα[A | B] = Pα[A⋅B] / Pα[B] whenever Pα[B] > 0. 
9 For, if by definition Pα[g∈X | Ch(X,Y)=r ⋅ g∈Y] = Pα[g∈X ⋅ Ch(X,Y)=1 ⋅ g∈Y] / 

Pα[Ch(X,Y)=r ⋅ g∈Y], then for Pα[g∈X | Ch(X,Y)=1 ⋅ g∈Y] = 1 we have 

Pα[g∈X ⋅ Ch(X,Y)=1 ⋅ g∈Y] = Pα[Ch(X,Y)=1 ⋅ g∈Y] = Pα[(g∈X ∨ ~ g∈X) ⋅ Ch(X,Y)=1 ⋅ g∈Y] =  

Pα[g∈X ⋅ Ch(X,Y)=1 ⋅ g∈Y] + Pα[~g∈X ⋅ Ch(X,Y)=1 ⋅ g∈Y]. So Pα[~g∈X ⋅ Ch(X,Y)=1 ⋅ g∈Y] = 

0. Thus, Pα[g∈X | Ch(X,Y)=1 ⋅ g∈Y ⋅ ~g∈X] cannot be 0, but rather, it must be undefined because 
the term that would be in the denominator of the definition has value 0. 
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relation. Rule (3) adds the plausible constraint that whenever statements B and C are logically 
equivalent, each must provide precisely the same confirmational support to all other statements. 
 
Rule (4) says that confirmational support adds up in a plausible way. When C logically entails 
the incompatibility of A and B, the support C provides each separately must sum to the support it 
provides for their disjunction. The only exception is the case where C acts like a contradiction 
and supports every sentence to degree 1. 
 

To understand what Rule (5) says, think of a confirmation function Pα as describing a measure 

on possible states of affairs (or possible worlds): an expression of form ‘Pα[C | D] = r’ says that 
the proportion of states in which C is true among those where D is true is r. On this reading, Rule 
(5) says the following: suppose that B (together with C) is true in proportion q of all states where 
C is true; and suppose that A is true in fraction r of all those states where B and C are true 

together; then A and B (and C) will be true in fraction r of the proportion q (i.e. in r⋅q) of all the 
states where C is true. 
 
All of the usual theorems of probability theory are easily derived form these axioms. For 
example, logically equivalent sentences are always supported to the same degree: if C |= (B≡A), 

then Pα[A | C] = Pα[B | C]. And the following generalization of the Addition Rule (4) is 

derivable:  Pα[(A∨B) | C] = Pα[A | C] + Pα[B | C] − Pα[(A⋅B) | C]. 
 
It also follows that if {B1, …, Bn, …} is any countable set of sentences that are mutually 

exclusive, given C (i.e., for each pair Bi and Bj, C |= ~(Bi⋅Bj)), then limn Pα[(B1∨B2 ∨…∨Bn) | C] 

= ∑i=1
∞ Pα[Bi | C] (unless Pα[D | C] = 1 for every sentence D).10  

                                                 
10 This should not be confused with countable additivity. In this context countable additivity 
would require the object language in which scientific theories are expressed to possess a means 
of expressing infinitely long disjunctions of sentences. If our object language had such a 

connective, ‘∨k{Bk | Bk∈S}’ for sets S of sentences, then an axiom for countable additivity need 

only say that whenever, for all distinct Bi and Bj in a countable set S = {B1, B2, ...}, C |= ~(Bi⋅Bj), 

then Pα[∨k{Bk | Bk∈S} | C] = limn Pα[(B1∨B2 ∨…∨Bn) | C]. It then follows from the derived rule 

stated above that Pα[∨k{Bk | Bk∈S} | C] = ∑i=1
∞ Pα[Bi | C]. 

Here is a derivation of the above rule (proved without appeal to countable additivity): 

Suppose that for each distinct Bi and Bj, C |= ~(Bi⋅Bj), and suppose Pα[D | C] < 1 for at least 

one sentence D. Notice that, for each i, C |= (~(Bi⋅Bi+1)⋅…⋅~(Bi⋅Bn)). This implies 

C |= ~(Bi⋅(Bi+1∨…∨Bn)). So for each finite list of the Bi, Pα[(B1∨B2∨…∨Bn) | C]  = Pα[B1 | C] 

+ Pα[(B2∨…∨Bn) | C]  =  … =  ∑i=1
n Pα[Bi | C]. By definition, ∑i=1

∞ Pα[Bi | C]  =  

limn ∑i=1
n Pα[Bi | C]. Thus, limn Pα[(B1∨B2∨…∨Bn) | C] = ∑i=1

∞ Pα[Bi | C]. 
 I have no objection to countable additivity in general. But infinite disjunction doesn’t appear 
to be a natural part of the language in which scientific theories are expressed. That is, although 
there are well worked out extensions of predicate logic to infinitary languages, which include a 
means of expressing infinite disjunctions (see Scott and Krauss, 1966), no scientific theory I 
know of draws on the resources of such a language. So I won’t add such devices to the object 
language for the confirmation functions under consideration here. 
 Regular first-order predicate logic does have a limited means of expressing infinite 



 10

 
In the context of the logic of confirmation it makes good sense to supplement the above rules 
with two more. Here’s the first one: 
 

6. If A is an axiom of set theory or any other piece of pure mathematics employed by the 

sciences, or if A is analytically true (given the meanings that Pα presupposes for the terms 

in L), then, for all C, Pα[A | C] = 1. 
 
The idea is that the logic of confirmation is about evidential support for contingent claims. 
Nothing can count as empirical evidence against or for non-contingent truths. They should be 
maximally confirmed given any and all possible statements. 
 
An important respect in which the logic of confirmation functions should follow the deductive 
paradigm is in not presupposing the truth-values of contingent sentences. For the whole idea of a 
logic of confirmation is to provide a measure of the extent to which contingent premise sentences 
indicate the likely truth-values of contingent conclusion sentences. But this idea won’t work 
properly if the truth-values of some contingent sentences are presupposed by the confirmation 
function. Such presuppositions may hide significant premises, making the logic confirmation 

enthymematic. Thus, for example, no confirmation function Pα should permit a tautological 

premise to assign degree of confirmation 1 to a contingent claim: Pα[C | B∨~B] should always be 

                                                                                                                                                             
disjunctions via existential quantification. So one might consider adding a kind of countable 
additivity axiom (sometimes called the Gaifman Condition, after (Gaifman 1962)) as follows:  

for each open expression Fx, Pα[∃xFx | B] = limn P[Fc1∨...∨Fcn | B], where the individual 
constants c1, ..., cn, ..., exhaust the countably infinite list of L’s individual constants. 

From this axiom the following form of countable additivity follows: if for each distinct ci and cj, 

B |= ~(Fci⋅Fcj), then Pα[∃xFx | B] = ∑j=1
∞ Pα[Fcj | C]. However, the proposed axiom seems 

overly strong, since it effectively assumes that every individual object gets named, or at least that 
enough exemplars are named that the probability of the disjunction approaches the probability of 
the existential claim. This seems implausible in contexts where the number of individuals is 
uncountably infinite. 
 If we don’t assume that the Gaifman Condition holds, the strongest claim we should want is 

this: Pα[∃xFx | B] ≥ limn Pα[Fc1∨...∨Fcn | B]. But the other axioms already imply this, as follows: 

Pα[∃xFx | B] ≥ Pα[∃xFx | B] ⋅ Pα[(Fc1∨...∨Fcn) | B·∃xFx] = Pα[(Fc1∨...∨Fcn)·∃xFx | B] = 

Pα[∃xFx | B·(Fc1∨...∨Fcn)] · Pα[(Fc1∨...∨Fcn) | B] = Pα[(Fc1∨...∨Fcn) | B] (since 

Pα[∃xFx | B·(Fc1∨...∨Fcn )] = 1, because B⋅(Fc1∨...∨Fcn ) |= ∃xFx). And Pα[(Fc1∨...∨Fcn) | B] 

= ∑j=1
n Pα[Fcj | C] if for each pair of distinct ci and cj, B |= ~(Fci⋅Fcj). 

Thus, if for each pair of distinct ci and cj, B |= ~(Fci⋅Fcj), then Pα[∃xFx | B]  ≥  ∑j=1
∞ Pα[Fcj | C]. 

 One more point: Confirmation functions reside in the meta-language, where logical 
relationships usually reside, rather than in the object-language L, where scientific hypotheses 
live. So, even though countable additivity may not be a feature of confirmation functions 
themselves, scientific hypotheses (expressed in the object-language) may employ object-
language probability functions defined on sets to represent chance processes in nature. These 
object-language probability functions may well satisfy a countable additivity rule for countable 
unions of disjoint sets. The existence of object-language probabilities of this kind is perfectly 
compatible with the present approach to confirmational probability. 
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less than 1 when C is contingent. 
 
However, it is common practice for probabilistic logicians to sweep provisionally accepted 
contingent claims under the rug by assigning them probability 1. This saves the trouble of 

repeatedly writing a given contingent sentence B as a premise, since Pγ[A | B⋅C] will just equal 

Pγ[A | C] whenever Pγ[B | C] = 1. Although this device is useful, such functions should be 
considered mere abbreviations of proper, logically explicit, non-enthymematic, confirmational 

relationships. Thus, properly speaking, a confirmation function Pα should assign probability 1 to 
a sentence on every possible premise only if that sentence is either (i) logically true, or (ii) an 
axiom of set theory or some other piece of pure mathematics employed by the sciences, or (iii) 
the sentence is analytic according to the meanings of terms in the language presupposed by 

confirmation function Pα, and so outside the realm of evidential support. Thus, it is natural to 
adopt the following version of the so-called “axiom of regularity”. 
 

7. If A is not a consequence of set theory or some other piece of pure mathematics employed 
by the sciences, and is neither a logically nor an analytically true statement (given the 

meanings of the terms of L as represented in Pα), then Pα[A | ~A] < 1.11 
 

Taken together with (6) this axiom tells us that a confirmation function Pα counts as non-
contingently true just those sentences that it assigns probability 1 on every possible premise.12 
 
Bayesian logicists such as Keynes and Carnap thought that the logic of confirmation might be 
made to depend solely on the logical form of sentences, just like deductive logic. The idea was, 
effectively, to supplement axioms 1-7 with additional axioms that depend only on the logical 
structures of sentences, and to do so with enough such axioms to reduce the number of possible 
confirmation functions to a single unique function. It is now widely agreed that this project 
cannot be carried out in a plausible way. Perhaps there are additional rules that should be added 
to 1-7. But it is doubtful that such rules can suffice to specify a single, uniquely qualified 
confirmation function based only on the formal structure of sentences. I’ll say more about why 
this is doubtful a bit later, after we first see how confirmational probabilities capture the 
important relationships between hypotheses and evidence. 
 
 
2. Two Conceptions of Confirmational Probability 
 
Axioms 1-7 for conditional probability functions merely place formal constraints on what may 

properly count as a probabilistic confirmation function. Each function Pα that satisfies these rules 
may be viewed as a possible way of specifying a confirmation function that respects the 
meanings of the logical terms, much as each possible truth-value assignment for a language 
represents a possible way of assigning truth-values to its sentences in a way that respects the 

                                                 
11 It follows from the other axioms that Pα[A | ~A] = 0: for, ~A |= (A∨~A), so 1 = Pα[A∨~A | ~A] 

= Pα[A | ~A] + Pα[~A | ~A] = Pα[A | ~A] + 1. 
12 Because, Pα[A | C] = 1 for all C if and only if then Pα[A | ~A] = 1. So, taken together with 

axiom 7, ‘Pα[A | C] = 1 for all C’ implies that A must be either a consequence of set theory or 
some other piece of pure mathematics, or it must be logically or analytically true. 
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semantic rules expressing the meanings of the logical terms. The issue of which of the possible 
truth-value assignments to sentences of a language represents the actual truth or falsehood of its 
sentences depends on more than this – it depends on the meanings of the non-logical terms and 
on the state of the actual world. Similarly, the degree to which some sentences actually support 
others in a fully meaningful language must rely on more than the mere satisfaction of these 
axioms for confirmation functions. It must at least rely on what the sentences of the language 
mean, and perhaps on much more besides. What more? Various interpretations of probability, 
which offer accounts of how confirmation functions are to be understood, may shed some light 
on this by filling out our conception of what confirmational probability is really about. I’ll briefly 
describe two prominent views.13 
 

One reading, a kind of logicist reading of confirmation functions, is to take each function Pα to 
be associated with a meaning assignment to sentences, and to take these interpreted sentences to 
represent possible states of affairs, or ways the world might turn out to be, or possible worlds. 

Then a confirmation measure Pα is effectively a measure on (expressible) sets of logically 

possible states of affairs. The idea is that, given a fully meaningful language, ‘Pα[A | B] = r’ says 
that among the states in which B is true, A is true in “proportion” r of them. The relevant sets of 

possible states will usually be infinite, so the measure on sets of states supplied by Pα is not 
“intrinsic to the sets of possibilities themselves”, but rather is imposed by a particular way of 
measuring (by a particular measure function on) the space of logical possibilities. Thus, each 
confirmation function imposes its own way of measuring possible states, and generally there may 
be any number respectable ways to assign meanings to sentences and measures on possible 
states. So, when an agent chooses to employ a particular confirmation function (or a particular 
collection of them), she is effectively choosing a way of measuring possibilities – a way that 
reflects how she understands the meanings and inferential implications of sentences in the 
language.  
 
If we read confirmation functions as measures on possible states, then axioms 1-7 are plausible 
necessary conditions on them. Each axiom is a rule that is automatically satisfied by finite 
proportions – so these axioms extend the logic of finite proportions to “measures of 
proportionality” on infinite sets. However, perhaps not every function that satisfies these axioms 
represents a good way to measure confirmation. That is, these axioms may not be jointly 
sufficient to pick out only the “proper” confirmation functions. What further restrictions should 
confirmation functions satisfy? As we see how the confirmation of scientific hypotheses is 
supposed to work in a Bayesian confirmation theory, perhaps some plausible additional 
restrictions will become apparent. So let’s put that question aside for now. In any case, I hope 
that the basic idea behind this kind of logicist reading of the confirmation functions is clear 
enough. I invite you to see how well this logicist reading fits with how Bayesian confirmation 
theory is supposed to work (as spelled out in the remaining parts of this paper). 
 
Subjectivist Bayesians offer an alternative reading of the confirmation functions. First, they 
usually take unconditional probability as basic, and they take conditional probabilities as defined 
in terms of them. Furthermore, subjectivist Bayesians take each unconditional probability 

function Pα to represent the belief-strengths or confidence-strengths of an ideally rational agent, 

                                                 
13 For a comprehensive treatment of interpretations of probability see (Hájek 2003b). 
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α. On this understanding ‘Pα[A] = r’ says, “the strength of α’s belief (or confidence) that A is 
true is r.” Subjectivist Bayesians usually tie such belief strengths to what the agent would be 

willing to bet on A being true. Roughly, the idea is this. Suppose that an ideally rational agent α 
is willing to accept a wager that would yield $u (but no less) if A turns out to be true and would 
lose him $1 if A turns out to be false. Then, under reasonable assumptions about his desires for 

small amounts of money, it can be shown that his belief strength that A is true should be Pα[A] = 

1/(u+1). And it can further be shown that any function Pα that expresses such betting-related 

belief-strengths on all statements in agent α’s language must satisfy the usual axioms for 

unconditional probabilities.14 Moreover, it can be shown that any function Pβ that satisfies these 

axioms is a possible rational belief function for some ideally rational agent β. Such relationships 
between belief-strengths and the desirability of outcomes (e.g., gains in money or goods on bets) 
are at the core of Bayesian decision theory.15 Subjectivist Bayesians usually take confirmational 
probability to just be this notion of probabilistic belief-strength.16 
 
Undoubtedly real agents do believe some claims more strongly than others. And, arguably, the 
belief strengths of real agents can be measured on a probabilistic scale between 0 and 1, at least 
approximately. And clearly the confirmational support of evidence for a hypothesis should 
influence the strength of an agent’s belief that the hypothesis is true. However, there is good 
reason for caution about taking confirmation functions to be Bayesian belief-strength functions, 
as we will see later. So, perhaps an agent’s confirmation function is not simply identical to his 
belief function, and perhaps the relationship between confirmation and belief-strength is 
somewhat more complicated than the subjective Bayesian supposes. 
 
In any case, some account of what confirmation functions are supposed to represent is clearly 
needed. The belief function account and the possible states (or possible worlds) account are two 
attempts to provide this. Now let’s put this interpretative issue aside until later (section 4). We’ll 
try to get a better handle on what probabilistic confirmation functions really are after we take a 
careful look at how the logic that draws on them is supposed to work. 
 
 
3. The Logical Structure of Evidential Support and the role of Bayes’ Theorem in that Logic 
 
A theory of confirmation should explicate the notion of evidential support for all sorts of 
scientific hypotheses, ranging from simple diagnostic claims (e.g., the patient has pneumonia) to 
scientific theories about the fundamental nature of the world, like quantum mechanics or the 
theory of relativity. We’ll now look at how the logic of probabilistic confirmation functions 
draws on Bayes’ Theorem to bring evidence to bear, via the likelihoods, on the refutation or 

                                                 
14 Note 8 lists these axioms. 
15 An alternative, but conceptually similar approach is to set down intuitively plausible 
constraints on the notion of rational preference among acts (or their outcomes), and then show 
that any such notion of preference can be represented (uniquely) by a probabilistic belief 
function together with a utility function, and that preferred acts (or their outcomes) are just those 
that maximize expected utility. 
16 For various versions of this approach see (Ramsey 1926), (de Finetti 1937), (Savage, 1954), 
(Jeffrey 1965), (Skyrms 1984), and (Joyce 1999). Hájek (2005) provides a perceptive analysis. 
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support of scientific hypotheses. 
 
To begin with, consider some exhaustive set of mutually incompatible hypotheses or theories 
about some common subject matter, {h1, h2, …}. The set of alternatives may consist of a simple 
pair of alternatives – e.g., {“the patient has pneumonia”, “the patient doesn’t have pneumonia”}. 
Or it may consist of a long list of possible alternatives, as is the case when the physician tries to 
determine which among a range of diseases is causing the patient’s symptoms. For the 
cosmologist the alternatives may consist of several alternative theories of the structure and 
dynamics of space-time, and may include various “versions of the same theory”. Where 
confirmation theory is concerned, even a slightly different version of a given theory will count as 
a distinct theory, especially if it differs from the original in empirical import. 
 
In principle there may be finitely or infinitely many alternative hypotheses under consideration. 
They may all be considered at once, or they may be constructed and assessed over many 
centuries. One may even take the set of alternative hypotheses to consist of all logically possible 
alternatives expressible in a given language about a given subject matter – e.g., all possible 
theories of the origin and evolution of the universe expressible in English and mathematics. 
Although testing every logically possible alternative poses practical challenges, the logic works 
much the same way in this logically ideal case as it does in more practical cases. 
 
The set of alternative hypotheses may contain a catch-all hypothesis hK that says that none of the 
other hypotheses are true – e.g., “the patient has none of the known diseases”. When only a finite 
number u of explicit alternative hypotheses is under consideration, hK will be equivalent to the 
sentence that denies each definite alternative: (~h1·…·~hu). 
 
Evidence for scientific hypotheses comes from specific experiments or observations. For a given 
experiment or observation, let ‘c’ represent a description of the relevant experimental or 
observational conditions under which the evidence is obtained, and let ‘e’ represent a description 
of the evidential outcome that comes about under conditions c. 
 
Scientific hypotheses often require the mediation of background knowledge and auxiliary 
hypotheses to help them express claims about evidence. Let ‘b’ represent all background and 
auxiliary hypotheses not at issue in the assessment of the hypotheses hi, but that mediate their 
implications about evidence. In cases where a hypothesis is deductively related to evidence, 
either hi·b·c |= e or hi·b·c |= ~e.  
 
For example, hi might be the Newtonian Theory of Gravitation. A test of the theory may involve 
conditions described by a statement c about how measurements of Jupiter’s position are made at 
various times; the outcome description e states the results of each position measurement; and the 
background information (or auxiliary hypotheses) b may state some trustworthy (already well 
confirmed) theory about the workings and accuracy of the devices used to make the position 
measurements. If outcome e can be calculated from the theory hi together with b and c, we have 
that hi·b·c |= e. The so-called hypothetico-deductive account of confirmation says that in such 
cases, if (c·e) actually occurs, this may be considered good evidence for hi, given b. On the other 
hand, if from hi·b·c we calculate some outcome incompatible with e, then we have hi·b·c |= ~e. In 
that case, from deductive logic alone we get that b·c·e |= ~hi, and hi is said to be falsified by b·c·e.  
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Duhem (1906) and Quine (1953) are generally credited for alerting inductive logicians to the 
importance of auxiliary hypotheses. They point out that scientific hypotheses often make little 
contact with evidence claims on their own. So, generally speaking, the evidence can only falsify 
hypotheses relative to background or auxiliary hypotheses that tie them to that evidence. 
However, the auxiliaries themselves will usually be testable on some separate body of evidence 
in much the same way that the hypotheses {h1, h2,…} are tested. Furthermore, when we are not 
simply interested in assessing the hypotheses {h1, h2,…} relative to a specific package of 
auxiliaries b, but instead want to consider various alternative packages of auxiliary hypotheses, 
{b1, b2,…}, as well, the set of alternative hypotheses to which the logic of confirmation applies 
should be the various possible combinations of original hypotheses in conjunction with the 

possible alternative auxiliaries, {h1⋅b1, h1⋅b2, ..., h2⋅b1, h2⋅b2, ..., h3⋅b1, h3⋅b2, …}. When this is the 
case, the logic of confirmation will remain the same. The only difference is that the hypotheses 
‘hi’ under discussion below should be taken to stand for the complex conjunctive hypotheses of 

form (hk⋅bv), and ‘b’ in our discussion below should stand for whatever remaining, common 
auxiliary hypotheses are not at issue. In the most extreme case, where each hypothesis at issue 
includes within itself all relevant auxiliaries, the term ‘b’ may be empty – i.e. we may take it to 
be some simple tautology. 
 
In probabilistic confirmation theory the degree to which a hypothesis hi is supported or 
confirmed on evidence c·e, relative to background b, is represented by the posterior probability 
of hi, Pα[hi | b·c·e]. It turns out that the posterior probability of a hypothesis depends on two 
kinds of factors: (1) its prior probability, Pα[hi | b] – together with the prior probabilities of its 
competitors, Pα[hj | b], etc....; and (2) the likelihood of evidential outcomes e according to hi 
(give that b and c are true), P[e | hi·b·c] – together with the likelihoods of the outcomes according 
to hi’s competitors hj, P[e | hj·b·c], etc., ... I’ll now examine each of these two kinds of factors 
more closely. Then I’ll discuss how the values of posterior probabilities depend on them. 
 
3.1 Likelihoods 
 
Hypotheses express their empirical import via likelihoods, which are confirmation function 
probabilities of form P[e | hi·b·c].17 A likelihood expresses how likely it is that outcome e will 
occur according hypothesis hi under conditions c, supposing that auxiliaries b hold.18 If a 
hypothesis together with auxiliaries and observation conditions deductively entails an evidence 
claim, the probability axioms make the corresponding likelihood objective in the sense that every 
confirmation function must agree on its values: i.e., for all confirmation functions P, P[e | hi·b·c] 
= 1 if hi·b·c |= e, and P[e | hi·b·c] = 0 if hi·b·c |= ~e. However, in many cases the hypothesis hi 

                                                 
17 Presentations of the logic of confirmation often suppress c and b, and simply write ‘P[e | h]’. 
But c and b are important to logic of the likelihoods. So I’ll continue to make them explicit. 
18 Bayesians often refer to the probability of an evidence statement on a hypothesis, P[e | h·b·c], 
as the likelihood of the hypothesis. This terminology was introduced by R.A. Fisher (1922), who 
treated likelihoods as functions on the space of possible hypotheses, which he took to be 
measures of how strongly the evidence supports hypotheses. This can be a somewhat confusing 
way of talking, since it is clearly the evidence that is made likely to whatever degree by a 
hypothesis. So I’ll just avoid this terminology altogether. 
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will not be deductively related to the evidence, but will only imply it probabilistically. There are 
at least two ways this might happen. Either hi may itself be an explicitly probabilistic or 
statistical hypothesis, or there may be an auxiliary statistical hypothesis in the background b that 
connects hi to the evidence. For the sake of clarity let’s briefly consider examples of each. 
 
A blood test for HIV has a known false-positive rate and a known true-positive rate. Suppose the 
false positive rate is .05 – i.e., the test incorrectly shows the blood sample to be positive for HIV 
in about 5% of all cases where no HIV is present. And suppose the true-positive rate is .99 – i.e., 
the test correctly shows the blood sample to be positive for HIV in about 99% all cases where 
HIV really is present. When a particular patient’s blood is tested, the hypotheses under 
consideration are ‘the patient is infected with HIV’, h, and ‘the patient is not infected with HIV’, 
~h. In this context the known test characteristics play the role of background information, b. The 
experimental condition c merely states that this patient was subjected to a blood test for HIV, 
which was processed by the lab in the usual way. Let us suppose that the outcome e states that 
the result is positive for HIV. The relevant likelihoods, then, are P[e | h·b·c] = .99 and 
P[e | ~h·b·c] = .05. In this example the values of the likelihoods are entirely due to the statistical 
characteristics of the accuracy of the test, which is carried by the background information b. The 
hypothesis h being tested is not itself statistical. 
 
This kind of situation may, of course, arise for much more complex hypotheses. The hypothesis 
of interest may be some deterministic physical theory, say Newtonian Gravitation Theory. Some 
of the experiments that test this theory may relay on imprecise measurements that have known 
statistical error characteristics, which are expressed as part of the background or auxiliary 
hypotheses b. For example, the auxiliary b may describe the error characteristics of a device that 
measures the torque imparted to a quartz fiber, used to assess the strength of the gravitational 
force between test masses. In that case b may say that for this kind of device measurement errors 
are normally distributed about whatever value a given gravitational theory predicts, with some 
specified standard deviation that is characteristic of the device. This results in specific values ri 
for the likelihoods, P[e | hi·b·c] = ri, for each of the various alternative gravitational theories hi 
being tested. 
 
On the other hand, the hypotheses being tested may themselves be statistical in nature. One of 
the simplest examples of statistical hypotheses and their role in likelihoods consists of 
hypotheses about the chance-characteristics of coin-tossing. Let h[r] be a hypothesis that says a 
specific coin has a propensity r for coming up heads on normal tosses, and that all such tosses 
are probabilistically independent of one another. Let c state that the coin is tossed n times in the 
usual way; and let e state that on these specific n tosses the coin comes up heads m times. In 
cases like this the value of the likelihood of the outcome e on hypothesis h for condition c is 
well-known: P[e | h[r]·b·c]  =  [n!/(m!(n−m)!)] rm (1−r)n−m. 
 
There are, of course, more complex cases of likelihoods involving statistical hypotheses. 
Consider the hypothesis that plutonium 233 nuclei have a half-life of 20 minutes – i.e., the 
propensity for a Pu-233 nucleus to decay within a 20 minute period is 1/2. This hypothesis, h, 
together with background b about decay products and the efficiency of the equipment used to 
detect them (which may itself be an auxiliary statistical hypothesis), yields precisely calculable 
values for likelihoods P[e | h·b·c] of possible outcomes of the experimental arrangement. 



 17

 
Likelihoods that arise from explicit statistical claims – either within the hypotheses being tested, 
or from statistical background claims that tie the hypotheses to the evidence – are sometimes 
called direct inference likelihoods. Such likelihoods are generally taken to be completely 
objective.19 So all reasonable confirmation functions should be required to agree on their values, 
just as all confirmation functions agree on likelihoods when evidence is logically entailed. In 

other words, those probability functions Pα that satisfy our axioms but get the direct inference 
likelihoods wrong should be regarded as failing to represent proper confirmation functions. 
Direct inference likelihoods may be thought of as logical in an extended, non-deductive sense. 
Indeed, some logicians have attempted to spell out the logic of direct inferences in terms of the 
logical form of the sentences involved.20 If that project can be made to work in a Bayesian 
context, then the axioms for probabilistic confirmation functions (in section 1) should be 
supplemented with additional axioms that capture the logic of the direct inference likelihoods. 
But regardless of whether that formal project can be made to work, it seems reasonable to take 
likelihoods that derive from explicit statistical claims to have objective or intersubjectively 
agreed values, and to disregard any probability function that gets this wrong as failing to 
properly represent a confirmation function.21 

                                                 
19 If you have doubts about the objectivity of direct inference likelihoods, I refer you to David 
Lewis’s Questionnaire near the beginning of “A Subjectivist’s Guide to Objective Chance” 
(1980). In that paper Lewis argues for the objectivity of direct inference likelihoods based on 
chance statements in the object language. His Principal Principle expresses his version of the 
principle governing these likelihoods. Indeed, Lewis thinks that this kind of principle about 
direct inference likelihoods captures “all we know about chance.” (p. 266) And he takes such 
likelihoods to be correct, regardless of what the right view might be about the metaphysical basis 
of chance. “I shall not attempt to decide between the Humean and the anti-Humean variants of 
my approach to credence and chance. The Principal Principle doesn’t.” (Final two lines of the 
paper, p. 292.) 
20 Attempts to do so in a Bayesian context have not been wholly satisfactory thus far, but 
research continues. For an illuminating discussion of the logic of direct inference and the 
difficulties involved in providing a formal account, see the series of papers (Levi, 1977), 
(Kyburg, 1978), and (Levi, 1978). 
21 In several places I’ve drawn on coin tossing as an example of a chancy process, and as having 
propensities towards heads. I sometimes encounter the following complaint about this treatment: 

It is reasonable to think that the propensities for single outcomes in macro-physical systems 
are all either 1 or 0. Only in quantum mechanics do there seem to be non-extreme single case 
propensities. So those antecedents of direct inference likelihoods that attribute propensities to 
macro-systems, like coin tossing systems, are (most likely) literally false. 

This objection is not just nit-picking. The point is that there will be very few real non-deductive 
cases of direct inference likelihoods (except in microphysics). It seems to me that two responses 
are in order. 
(1) As in the case of deductive logic, the falsity of the premise has nothing to do with the validity 
of the inference. I take this to be the case for probabilistic direct inferences as well.  
(2) But perhaps the issue is that if the hypothesis (e.g. about coin propensities, or about any other 
macro-system) is literally false, and if we know that it’s false, then even though the likelihood 
based on it may “make sense”, we shouldn’t want to try to confirm such a hypothesis. So there 
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Not all likelihoods of interest in confirmational contexts are warranted deductively or by 
explicitly stated statistical claims. Nevertheless, the likelihoods that relate hypotheses to 
evidence in scientific contexts should often have objective or intersubjectively agreed values. So, 
although we may need to draw on a range of different functions, Pα, Pβ ,…, Pγ, etc., to represent 
the confirmation functions employed by various members of a scientific community (due to the 
different values they assign to prior probabilities), all should agree, at least approximately, on the 
values of the likelihoods. For, likelihoods represent the empirical content of a hypothesis, what 
the hypothesis (together with background b) probabilistically implies about the evidence. Indeed, 
the empirical objectivity of a science relies on a high degree of objectivity or intersubjective 
agreement among scientists on the values of likelihoods. 
 
To see the point more vividly, imagine what a science would be like if scientists disagreed 
widely about the values of likelihoods. Each practitioner interprets a theory to say quite different 
things about how likely it is that various possible evidence statements will turn out to be true. 
Whereas scientist α takes theory h1 to probabilistically imply that event e is highly likely, his 
colleague β understands the empirical import of h1 to say that e is very unlikely. And whereas α 
takes competing theory h2 to probabilistically imply that e is quite unlikely, his colleague β reads 
h2 as saying that e is very likely. So, for α the outcome e supplies strong support for h1 over h2, 
because Pα[e | h1·b·c] >> Pα[e | h2·b·c]. But his colleague β takes outcome e to show just the 
opposite – that h2 is strongly supported over h1 – because Pβ[e | h1·b·c] << Pβ[e | h2·b·c]. If this 
kind of thing were to occur often or for significant evidence claims in a scientific domain, it 
would make a shambles of the empirical objectivity of that science. The empirical testability of 
its hypotheses and theories would be completely undermined. Under such circumstances, 
although each scientist employs the same sentences to express a given theory h, each understands 
the empirical import of these sentences so differently that h as understood by α is an empirically 

                                                                                                                                                             
are few instances of true chance claims that figure in direct inference likelihoods in the context 
of a confirmation theory. This assessment seems right up to a point. But I think there is an 
important caveat. In the sciences we often use “literally false claims” in models that give good 
approximations. I think we do exactly that when we treat systems that we take to be non-chancy 
(e.g. coin tossing) as though they are chance processes. We model the system as though it is 
“truly chancy” (has real non-extreme propensities), and within that framework we test to find 
which chance model best captures the phenomena at the level of detail we are using to describe 
it. Understood this way, there is indeed a literally true hypothesis in the neighborhood that we 
may wish to confirm – e.g. a hypothesis of the sort that says: 

for coins of this sort (e.g. bent in this particular way) tossed in the usual way, coin tossing is 
more accurately modeled as though it is a chance mechanism for which the chances of heads 
is (say) 57/100 than by any other model of a similar sort – e.g. than any other chance model 
that assigns the chances of head (according to the model) to be some other rational number of 
form k/100 (for an integer k). 

One of the 101 alternative hypotheses of this form – about which chance model best captures the 
phenomena at a given level of descriptive detail – may be literally true. We test such hypotheses 
against one another in the usual way – by counting heads that result from tosses of coins of the 
appropriate sort. Isn’t this, or something very much like it, what we think we are doing when we 
assess hypotheses about the chanciness of coin tossing? 
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very different theory than h as understood by β.22 Thus, the empirical objectivity of the sciences 
requires that experts should be in close agreement about the values of the likelihoods.  
 
For now we will suppose that the likelihoods have objective or intersubjectively agreed values, 
common to all agents in a scientific community, and shared by all confirmation functions they 
employ. We’ll mark this agreement by dropping the subscript ‘α’, ‘β’, etc., from expressions that 
represent likelihoods. One might worry that this supposition is overly strong. There are many 
legitimate scientific contexts where, although scientists should have enough of a common 
understanding of the empirical import of hypotheses to assign quite similar values to likelihoods, 
precise agreement on the numerical values is not realistic. Later (in section 6) we will see how to 
relax the supposition that likelihood values precisely agree. But for now the main ideas behind 
probabilistic confirmation theory will be more easily explained if we focus on those contexts 
were objective or intersubjectively agreed likelihoods are available. Later we will see that much 
the same logic continues to apply in contexts where the values of likelihoods may be vague, or 
where members of the scientific community may disagree about their values to some degree. 
 
An adequate treatment of the likelihoods requires the introduction of one additional notational 
device. Scientific hypotheses are generally tested by a sequence of experiments or observations 
conducted over a period of time. In order to explicitly represent the accumulation of evidence, let 
the series of sentences c1, c2, …, cn, describe the conditions under which a sequence of 
experiments or observations are conducted. And let the corresponding outcomes of these 
conditions be represented by the respective sentences e1, e2,…,en. We will abbreviate the 
conjunction of the first n descriptions of experimental or observation conditions as ‘cn’, and 
abbreviate the conjunction of descriptions of their outcomes as ‘en’. Then, for a stream of n 
observations or experiments and their outcomes, the likelihoods take the form P[en | hi·b·cn] = r, 
for appropriate r between 0 and 1. In many cases the likelihood of the evidence stream is equal to 
the product of the likelihoods of the individual outcomes: P[en | hi·b·cn] = P[e1 | hi·b·c1] ·…· 
P[en | hi·b·cn] – that is, the individual bits of evidence are probabilistically independent given the 

hypothesis. I’ll discuss this kind of probabilistic independence in more detail later. For present 
purposes we will not assume that it holds. 
 
3.2 Posterior Probabilities and Prior Probabilities 
 
In a probabilistic confirmation theory the degree to which a hypothesis is supported on the 
evidence is represented by the posterior probability of the hypothesis, Pα[hi | b·cn·en]. The 

                                                 
22 This idea should not be confused with logical positivism. Positivism holds that if two theories 
assign the same likelihood values to each possible evidence claim, then they are essentially the 
same theory, though they may be couched in different words. The slogan is: same likelihoods 
implies same theory. The point being defended here, however, is not the positivistic claim, but its 
inverse, which should be much less controversial: different likelihoods implies different theories. 
That is, given that all of the relevant background and auxiliaries are made explicit (represented in 
‘b’), if two scientists disagree significantly about the likelihoods of important evidence claims on 
a given hypothesis, they must understand the empirical content of that hypothesis quite 
differently. To that extent, though they may be using the same sentences – the same syntactic 
expressions – they use them to express empirically distinct hypotheses. 
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posterior probability represents the net plausibility of the hypothesis. It depends on the combined 
influence of evidence and non-evidential plausibility considerations. The likelihoods are the 
means through which evidence makes its contribution. But another factor, the prior probability 
of the hypothesis (on background b), Pα[hi | b], represents the weight of all non-evidential 
plausibility considerations on which posterior probabilities (i.e. posterior plausibilities) may 
depend. Bayes’ Theorem shows how the posterior probabilities of hypotheses depend on the 
values of (ratios of) likelihoods and on the values of (ratios of) prior probabilities. 
 
To understand the role of prior probabilities, consider the HIV test example described earlier. 
What the physician and patient want to know is the posterior probability Pα[h | b·c·e] of the 
hypothesis h that the patient has HIV, given the evidence of the positive test, c·e, and given the 
error rates of the test, described by b. The value of this posterior probability depends on the 
likelihood (due to the error rates) of this patient obtaining a true-positive result, P[e | h·b·c] = .99, 
and of obtaining a false positive result, P[e | ~h·b·c] = .05. In addition, the value of the posterior 
probability depends on how plausible it is that the patient has HIV before taking the test results 
into account, Pα[h | b]. In the context of medical diagnosis this prior probability is sometimes 
called the base rate. It is the plausibility that the patient may have contracted HIV based on his 
risk group (i.e., whether he is an IV drug user, has unprotected sex with multiple partners, etc.). 
Such information may be explicitly stated in the background, b. To see its importance, consider 
the following numerical results (which may be calculated using Bayes’ Theorem, as presented in 
the next subsection). If the base rate for the patient’s risk group is relatively high, say Pα[h | b] = 
.10, then the positive test result yields a probability for his having HIV of Pα[h | b·c·e] = .69. 
However, if the patient is in a very low risk group, Pα[h | b] = .001, then a positive test only 
raises the plausibility of HIV infection to Pα[h | b·c·e] = .02. This posterior probability is much 
higher than the prior probability of .001, but shouldn’t worry the patient too much. The positive 
result is more likely due to the false-positive rate of the test than to the presence of HIV. (This 
sort of test, with such a large false-positive rate, .05, is best used as a screening test; a positive 
result should lead to a second, more expensive test with better error characteristics.) 
 
In more theoretical disciplines prior probabilities may represent assessments of non-evidential, 
conceptually motivated plausibility weightings among hypotheses. However, because such 
plausibility assessments tend to vary among agents, critics often brand them as merely subjective, 
and take their role in the evaluation of hypotheses to be highly problematic. Bayesian 
confirmation theorists counter that such assessments often play an important role in the sciences, 
especially when there is insufficient evidence to distinguish among some of the alternatives. And 
they point out that the epithet “merely subjective” is unwarranted. Such plausibility assessments 
are often backed by extensive arguments that may draw on forceful conceptual considerations. 
 
Consider, for example, the kinds of plausibility considerations brought to bear in assessing the 
various interpretations of quantum theory (e.g., those related to the measurement problem). 
Many of these considerations go to the heart of conceptual issues that were central to the 
development of the theory. Indeed, many of these issues were first explored by those scientists 
who made the greatest contributions to the theory’s development, in the attempt to get a 
conceptual hold on the theory and its implications. Such arguments seem to play a legitimate role 
in the assessment of the relative plausibility of alternative views, especially when distinguishing 
evidence has yet to be found, or is far from definitive. 
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Scientists often bring plausibility arguments to bear in assessing their views. Although such 
arguments are seldom decisive, they may bring the scientific community into widely shared 
agreement, especially with regard to the implausibility of some “logically possible” alternatives. 
This seems to be the primary epistemic role of the thought experiment. It is arguably a virtue of 
probabilistic confirmation theory that it provides a place for such assessments to figure into the 
net evaluation of hypotheses. Prior probabilities are subjective in the sense that agents may 
continue to disagree on the relative merits of plausibility arguments – and so disagree on the 
prior plausibilities of various hypotheses. But assessments of priors are far from being mere 

subjective whims. Moreover, it can be shown that when sufficient empirical evidence becomes 
available, such plausibility assessments may be “washed out” or overridden by the evidence. 
We’ll see how this works in the next subsection. 
 
Our discussion of the nature of prior probabilities isn’t over yet. We will return to it a bit later. 
But let’s now see precisely how the logic of confirmation is supposed to work – how the 
likelihoods combine with prior probabilities to yield posterior probabilities for hypotheses. 
 
3.3 Bayes’ Theorem and the Logic of Hypothesis Evaluation 
 
Any probabilistic logic of confirmation that draws on the usual axioms of probability theory to 
represent how evidence supports hypotheses must be a Bayesian inductive logic in the broad 
sense. For, Bayes’ Theorem is just a simple theorem of probability theory. Its importance derives 
from the way it shows how evidence, through the likelihoods, combines with prior probabilities 
of hypotheses to produce assessments of their posterior probabilities. 
 
We will now examine several forms of Bayes’ Theorem, each derivable solely from the axioms 
of probability theory. The simplest is this: 
 
 Bayes’ Theorem: Simple Form: 

         P[en | hi⋅b⋅cn] · Pα[hi | b] ⋅ Pα[c
n | hi⋅b]  

(8)  Pα[hi | b⋅cn⋅en]  = ———————————————  

          Pα[e
n | b⋅cn] ⋅ Pα[c

n | b] 
 

          P[en | hi⋅b⋅cn] · Pα[hi | b] 

         = ——————————   if  Pα[c
n | hi⋅b] = Pα[c

n | b]. 

          Pα[e
n | b⋅cn] 

 
This equation expresses the posterior probability of hi, Pα[hi | b·cn·en], in terms of the likelihood 
of the evidence on the hypothesis (together with background and observation conditions), 
P[en | hi·b·cn], the prior probability of the hypothesis (given background conditions), Pα[hi | b], 
and the simple probability of the evidence (given background and observation conditions), 
Pα[e

n | b·cn]. This latter probability is sometimes called the marginal probability of the evidence 
or the prior probability of the evidence or the expectedness of the evidence. This version of 
Bayes’ Theorem also includes a term, (Pα[c

n | hi·b] / Pα[c
n | b]), that represents the ratio of the 

likelihood of the experimental conditions on the hypothesis and background, to the “likelihood” 

of the experimental conditions on the background alone. Bayes’ Theorem is usually expressed in 
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a way that suppresses this factor, perhaps by building conditions cn into the background b. 
However, if cn is built into b, then technically b must change as new evidence is accumulated. It 
is better to make the factor explicit, and see how to deal with it logically. 
 
Arguably the term (Pα[c

n | hi·b] / Pα[c
n | b]) should be 1, or nearly 1, since the truth of the 

hypothesis at issue should not significantly affect how likely it is that the experimental 
conditions themselves are satisfied. If various alternative hypotheses assign significantly 
different likelihoods to the experimental conditions themselves, then such conditions should 
more properly be included as part of the evidential outcomes en. 
 
Both the prior probability of the hypothesis and the marginal probability of the evidence tend to 
be “subjective”. That is, various agents from the same scientific community may legitimately 
disagree on what values these factors should take. Bayesian logicians usually accept the 
subjectivity of the prior probabilities for hypotheses, but they find the subjectivity of the 
marginal probability of the evidence more troubling. How likely is the evidence supposed to be, 
given only the background – how are we supposed to assess this value? However, this problem is 
easily finessed. 
 
One way to circumvent the subjective marginal probability of the evidence is to consider a ratio 
form of Bayes’ Theorem, a form that compares hypotheses one pair at a time: 
 
 Bayes’ Theorem: Ratio Form: 

 
   Pα[hj | b·cn·en]   P[en | hj·b·cn]  Pα[hj | b]  Pα[c

n | hj·b] 

 (9)  —————— = ——————   ⋅ ———— ⋅ ————— 
   Pα[hi | b·cn·en]   P[en | hi·b·cn]  Pα[hi | b]  Pα[c

n | hi·b] 
  
         P[en | hj·b·cn]  Pα[hj | b] 

        = ——————   ⋅ ————   if  Pα[c
n | hj·b] = Pα[c

n | hi·b]. 
         P[en | hi·b·cn]  Pα[hi | b] 

 
The second line follows if cn is no more likely on hi·b than on hj·b – i.e., if neither hypothesis 
makes the occurrence of experimental or observation conditions more likely than the other.23 
 
This ratio form of Bayes’ Theorem expresses how much more plausible one hypothesis is than 
another, based on the evidence and on their non-evidential plausibilities. Notice that the only 
subjective element affecting the ratio of posterior probabilities is the ratio of prior probabilities. 
We see from this equation that the likelihood ratios carry the full import of the evidence. The 
evidence influences the evaluation of hypotheses in no other way. 

                                                 
23 This assumption may be substantially relaxed without affecting the analysis below; we might 
instead only suppose that the ratios Pα[c

n | hj·b]/Pα[c
n | hi·b] are bounded so as not to get 

exceptionally far from 1. If that supposition were to fail, then the mere occurrence of the 
experimental conditions would count as very strong evidence for or against hypotheses, which is 
a highly implausible effect. Our analysis could include such bounded condition-ratios, but this 
would only add inessential complexity. 
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Let’s consider a simple example of how this form of Bayes’ Theorem applies. Suppose you 
possess a warped coin and want to determine its propensity for heads. You may compare two 
hypotheses, h[q] and h[r], that propose the propensity for heads is q and r, respectively. Let cn 
report that the coin is tossed n times in the usual way, and let en report a total m heads. Equation 
(9) then yields: 
 
   Pα[h[q] | b·cn·en]  q

m (1−q)n−m  Pα[h[q] | b] 

   —————— = ————— ⋅ ———— 
   Pα[h[r] | b·cn·en]  r

m (1−r)n−m   Pα[h[r] | b] 
 
When, for instance, the coin is tossed n = 100 times and comes up heads m = 72 times, the 
evidence for hypothesis h[1/2] as compared to h[3/4] is given by the likelihood ratio 
[(1/2)72(1/2)28]/[(3/4)72(1/4)28] = .000056269. So, even if prior to taking account of the evidence, 
one considers it 100 times more plausible that the coin is fair than that it is warped towards heads 
with propensity 3/4 – i.e., even if Pα[h[1/2] | b] / Pα[h[3/4] | b] = 100 – the evidence provided by 
these tosses makes the posterior plausibility that the coin is fair only about 56/10,000th as 
plausible as the hypothesis that it is warped towards heads with propensity 3/4 – i.e., 
Pα[h[1/2] | b·cn·en] / Pα[h[3/4] | b·cn·en] = .0056269. Thus, such evidence strongly refutes the 
“fairness hypothesis” relative to the “3/4-heads-propensity hypothesis”, provided the assessment 
of prior plausibilities doesn’t make the latter hypothesis too extremely implausible to begin with. 
Notice, however, that strong refutation is not absolute refutation. Additional evidence could 
reverse the trend against the fairness hypothesis. 
 
This example employs repetitions of the same kind of experiment – repeated tosses of a coin. But 
the point holds more generally. If, as the evidence increases, the likelihood ratios P[en | hj·b·cn] / 
P[en | hi·b·cn] approach 0, then the Ratio Form of Bayes’ Theorem (Equation 9) shows that the 
posterior probability of hj must approach 0 as well. The evidence comes to strongly refute hj with 
little regard for its prior plausibility value. Indeed, Bayesian confirmation turns out to be a 
version of eliminative induction, and Equation 9 begins to illustrate this. For, suppose that hi is 
the true hypothesis, and consider what happens to each of its false competitors, hj. If enough 
evidence becomes available to drive each of the likelihood ratios P[en | hj·b·cn] / P[en | hi·b·cn] 
toward 0 (as n increases), then Equation 9 says that each false hj will become effectively refuted 
– each of their posterior probabilities approaches 0. As a result, the posterior probability of hi 
must approach 1, as shown by the next two equations. 
 
If we sum the ratio versions of Bayes’ Theorem in Equation 9 over all alternatives to hypothesis 
hi (including the catch-all hK, if there is one), we get the Odds Form of Bayes’ Theorem. The 
odds against A given B is defined as Ωα[~A | B] = Pα[~A | B] / Pα[A | B]. So, we have: 
 
 Bayes’ Theorem: Odds Form 
 
          P[en | hj·b·cn] Pα[hj | b]  Pα[e

n | hK·b·cn]  Pα[hK | b] 

  (10)  Ωα[~hi | b·cn·en]  =  ∑j≠i  —————  ⋅ ————  + ——————  ⋅  ———— 
          P[en | hi·b·cn] Pα[hi | b]  P[en | hi·b·cn]  Pα[hi | b]  . 
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If the catch-all alternative isn’t needed, just drop the expression after the ‘+’ sign (i.e. let 
Pα[hK | b] = 0). We represent the term for the catch-all hypothesis (if needed) separately because 
the likelihood of evidence relative to the catch-all hypothesis will not generally enjoy the same 
kind of objectivity as the likelihoods for specific hypotheses. We leave the subscript α on the 
likelihood for the catch-all to indicate this lack of objectivity. 
 
The catch-all hypothesis may lack objective likelihoods, but the influence of the catch-all term in 
Bayes’ theorem diminishes as additional specific hypotheses become articulated. That is, when a 
new hypothesis hu+1 is formulated and made explicit, the old catch-all hK is replaced by a new 
catch-all, hK*, of form (~h1·…·~hu·~hu+1). The prior probability for the new catch-all hypothesis 
comes from diminishing the prior of the old catch-all: Pα[hK* | b] = Pα[hK | b] − Pα[hu+1 | b]. Thus, 
the influence of the catch-all term diminishes towards 0 as new alternative hypotheses are made 
explicit and “peeled off” of previous catch-all terms.24 
 
If increasing evidence drives the likelihood ratios comparing hi with each competitor towards 0, 
then the odds against hi, Ωα[~hi | b·cn·en], will approach 0 (provided that priors of catch-all terms, 
if needed, approach 0 too, as new alternative hypotheses are made explicit and peeled off). And, 
as Ωα[~hi | b·cn·en] approaches 0, the posterior probability of hi goes to 1. The relationship 
between the odds against hi and its posterior probability is this: 
 
 Bayes’ Theorem: From Posterior Odds to Posterior Probability 
 
  (11) Pα[hi | b·cn·en]  =  1/(1 + Ωα[~hi | b·cn·en]). 
 
A confirmation function provides a probabilistic index of the net support a hypothesis receives 
all-things-considered. It explicitly divides considerations that bear on the evaluation of 
hypotheses into two kinds of components: non-evidential comparative plausibility 
considerations, represented by ratios of prior probabilities; and evidential support that derives 
from what hypotheses imply about the evidence, represented by ratios of likelihoods. Equation 9 
shows precisely how these two kinds of considerations are brought to bear. In particular, it 
makes clear that if the series of likelihood ratios P[en | hj·b·cn] / P[en | hi·b·cn] approaches 0 on 
increasing evidence (i.e., as n increases), the posterior probability of hypothesis hj must approach 
0 as well, with little regard for the value of its prior probability Pα[hj | b]. As this happens to each 
of hi’s competitors, Equations 10 and 11 show that the posterior probability of hypothesis hi 
approaches 1, as evidence increases. 
 
Is there any good reason for thinking that when hi  is true, the series of likelihood ratios 
P[en | hj·b·cn] / P[en | hi·b·cn] will indeed favor it by heading towards 0 for empirically distinct 
alternatives, as evidence accumulates? There is a result, a kind of Bayesian Convergence 

                                                 
24 For example, when a new disease is discovered, a new hypothesis hu+1 about that disease being 
a possible cause of patients’ symptoms is made explicit. The old catch-all was, “the symptoms 
are caused by some unknown disease – some disease other than h1,…, hu”. The new catch-all 
hypothesis states that “the symptoms are caused by one of the remaining unknown diseases – 
some disease other than h1,…, hu, hu+1”. Then, Pα[hK | b] = Pα[~h1·…·~hu | b] = 

Pα[~h1·…·~hu·(hu+1∨~hu+1) | b] = Pα[~h1·…·~hu·~hu+1 | b] + Pα[hu+1 | b] = Pα[hK* | b] + Pα[hu+1 | b]. 
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Theorem, that speaks directly to this issue. It says: given that hi (together with b·cn) is true, it’s 
very likely that these likelihood ratios will approach 0 as evidence accumulates. The theorem 

expresses this in terms of a likelihood (given hi⋅b·cn). It supposes nothing about the values of the 
prior probabilities. Let’s call this result the Likelihood Ratio Convergence Theorem. When it 
applies, putting it together with Equation 9 shows that the posterior probability of false 
competitor hj is very likely to approach 0 as evidence accumulates, with little regard for its prior 
probability. And as this happens to each of hi’s false competitors, Equations 10 and 11 show that 
the posterior probability of the true hypothesis, hi, is very likely to approach 1.25 Thus, Bayesian 
confirmation is at bottom a version of induction by elimination, where the elimination of false 
alternatives comes by way of likelihood ratios approaching 0 as evidence accumulates. We will 
examine the Likelihood Ratio Convergence Theorem in detail in section 5. 
 
3.4 Likelihood Ratios, Likelihoodism, and the Law of Likelihood 
 
The versions of Bayes’ Theorem expressed by Equations 9-11 show that for probabilistic 
confirmation theory the influence of empirical evidence on posterior probabilities of hypotheses 
is completely captured by the ratios of likelihoods, P[en | hj·b·cn] / P[en | hi·b·cn]. The evidence 
(cn·en) influences the posterior probabilities in no other way.26 So, the following “Law” is 
implied by the logic of confirmation functions. 
 

General Law of Likelihood: 
Given any pair of incompatible hypotheses hi and hj, whenever the likelihoods Pα[e

n | hj·b·cn] 
and Pα[e

n | hi·b·cn] are defined, the evidence (cn·en) favors hi over hj, given b, if and only if 
Pα[e

n | hi·b·cn] > Pα[e
n | hj·b·cn]. The ratio of likelihoods Pα[e

n | hi·b·cn] / Pα[e
n | hj·b·cn] 

measures the strength of the evidence for hi over hj given b.27  
 
The Law of Likelihood says that the likelihood ratios represent the total impact of the evidence. 
Bayesians agree with this, but take prior probabilities to also play a role in the net assessment of 
confirmation, as represented by the posterior probabilities. So, for Bayesians, even when the 

                                                 
25 This claim depends, of course, on hi being empirically distinct from each alternative hj. I.e., 
there must be conditions ck with possible outcomes oku on which the likelihoods differ: 
P[oku | hi·b·ck]  ≠ P[oku | hj·b·ck]. Otherwise hi and hj are empirically equivalent, and no amount of 
evidence can distinguish one from the other. If the true hypothesis has empirically equivalent 
rivals, then convergence just implies that the odds against the disjunction of the true hypothesis 
with these rivals very probably goes to 0, and so the posterior probability of this disjunction goes 
to 1. Among empirically equivalent hypotheses the ratio of their posterior probabilities equals the 
ratio of their priors: Pα[hj | b·cn·en] / Pα[hi | b·cn·en]  =  Pα[hj | b] / Pα[hi | b]. So the true hypothesis 
will have a posterior probability near 1 (after evidence drives the posteriors of empirically 
distinct rivals near 0) just in case non-evidential considerations make its evidence-independent 
plausibility much higher than the sum of the plausibility ratings of empirically equivalent rivals. 
26 However, there may be other useful ways to measure evidential import. Fitelson (1999) 
provides a penetrating comparison of a number of such measures. 
27 The General Law is sometimes presented (by likelihoodists) in a stronger form – a form that 
adds that nothing but likelihood ratios is relevant to the scientific evaluation of hypotheses. In 
that form it is an explicitly anti-Bayesian thesis. 
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strength of the evidence, Pα[e
n | hi·b·cn] / Pα[e

n | hj·b·cn], is be very high, strongly favoring hi over 
hj, the net degree of confirmation of hi may be much smaller than that of hj if hi is taken to be 
much less plausible than hj on grounds not captured by this evidence (where the weight of these 
additional considerations is represented by the confirmational prior probabilities of hypotheses). 
 
Two features of the way the General Law of Likelihood need some explanation. As stated, this 
law does not presuppose that likelihoods of form Pα[e

n | hj·b·cn] and Pα[e
n | hi·b·cn] are always 

defined. This qualification is introduced to accommodate a conception of evidential support 
called Likelihoodism, which I’ll say more about in a moment. Also, the likelihoods in the law are 
expressed with the subscript α attached, to indicate that the law holds for each confirmation 
function Pα, even if the values of the likelihoods are not completely objective or agreed on by a 
given scientific community. These two features of the law both involve issues concerning the 
objectivity of the likelihoods. 
 
Each confirmation function (each function that satisfies the axioms of section 1) is defined on 
every pair of sentences. So, the likelihoods are always defined for a given confirmation function. 
Thus, for a Bayesian confirmation theory the qualifying clause about the likelihoods being 
defined is automatically satisfied. Furthermore, for confirmation functions the versions of Bayes’ 
theorem (Equations 8-11) hold even when the likelihoods are not objective or intersubjectively 
agreed. When intersubjective agreement on likelihoods may fail, we leave the subscripts α, β, 
etc. attached to the likelihoods to indicate this possible lack of agreement. Even so, the General 
Law of Likelihood applies to the confirmation function likelihoods taken one confirmation 
function at a time. For each confirmation function, the impact of the evidence in distinguishing 
between hypotheses is completely captured by the likelihood ratios. 
 
A view (or family of views) called likelihoodism maintains that confirmation theory should only 
concern itself with how much the evidence supports one hypothesis over another, and maintains 
that evidential support should only involve ratios of completely objective likelihoods. When the 
likelihoods are objective, their ratios provide an objective measure of how strongly the evidence 
supports hi as compared to hj, one that is “untainted” by such subjective elements as prior 
plausibility considerations. According to likelihoodists, objective likelihood ratios are the only 
scientifically appropriate way to assess what the evidence says about hypotheses. 
 
Likelihoodists need not reject Bayesian confirmation theory altogether. Many are statisticians 
and logicians who hold that the logical assessment of the evidential impact should be kept 
separate from other considerations. They often add that the only job of the statistician/logician is 
to evaluate the objective strength of the evidence. Some concede that the way in which these 
objective likelihoods should influence the agents’ posterior confidence in the truth of a 
hypothesis may depend on additional considerations – and that perhaps these considerations may 
be represented by individual subjective prior probabilities for agents in the way Bayesians 
suggest. But such considerations go beyond the impact of the evidence. So it’s not the place of 
the statistician/logician to compute recommended values of posterior probabilities for the 
scientific community.28 
 

                                                 
28 Royall (1997) expresses a view of this sort. 
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For most pairs of sentences conditional probabilities fail to be objectively defined in a way that 
suits likelihoodists. So, by their lights the logic of confirmation functions (captured by the 
axioms of section 1) cannot represent an objective logic of evidential support. Because of this, 
likelihoodists do not have Bayes’ theorem available (except in special cases where an objective 
probability measure on the hypothesis space is available), and so cannot extract the Law of 
Likelihood from it (as may a Bayesian, via Equations 9-11). Rather, likelihoodists must state the 
Law of Likelihood as an axiom of their logic of evidential support, an axiom that (for them) 
applies only when likelihoods have well-defined objective values. 
 
Likelihoodists tend to have a very strict conception of what it takes for likelihoods to be well-

defined. They consider a likelihood well-defined only when it is has the form of what we referred 
to earlier as a direct inference likelihood – i.e., only when either, (1) the hypothesis (together 
with background and experimental conditions) logically entails the evidence claim, or (2) the 
hypothesis (together with background conditions) logically entails an explicit simple statistical 

hypothesis that (together with experimental conditions) specifies precise probabilities for the 
each type of event that make up the evidence. 
 
Likelihoodists make a point of contrasting simple statistical hypotheses with composite 

statistical hypotheses, which only entail imprecise, or disjunctive, or directional claims about the 
statistical probabilities of evidential events. A simple statistical hypothesis might say, for 
example, “the chance of heads on tosses of the coin is precisely .65”; a composite statistical 
hypothesis might say, “the chance of heads on tosses is either .65 or .75”, or it may be a 
directional hypothesis that says, “the chance of heads on tosses is greater than .65”. 
Likelihoodists maintain that composite hypotheses are not an appropriate basis for well-defined 
likelihoods, because such hypotheses represent a kind of disjunction of simple statistical 
hypotheses, and so must depend on non-objective factors – i.e. on the prior probabilities of the 
various hypotheses in the disjunction. For example, “the chance of heads on tosses is either .65 
or .75”, is a disjunction of the two simple statistical hypotheses h.65 and h.75. Then from the 
axioms of probability theory it follows that the likelihood of any specific sequence of outcomes e 
from appropriate tosses c is given by 
 

  Pα[e | c⋅(h.65∨h.75)] =  
 

    (P[e | c⋅h.65] Pα[h.65 | c]  + P[e | c⋅h.75] Pα[h.75 | c]) / (Pα[h.65 | c] + Pα[h.75 | c]) 
 

where only the likelihoods based on simple hypotheses (for which ‘α’ has been dropped) are 
objective. Thus, likelihoods based on disjunctive hypotheses depend (at least implicitly) on the 
prior probabilities of the simple statistical hypotheses involved; and likelihoodists consider such 
factors to be too subjective to be permitted a role in a logic that is supposed to represent only the 
impact of the evidence. 
  
Taking all of this into account, the version of the Law of Likelihood appropriate to likelihoodists 
may be stated as follows. 
 

Special Law of Likelihood:  
Given a pair of incompatible hypotheses hi and hj that imply statistical models regarding 
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outcomes en given (b·cn), the likelihoods P[en | hj·b·cn] and P[en | hi·b·cn] are well defined. For 
such likelihoods, the evidence (cn·en) supports hi over hj, given b, if and only if 
P[en | hi·b·cn] > P[en | hj·b·cn]; the ratio of likelihoods P[en | hi·b·cn] / P[en | hj·b·cn] measures 
the strength of the evidence for hi over hj given b.  

 
Notice that when either version of the Law of Likelihood holds, the absolute size of any 
particular likelihood is irrelevant to the strength of the evidence. All that matters is the relative 
size of the likelihoods – i.e., the size of their ratio. Here is a way to see the point. Let c1 and c2 be 
the conditions for two different experiments having outcomes e1 and e2, respectively. Suppose 
that e1 is 1000 times more likely on hi (given b·c1) than is e2 on hi (given b·c2); and suppose that 
e1 is also 1000 times more likely on hj (given b·c1) than is e2 on hj (given b·c2) – i.e., suppose that 
Pα[e1 | hi·b·c1] = 1000 · Pα[e2 | hi·b·c1], and Pα[e1 | hj·b·c1] = 1000 · Pα[e2 | hj·b·c2]. Which piece of 
evidence, (c1·e1) or (c2·e2), is stronger evidence with regard to the comparison of hi to hj? The 
Law of Likelihood implies both are equally strong. All that matters evidentially are the ratios of 
the likelihoods, and they are the same: 
 
  Pα[e1 | hi·b·c1] / Pα[e1 | hj·b·c1] = Pα[e2 | hi·b·c2] / Pα[e2 | hj·b·c2].  
 
Thus, the General Law of Likelihood implies the following principle. 
 

General Likelihood Principle:  
Suppose two different experiments or observations (or two sequences of them) c1 and c2 
produce outcomes e1 and e2, respectively. Let { h1, h2, …} be any set of alternative 
hypotheses. If there is a constant K such that for each hypothesis hj from the set, 
Pα[e1 | hj·b·c1] = K · Pα[e2 | hj·b·c2], then the evidential import of (c1·e1) for distinguishing 
among hypotheses in the set (given b) is precisely the same as the evidential import of (c2·e2).  

 
Similarly, the Special Law of Likelihood implies a corresponding Special Likelihood Principle 
that applies only to hypotheses that express simple statistical models.29  
 
Bayesians agree with likelihoodists that likelihood ratios completely characterize the extent to 
which the evidence favors one hypothesis over another (as shown by Equations 9-11). So they 
agree with the letter of the Law of Likelihood and the Likelihood Principle. Furthermore, 
Bayesian confirmationists may agree that it’s important to keep likelihoods separate from other 
factors, such as prior probabilities, in scientific reports about the evidence. However, Bayesians 
go further than many likelihoodists in finding a legitimate role for prior plausibility assessments 
to play in the full evaluation of scientific hypotheses. They propose to combine a measure of the 
impact of evidence (couched in terms of ratios of likelihoods) with a measure of the plausibility 
of hypotheses based on all other relevant factors (couched in terms or ratios of prior 

                                                 
29 The Law of Likelihood and the Likelihood Principle have been formulated in somewhat 
different ways by various logicians and statisticians. R.A. Fisher (1922) argued for the 
Likelihood Principle early in the 20th century, though he didn't call it that. One of the first places 
it is discussed under that name is in (Savage, et. al., 1962). The Law of Likelihood was first 
identified by that name in Hacking (1965), and has been invoked more recently by the 
likelihoodist statisticians A.F.W. Edwards (1972) and R. Royall (1997). 
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probabilities) to yield a probabilistic measure of the net confirmation of each hypothesis (its 
posterior probability). 
 
Throughout the remainder of this article I will not assume that likelihoods must be based on 
simple statistical hypotheses, as likelihoodist would have them. However, most of what will be 
said about likelihoods, including the convergence results in section 5 (which only involved 
likelihoods), applies to the likelihoodist conception of likelihoods as well. We’ll continue for 
now to take the likelihoods with which we are dealing to be objective in the sense that all 
members of the scientific community agree on their numerical values. In section 6 we’ll see how 
to extend this approach to cases where (even) the likelihoods are vaguer and more diverse. 
 
3.5 The Representation of Vague and/or Diverse Prior Probabilities 
 
Given that a scientific community should largely agree on the values of the likelihoods for 
hypotheses, any significant disagreement regarding the posterior probabilities of hypotheses 
should derive from disagreements over prior probabilities. They employ diverse confirmational 
probability functions. Furthermore, individual agents may not be able to specify precisely how 
plausible they consider a hypothesis to be; so their prior probabilities for hypotheses may be 
vague. Both diversity due to disagreement among agents and vagueness for each individual agent 

can be represented by sets of confirmation functions, {Pβ, Pδ, …}, that agree on the likelihoods, 
but encompass a range of values for the prior plausibilities of hypotheses. Diversity and 
vagueness are different issues, but they may be represented in much the same way. We consider 
each in turn. 
 
An individual’s assessments of evidence-independent plausibilities of hypotheses will often be 
vague – not subject to the kind of precise quantitative treatment that a probabilistic logic of 
confirmation seems to require for prior probabilities. So it is sometimes objected that the kind of 
assessment of prior probabilities required to get the Bayesian appraisal going cannot be had in 
practice. Bayesian confirmation theory has a way of addressing this worry. An agent’s vague 
assessments of prior plausibilities may be represented by a collection of probability functions, a 
vagueness set, which covers the range of plausibility values that the agent finds acceptable. 
Notice that if accumulating evidence drives the likelihood ratios to extremes, the range of 
functions in the agent’s vagueness set will come to near agreement, near 0 or 1, on values for 
posterior probabilities of hypotheses. Thus, as evidence accumulates, the agent’s vague initial 
plausibility assessments may transform into quite sharp posterior probabilities that indicate the 
strong refutation or support of the various hypotheses. Intuitively this seems like quite a 
reasonable way for the logic to work. 
 
The various agents in a community may widely disagree over the non-evidential plausibilities of 
hypotheses. Bayesian confirmation theory may represent this kind of diversity across the 
community of agents as a collection containing all functions in the agents’ vagueness sets. Let’s 
call such a collection a diversity set. So, while there may well be disagreement among agents 
regarding the prior plausibilities of hypotheses, and while individual agents may only have vague 
priors, the logic of probabilistic confirmation may readily represent this feature. Furthermore, if 
accumulating evidence drives the likelihood ratios to extremes, the range of functions in a 
diversity set will come to near agreement on sharp values, near 0 or 1, for posterior probabilities 
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of hypotheses. So, not only can such evidence firm up each agent’s vague initial plausibilities, it 
also brings the whole community into agreement on the near refutation and on the strong support 
of the various alternative hypotheses. 
 
Under what conditions might the likelihood ratios go to such extremes as evidence accumulates, 
effectively washing out vagueness and diversity? The Likelihood Ratio Convergence Theorem 
(discussed in detail in section 5) implies that if a true hypothesis disagrees with false alternatives 
on the likelihoods of possible outcomes for a long enough stream of experiments or observations, 
then that evidence stream will very probably produce actual outcomes that drive the likelihood 
ratios of false alternatives as compared to the true hypothesis to approach 0. As this happens, 
almost any range of prior plausibility assessments will be driven to agreement on the posterior 
plausibilities for hypotheses. Thus, the accumulating evidence will very probably bring all 
confirmation functions in the vagueness and diversity sets for a community of agents to near 
agreement on posterior plausibility values – near 0 for the false competitors, and near 1 for the 
true hypothesis. 
 
One more point about prior probabilities and Bayesian convergence is worth noting. Some 
subjectivist versions of Bayesianism seem to suggest that an agent’s prior plausibility 
assessments for hypotheses should stay fixed once and for all, and that all plausibility updating 
should be brought about via the likelihoods in accord with Bayes’ Theorem. Critics argue that 
this is unreasonable. The members of a scientific community may quite legitimately revise their 
prior (non-evidential) plausibility assessments for hypotheses from time to time as they rethink 
plausibility arguments and bring new considerations to bear. This seems a natural part of the 
conceptual development of a science. It turns out that such reassessments of priors poses no 
difficulty for Bayesian confirmation theory. Reassessments may sometimes come about by the 
addition of explicit statements that supplement or modify the background information b. Or they 
may take the form of (non-Bayesian) transitions to new vagueness sets for individual agents and 
to new diversity sets for the community. The logic of Bayesian confirmation theory places no 
restrictions on how values for prior plausibility assessments might change. Provided that the 
series of reassessments of prior plausibilities doesn’t push the prior of the true hypothesis ever 
nearer to zero, the Likelihood Ratio Convergence Theorem implies that the evidence will very 
probably bring the posterior probabilities of its empirically distinct rivals to approach 0 via 
decreasing likelihood ratios; and as this happens, the posterior probability of the true hypothesis 
will head towards 1. 
 
 
4. What IS Confirmational Probability Anyway? 
 
If confirmation functions aren’t some sort of normative guide to what we may legitimately 
believe, then they are useless, and probabilistic confirmation theory is a pointless enterprise. 
Ideally a confirmation function should be a kind of truth-indicating index. When things are 
working right a confirmation function should eventually indicate false hypotheses by sticking 
them with confirmational probability numbers near 0, and it should indicate true hypotheses by 
assigning them confirmation numbers that approach 1. Provided they have this truth-indicating 
feature, it makes good epistemic sense for degree-of-confirmation influence belief-strength. But 
exactly how is this supposed to work. How is the degree-of-confirmation for a hypothesis 
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supposed to hook up with one’s level-of-confidence or degree-of-belief in its truth or falsehood? 
Views about the nature of confirmation functions, about what they really are, should be sensitive 
to this question. A view that cannot reasonably tie confirmation to appropriate belief presents us 
with nothing but a useless contrivance. 
 
4.1 Against Syntactic-Structural Versions of a Logical Interpretation: Grue-Hypotheses 
 
Bayesian logicists like Keynes and Carnap maintained that confirmation is logical in the same 
way that deductive logic is logical, and that it should play an analogous role in informing belief. 
We’ll need more details about how this is supposed to go. But we first need to get a better handle 
on what these logical confirmation functions are supposed to be like. 
 
A leading idea is that posterior probabilities for hypotheses should be determined by logical 
structure alone. The idea of basing probabilities on syntactic structure may seem plausible 
enough in the case of likelihoods that deductively or statistically relate hypotheses to the 
evidence. So, if logical form could also be made to determine the values of prior probabilities, 
then the logic of confirmation would be fully formal in the same way that deductive logical 
entailment is formal – i.e., it would be based only of the syntactic structure of the sentences 
involved. Such confirmation functions would be logical probabilities in the sense that their 
values would be uniquely specified by the syntactic structures of the sentences of the language. 
A sufficiently rigorous version of this approach would specify a uniquely best way of assigning 
logically appropriate priors to hypotheses, resulting in a single uniquely best logical confirmation 
function. This confirmation function would be completely objective in that it would not be 
influenced by anyone’s subjection opinions about the plausibilities of various hypotheses. 
 
Keynes and Carnap each tried to implement this kind of approach through syntactic versions of 
the principle of indifference. The idea is that hypotheses that share the same syntactic structure 
should be assigned the same prior probability values. Carnap showed how to carry out this 
project in detail, but only for extremely simple formal languages. Most logicians now take the 
project to have failed because of a fatal flaw in the whole idea that reasonable prior probabilities 
can be made to depend on logical form alone. Semantic content should matter. Goodmanesque 
grue-predicates provide one way to illustrate this point.30 
 
Call an object grue at a given time just in case “either the time is earlier than the first second of 
the year 2030 and the object is green, or the time not earlier than the first second of 2030 and the 
object is blue”. Now the statement ‘All emeralds are grue (at all times)’ has the same syntactic 
structure as ‘All emeralds are green (at all times)’. So, if syntactic structure determines priors, 
then these two hypotheses should have the same prior probabilities. Indeed, both should have 
prior probabilities approaching 0. For, there are an infinite number of competitors of these two 
hypotheses, each sharing the same syntactic structure: consider the hypotheses ‘All emeralds are 
gruen (at all times)’, where an object is gruen at a given time just in case “either the time is earlier 
than the first second of the nth day after January 1, 2030, and the object is green, or the time is 
not earlier than the first second of the nth day after January 1, 2030, and the object is blue.” A 

                                                 
30 Goodman (1955) introduced predicates of the following sort as a challenge to inductive logic. 
However, the details of my example and the use to which I’ll put it differs from Goodman’s. 



 32

purely syntactic specification of the priors should assign all of these hypotheses the same prior 
probability. But these are mutually exclusive hypotheses; so their prior probabilities must sum to 
a value no greater than 1. The only way this can happen is for ‘All emeralds are green’ and each 
of its gruen competitors to have prior probability values equal to 0. In that case the green 
hypothesis can never receive a posterior probability above 0. 
 
One might object that the predicate ‘grue’ is defined in terms of ‘green’, and so hides the extra 
syntactic complexity. But from a purely formal, syntactic point of view (which is all this view is 
entitled to), the predicates we happen to actually employ are only an accident of the language we 
happen to speak. We could have spoken the grue-language, where ‘grue’ is the more primitive 
predicate, where the predicate ‘green’ is defined, and hides the extra syntactic complexity. 
Here’s how to spell out this point in detail. Suppose the grue-language also contains a predicate 
‘bleen’ which, translated to our usual language works like this: an object is bleen at a given time 
just in case “either the time is earlier than the first second of the year 2030 and the object is blue, 
or the time not earlier than the first second of 2030 and the object is green”. Now, it is easy to 
show that from the perspective of the grue-language our predicate ‘green’ is defined as follows: 
“an object is green at a given time just in case “either the time is earlier than the first second of 
the year 2030 and the object is grue, or the time not earlier than the first second of 2030 and the 
object is bleen”. (‘Blue’ may be similarly defined). The point is, from a purely logical 
perspective, there is no reason to prefer one set of primitive predicates over another. Presumably 
part of the mission of confirmation theory is to discover what hypotheses, couched in terms of 
what primitive predicates best describes the world. The syntactic-structural view attempts to 
avoid prejudicing the confirmatory process by assigning prior probabilities in a 
“logically/syntactically unbiased” way. The grue example shows that this can’t work. If you pick 
a preferred set of predicates, you build in a bias. If you don’t pick a preferred set, then all of the 
grue-like hypotheses must be given equal footing to the green hypothesis. But then all prior 
probabilities must be 0 (or so close to 0 that no significant amount of confirmation can occur). 
 
Even if some version of the syntactic-structural approach could be made to work, its advocates 
would still owe us an account of how, and why, such confirmation functions should inform our 
belief-strengths for various hypotheses. In particular, for cases where the evidence is not yet 
sufficient to strongly favor one specific hypothesis over an alternative (i.e. where the likelihood 
ratio is near 1), why should an agent’s belief-strength (or level of confidence) be governed solely 
by the syntactic structure of these hypotheses, rather than by their (semantic) meanings together 
with whatever plausibility considerations make the most sense to the scientific community? The 
defenders of the syntactic-structural view owe us credible reasons to conform belief to their 
confirmation functions. 
 
4.2 Against the Subjective Belief-Function Interpretation: the Problem of Old Evidence 
 
The subjectivist or personalist Bayesian view solves the problem of how confirmation is 
supposed to influence belief in the most direct way possible. It says that the agent’s confirmation 

function Pα should just be his belief function, Belα, which is a probability function that measures 
how confident the agent is (or should be) in the truth of various statements. Belief is, of course, 
dynamic. We learn new truths, including evidence claims. On the subjectivist account, upon 

learning new evidence e, an agent α is supposed to update his belief-strengths via Bayesian 
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conditionalization: for all sentences S (including the hypotheses hj), Belα-new[S] = Belα-old[S | e]. 
This is where Bayes’ Theorem comes in. When sentence S is a hypothesis hi, we have (from 
combining Equations 10 and 11, and suppressing ‘c’ and ‘b’, as subjectivists usually do): 
 

              Belα-old[e | hj]  Belα-old[hj] 

  Belα-new[hi]  =  Belα-old[hi | e] = 1 / (1 +  ∑j≠i  ——————  ⋅ ————  ) , 

              Belα-old[e | hi]  Belα-old [hi] 
  
  where the catch-all hypothesis, if needed, is included among the hypotheses hj. 
 
This shows how Bayes’ Theorem governs the updating of belief-strengths on new evidence. 
 
Formally this account works just fine. However there are reasons for thinking that confirmation 

functions must be distinct from subjectivist or personalist degree-of-belief functions. One such 
reason is the problem of old evidence.

31 To understand the problem we need to first consider 
more carefully what belief functions are supposed to represent. 
 
Bayesian belief functions are supposed to provide an idealized model of belief strengths for 
agents. They extend the notion of ideally consistent belief to a probabilistic notion of ideally 
coherent belief strengths. I have no objection to this kind of idealization as a normative guide for 
real decision making. An agent is supposed to make decisions based on her belief-strengths 
about the state of the world, her belief strengths about possible consequences of her actions, and 
her assessment of the desirability (or utility) of these consequences. But the very role that belief 

functions are supposed to play in decision making makes them ill-suited to hypothesis 
confirmation, where the likelihoods are often supposed to be objective, or at least possess 
intersubjectively agreed values that represent the empirical import of hypotheses. That is, for the 
purposes of decision making, degree-of-belief functions should represent the agent’s belief 
strengths based on everything she presently knows. But then the degree-of-belief likelihoods 
must represent how strongly the agent would believe the evidence if a hypothesis hi were added 
to everything else she presently knows. This makes them quite different than confirmation 
function likelihoods, which represent what the hypothesis (together with explicit background and 
experimental conditions) says or implies about the evidence. In particular, degree-of-belief 
likelihoods are saddled with a version of the problem of old evidence – a problem not shared by 
confirmation function likelihoods. 
 
Here is the problem. An evidence statement e may be well-known far in advance of the time 
when we first attempt to account for it with some new hypothesis or theory. For example, the 
rate of advance in Mercury’s perihelion was known long before Einstein developed the theory of 
General Relativity, and figured out how the theory could account for that phenomenon. If the 
agent is already certain of an evidence statement e before using e to test a hypothesis, then her 
belief-function likelihoods for e must have value 1, and so the belief-function likelihood must 

also be 1 on every hypothesis. That is, if Belα-old is her belief function and she already knows that 

e, then Belα-old[e] = 1. It then follows from the axioms of probability theory that Belα-old[e | hi] = 1 

                                                 
31 Glymour (1980) first raised this problem. Eells (1985) extends the problem. For a more 
extensive version of the following treatment see (Hawthorne 2005). 
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as well, regardless of what hi says – even if hi says that e is very unlikely.  
 
The problem goes even deeper. It not only applies to evidence that the agent knows with 

certainty. It turns out that almost anything the agent learns that can change how strongly she 
believes e will also influence the value of her belief-function likelihood for e, because a belief 

function Belα-old[e | hi] represents the agent’s belief strength given everything she knows. 
 
To see the difficulty with less-than-certain evidence, consider the following example (where I’ll 
continue to suppress the ‘b’ and ‘c’ terms.) A physician intends to use a treadmill test to find 
evidence about whether her patient has heart disease, h. She knows from medical studies that 
there is a 10% false negative rate for this test; so her belief-strength for a negative result, e, given 

heart disease is present, h, is Belα-old[e | h] = .10. Now, her nurse is very professional and is 
usually unaffected by patients’ test results. So, if asked, the physician would say her belief 
strength that her nurse will feel awful about it, s, if the test is positive (i.e. if ~e) is around 

Belα-old[s | ~e] = .05. Let us suppose, as seems reasonable, that this belief-strength is independent 

of whether h is in fact true – i.e. Belα-old[s | ~e⋅h] = Belα-old[s | ~e]. The nurse then tells the 
physician, in a completely convincing way, “if his test comes out positive, I’ll feel just awful 
about it.” The physician’s new belief function likelihood for a false negative must then become 

Belα-new[e | h] = Belα-old[e | h·(~e⊃s)] = .69.32 Now, if a negative test result comes back from the 

lab, which likelihood is the physician supposed to use in her evaluation of the patient’s prospects 

for having heart disease, her present personal belief-function likelihood, Belα-new[e | h] = .69, or 
the “real” false-negative rate likelihood, P[e | h] = .10? 
 
The main point is that even the most trivial knowledge of conditional (or disjunctive) claims 
involving e may completely upset the objective values for likelihoods for an agent’s belief 
function. And an agent will almost always have some such trivial knowledge. E.g., the physician 
in the previous example may also learn that if the treadmill test is negative for heart disease, 
then, (1) the patient’s worried mother will throw a party, (2) the patient’s insurance company 
won’t cover additional tests, (3) it will be the thirty-seventh negative treadmill test result she has 
received for a patient this year,…, etc. Updating on such conditionals can force physicians’ belief 

functions to deviate widely from the evidentially objective, textbook values for likelihoods. 
 

More generally, it can be shown that the incorporation into Belα of almost any kind of evidence 
for or against the truth of a prospective evidence claim e – even uncertain evidence for e, as may 
come through Jeffrey updating33 – completely undermines the objective or intersubjectively 
agreed likelihoods that a belief function might have otherwise expressed.34 This should be no 
surprise. The agent’s belief function likelihoods reflect her total degree-of-belief in e, based on h 
together with everything else she knows about e. So the agent’s present belief function may 
capture appropriate, public likelihoods for e only if e is completely isolated from all of the agents 
other beliefs. And this will rarely be the case. 

                                                 
32 Since Belα-old[e | h·(~e⊃s)] = Belα-old[~e⊃s | h·e] · Belα-old[e | h] / (Belα-old[~e⊃s | h·e] · 

Belα-old[e | h] + Belα-old[~e⊃s | h·~e] · Belα-old[~e | h]) = Belα-old[e | h] / (Belα-old[e | h] + 

Belα-old[s | ~e·h] · Belα-old[~e | h])  =  .1/(.1 + (.05)(.9)) = .69. 
33 See Jeffrey (1965, 1987, 1992). 
34 See (Hawthorne 2005) for more details. 
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One Bayesian subjectivist response to this kind of problem is that the belief functions employed 
in scientific inferences should often be “counterfactual belief functions”, which represent what 
the agent would believe if e were subtracted (in some suitable way) from everything else she 
knows (see, e.g. Howson & Urbach, 1993). However, our example shows that merely subtracting 
e won’t do. One must also subtract any conditional (or disjunctive) statements containing e. And 
one must subtract any uncertain evidence for or against e as well. So the counterfactual belief 
function idea needs a lot of working out if it is to rescue the idea that subjectivist Bayesian belief 
functions can provide a viable account of the likelihoods employed by the sciences. 
 
There is important work for the degree-of-belief notion to do as part of our best formal account of 
belief and decision. But degree-of-confirmation functions, associated with objective or public 
likelihoods, do different work. It seems that confirmation functions should help guide changes in 
belief, but they should not themselves be the agents’ belief functions. Taking probabilistic 
confirmation functions to be degree-of-belief functions, even counterfactual ones, forces the degree-

of-belief conception into a mold that doesn’t suit it given the other work it does. Better to keep these 
two notions distinct, and bridge them with an account of how degree-of-confirmation should inform 
degree-of-belief. 
 
4.3 How Confirmational Support should influence Belief-Strength: the Truth-Index Interpretation  
 
Rather than ask what a confirmation function is, perhaps it’s more fruitful to ask what a 
confirmation function is supposed to do. That is, I want to suggest a kind of functionalist view of 
the nature of confirmation functions. You might call this the they-are-what-they-do 
interpretation. But what is a confirmation function designed to do? What is its functional role? 
 
As I see it, a confirmation function is supposed to be a kind of truth-indicating index. It can be 
expected to successfully perform this role “when things are working right”. That is, “when things 
are working right” a confirmation function will eventually indicate the falsehood of false 
hypotheses by sticking them with confirmational probability numbers near 0, and it will come to 
indicate the truth of true hypotheses by assigning them confirmation numbers that approach 1. 
But what does it take for “things to work right”? Although spelling this out is not completely 
trivial, it’s also not as daunting as one might think. 
 
If, among the alternative hypotheses proposed to account for a given subject-matter, we are 
fortunate enough to think up a hypothesis that happens to in fact be true, and if we find ways to 
empirically test it against rivals, then all that’s needed for success is persistence and not too 
much bad luck with how the evidence actually turns out. For, according to the Likelihood Ratio 
Convergence Theorem (section 5), the true hypothesis itself says, via its likelihoods, that a long 
enough (but finite) stream of observations or experiments is very likely to produce outcomes that 
will drive the likelihood ratios of empirically distinct false competitors to approach 0. As this 
happens, the confirmation index of these competitors as measured by their posterior probabilities 
also approaches 0, and the confirmation index of the true hypothesis (or at least its disjunction 
with empirically equivalent rivals) will approach 1. 
 
However, one must be careful about how one reads this result. The result does not imply that 
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whatever hypothesis has index near 1 at a given moment is likely to be the true one. The 
convergence theorem doesn’t say that. Rather, the result suggests the pragmatic strategy of 
continually testing hypotheses, and taking whichever of them has an index near 1 (if there is one) 
as the best current candidate for being true. The convergence theorem implies that maintaining 
this strategy of continual testing is very likely to eventually promote the true hypothesis (or its 
disjunction with empirically indistinguishable rivals) to the status of best current candidate, and 
maintain it there. Thus, this strategy is very likely to eventually produce the truth for us. 
However, the theorem doesn’t imply that we’ll ever be in a position to justly be certain that our 
best current candidate is the true alternative. Thus, this eliminative strategy promises to work 
only if we continue to look for rivals and continue to test the best alternative candidates against 
them. This strategy shouldn’t seem novel or surprising. It’s merely a rigorously justified version 
of scientific common sense. 
 
When the empirical evidence is meager or unable to distinguish between a pair of hypotheses, 
the confirmation index must rely on whatever our most probative non-evidential considerations 
may be able to tell us. We may often have good reasons besides the observable evidence to 
strongly discount some logically possible alternatives as just too implausible, or at least as 
significantly less plausible than some better conceived options. Indeed, we always bring some 
such considerations to bear, at least implicitly. For, given any specific hypothesis, logicians can 
always cook up numerous alternatives that agree with it on all the evidence gathered thus far. 
Any reasonable scientist will reject most of these inventions immediately, because they look ad 

hoc, contrived, or just foolish. Such reasons for rejection appeal to neither purely logical 
characteristics of these hypotheses, nor to evidential considerations. All such reasons ultimately 
rely on plausibility consideration (at least implicitly) that are not part of the evidence itself. This 
is not to say that such considerations are purely conceptual. They may involve some broadly 
empirical components as well. I call these considerations “non-evidential” because they are not 
directly represented by the likelihoods. Perhaps some kinds of broadly empirical considerations 
cannot be fully captured by statements describing observation conditions c and their evidential 
outcomes e, and so cannot be captured by likelihoods. On a Bayesian account of confirmation, 
whatever cannot be represented by the likelihoods may only be introduced via the “prior” 
probabilities. They are the conduit through which considerations not expressed by likelihoods 
may be brought to bear in the net evaluation of scientific hypotheses. 
 
All this suggests that the normative connection between confirmation and belief should go 
something like this: 
 

The Belief-Confirmation Alignment Condition: 
Each agent should bring her belief-strengths for hypotheses into alignment with their 
degrees-of-confirmation on all of the relevant evidence she is aware of – where the 
confirmation function she employs draws on prior probabilities that represent her best 
estimates of the comparative plausibilities of alternative hypotheses based on all relevant 

non-evidential considerations of which she is aware. That is, if Pα is her confirmation 
function (as just described), and she is certain of background and auxiliaries b and evidence 

c
n⋅en, and this is the totality of her evidence that is relevant to hi, then her belief strength Belα 

should be (or become) Belα[hi] = Pα[hi | b⋅cn⋅en]. 
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Furthermore, if (as is often the case) she has partial or uncertain evidence that’s relevant to 
hi, then her belief strength should be the weighted sum of the degrees-of-confirmation of the 

hypothesis on each possible alternative evidence sequence cn⋅en, weighted by her belief-strengths 
for each of those possible evidence sequences (and similarly for possible alternative auxiliaries b, 
if they are uncertain), as follows:35 
 

Belα[hi] =  ∑{b⋅c
n

⋅e
n

}  Pα[hi | b⋅cn⋅en] ⋅ Belα[b⋅cn⋅en]. 
 
The Alignment Condition may be difficult for real agents to follow precisely. But it should be a 
normative guide for real agents (much as Bayesian decision theory is supposed to be a normative 
guide).36 The Alignment Condition merely recommends that a real agent’s confidence in 
scientific hypotheses should conform to the level indicated by her confirmation function, 
moderated by how confident she is in the truth of the evidence claims. It shouldn’t be overly 
difficult for real agents to approximately align belief to confirmation in this way. Furthermore, 
supposing (as argued earlier) that probabilistic confirmation functions should not just be belief 
functions, the Alignment Condition shows how probabilistic confirmation can plausibly be made 
to mesh with the usual Bayesian account of belief and decision. The Alignment Condition is 
recommended as a norm by the following fact: if the agent comes to strongly believe true 
evidence statements, then alignment takes advantage of Likelihood Ratio Convergence to very 
probably bring the agent to strongly doubt false hypotheses and strongly believe true ones. What 
better recommendation for the formation of belief-strengths about scientific hypotheses could 
one reasonably expect to have? 
 
 
5. The Likelihood Ratio Convergence Theorem 
 
The Likelihood Ratio Convergence Theorem shows that when hi is true and hj is empirically 
distinct from hi, it’s very likely that a sequence of outcomes en will occur that yields a sequence 
of likelihood ratios P[en | hj·b·cn]/P[en | hi·b·cn] that approach 0 as the evidence accumulates (i.e., 
as n increases). The theorem places an explicit lower bound on the rate of probable convergence. 
That is, it puts bound that approaches 1 on the likelihood that, when hi is true, some stream of 
outcomes will occur that yields a likelihood ratio within any chosen small distance of 0. When 

                                                 
35 If the agent is certain of some particular bit of evidence ck⋅ek in the evidence stream, her belief 

function will assign belief-strength 0 to each possible evidence sequence cn⋅en that fails to 

contain ck⋅ek  – i.e., Belα[b⋅cn⋅en] = 0 for all cn⋅en that don’t contain ck⋅ek. 
36 The idea that Bayesian epistemology should draw on two distinct probability functions in 
roughly this way was suggested by Carnap (1971). He calls the degree-of-belief notion ‘rational 
credence’, and calls the degree-of-confirmation notion ‘credibility’. He takes initial credence 

functions to derive from credibility functions, which themselves are taken to be logical 

probability functions. Brian Skyrms largely adopts this Carnapian idea in the third edition of 
Choice and Chance (1986, Ch. 1, Ch. 6, Sects. 7 and 8), though he doesn’t identify his version of 
credibility functions with Carnapian logical probabilities. Skyrms calls the degree-of-belief 

notion ‘epistemic probability’, and calls the degree-of-confirmation notion ‘inductive 
probability’. More recently Marc Lange (1999) also argues for a two-function Bayesian model. 
See (Hawthorne 2005) for more about the alignment of belief with confirmational support. 
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that happens, it counts heavily against the truth of alternative hj. 
 
This convergence theorem draws only on likelihoods. Neither the statement of the theorem nor 
its proof employs prior probabilities of any kind. Likelihoodists and Bayesian confirmationists 
agree that when the ratios P[en | hj·b·cn] / P[en | hi·b·cn] approach 0 for increasing n, the evidence 
goes strongly against hj as compared to hi. So, even likelihoodists, who eschew the use of prior 
probabilities, may embrace this result. 
 
For Bayesians, the Likelihood Ratio Convergence Theorem has the additional implication that 
the posterior probabilities of empirically distinct false competitors of a true hypothesis are very 
likely to converge to 0. That’s because whenever the ratios P[en | hj·b·cn] / P[en | hi·b·cn] approach 
0 for increasing n, the Ratio Form of Bayes’ Theorem, Equation 9, says that the posterior 
probability of hj will also approach 0. The values of prior probabilities only accelerate or retard 
this process of convergence. This also implies that all confirmation functions in a collection that 
constitutes a vagueness set (that represent the range of vagueness in an agent’s assessments of 
the prior plausibilities of hypotheses) will very likely come to agreement, all coming to agree 
that the posterior probability of false alternatives approach 0.37 And as the posterior probabilities 
of false competitors approach 0, the posterior probability of the true hypothesis heads towards 1. 
 
The Likelihood Ratio Convergence Theorem avoids or overcomes the usual objections raised 
against Bayesian convergence results: 
 

• The theorem does not employ second-order probabilities – it doesn’t rely on assessing 
the probability of a probability. The theorem only concerns the probability of particular 
disjunctive sentences that represent possible sequences of outcomes. 

 
• The theorem does not rely on countable additivity (to which some commentators have 

objected with regard to other convergence results).  
 
• The theorem does not require that evidence consist of sequences of outcomes that, 

according to the hypotheses, are identically distributed (like repeated tosses of a die). The 
version of the theorem I’ll present does, however, suppose that the evidential outcomes in 
the sequence of experiments or observations are probabilistically independent given each 
hypothesis – or at least that the outcomes can be grouped into clusters that are 
probabilistically independent of one another. A version of this theorem (not presented 
here) applies without supposing probabilistic independence. Nevertheless, I will argue 
that the sort of probabilistic independence that the present version of the theorem draws 
on should almost always be present in real scientific contexts. 

 
• The rate of likely convergence of the likelihood ratios is explicitly calculable from the 

likelihoods specified by individual hypotheses. So this theorem overcomes the often 
repeated objection that Bayesian convergence results may only apply in the infinite long 
run (when we’ll all be long dead). 

                                                 
37 The same goes for diversity sets, which represent the range of plausibility assessments among 
members of a scientific community. 
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• The values of prior probabilities for hypotheses need not be “locked in” permanently for 

the theorem to apply. Indeed, the theorem itself doesn’t draw on prior probabilities at all. 
It only employs likelihoods. However, the convergence of the likelihoods leads directly 
to the convergence of posterior probabilities; and this convergence of posteriors occurs 
even if agents reassess the non-evidential plausibilities of hypotheses from time to time, 
and assign new prior probabilities accordingly. 

 
This last point needs some explanation. It is sometimes objected that Bayesian convergence 
results only work when prior probabilities are held fixed – that the theorems fall through if an 
agent is permitted to change her evidence-independent assessments of prior plausibilities from 
time to time. Critics point out that real agents may quite legitimately change their assessments of 
the evidence-independent plausibilities of hypotheses, perhaps due to newly developed 
plausibility arguments, or due to the reassessment of old ones. A Bayesian confirmation theory 
has to represent such reassessments as non-Bayesian shifts from one confirmation function (or 
from one vagueness or diversity set of confirmation functions) to another. But, critics object, 
Bayesian convergence theorems always assume that the only dynamic element in the 
confirmational process is due to the addition of new evidence, which brings to bear the 
associated likelihoods, and results in the updating of posterior probabilities via Bayes’ Theorem. 
So, it looks like Bayesian confirmation is severely handicapped as an account of scientific 
hypothesis evaluation. 
 
However, the Likelihood Ratio Convergence Theorem is not subject to this objection. It applies 
even if agents revise their evidence-independent priors from time to time. For, the theorem itself 
only involves the values of likelihoods. Thus, provided that reassessments of prior plausibilities 
don’t push the prior plausibility of the true hypothesis down towards 0 too rapidly, the theorem 
shows that posterior probabilities of the empirically distinct false competitors of a true 
hypothesis will very probably approach 0 as evidence increases.38 

                                                 
38 That is, for each confirmation function Pα, the posterior Pα[hj | b·cn·en] must go to 0 if the ratio 
Pα[hj | b·cn·en] / Pα[hi | b·cn·en] goes to 0; and that will occur if the likelihood ratios P[en | hj·b·cn] / 
P[en | hi·b·cn] approach 0 and the prior Pα[hi | b] is greater than 0. The Likelihood Ratio 
Convergence Theorem will show that when hi·b is true, it is very likely that the evidence will 
indeed be such as to drive the likelihood ratios as near to 0 as you please (given a long enough 
evidence stream). As that happens, the only way a Bayesian agent can avoid having his 
confirmation function yield posterior probabilities for hi that approach 0 (as n gets large) is to 
continually switch among confirmation functions (moving from Pα to Pβ to ... to Pγ to …) in a 
way that revises the pre-evidential prior probability of hi downward towards 0. And even then he 
can only avoid having the posterior probability for alternative hj approach 0 for his current 

confirmation function by continually switching to new confirmation functions at a rate that keeps 
the new priors for hi diminishing towards 0 at least as quickly as the likelihood ratios diminish 
towards 0 (with increasing n). To see this, suppose, to the contrary, that P[en | hj·b·cn] / 

P[en | hi·b·cn] approaches 0 faster than does sequence Pγ[hi | b], for changing Pγ and increasing n 

– i.e. approaches 0 faster in the sense that (P[en | hj·b·cn] / P[en | hi·b·cn]) / Pγ[hi | b] goes to 0, for 

changing Pγ and increasing n. Then, we’d have (P[en | hj·b·cn] / P[en | hi·b·cn]) / Pγ[hi | b] >  

(P[en | hj·b·cn] / P[en | hi·b·cn]) · (Pγ[hj | b] / Pγ[hi | b])  =  Pγ[hj | b·cn·en] / Pγ[hi | b·cn·en]. So, 
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I raise these points in advance so that the reader may be on the look-out, to see that the theorem 
really does avoid these challenges. The version of the theorem I’ll present has its roots in L.J. 
Savage’s (1954) convergence theorem, but generalizes that result considerably.39 We now turn to 
the details.40 
 
5.1 The Space of Possible Outcomes of Experimental and Observational Conditions 
 
To spell out the details of the Likelihood Ratio Convergence Theorem we’ll need a few 
additional notational conventions and definitions. Here they are. 
 
For a sequence of n experiments or observations cn, consider the set of those possible sequences 

                                                                                                                                                             

Pγ[hj | b·cn·en] / Pγ[hi | b·cn·en] must still go to 0, for changing Pγ and increasing n; and thus, so 

must Pγ[hj | b·cn·en]. 
39 In particular, Savage’s theorem supposes that the outcomes are both independent and 
identically distributed (whereas the Likelihood Ratio Convergence Theorem only suppose 
independent outcomes, not identical distribution), Savage’s version exhibits no bounds on the 
rate of convergence (while the LRCT will provide explicit bounds), and Savage’s theorem is 
stated in terms of the convergence of posterior probabilities to 0 or 1 for each of a pair of 
alternative hypotheses (whereas the LRCT is only directly about likelihoods). 
40 For a nice presentation of the most prominent Bayesian convergence results and a discussion 
of their weaknesses see (Earman, 1992, Ch. 6). Earman was not aware of the Likelihood Ratio 
Convergence Theorem that I’ll present here. 
 Among the convergence results discussed by Earman is a well-known result due to Gaifman 
and Snir (1982) (hereafter ‘G&S’). The G&S is a “strong law of large numbers” result, and so 
may at first blush appear to be a stronger result than the Likelihood Ratio Convergence Theorem 
(hereafter ‘LRCT’), which is a “weak law of large numbers” result. However, in important 
respects the LRCT is really the “stronger” result of the two. For, although the G&S may arguably 
have a stronger consequent, it relies on a much stronger antecedent – it supposes that the 
evidence is separating in the sense that, for any pair of possible worlds (or models of the formal 
language), there is an evidence statement E that is true in one world and false in the other world. 
This is a really a very strong assumption, much stronger than anything the LRCT depends on. By 
contrast, the LRCT supposes nothing stronger than conditions that are commonly present in the 
testing of real scientific theories. 
The consequent of the G&F result shows probabilistic convergence to the truth-value of a 
hypothesis almost everywhere – i.e. on a set of models, or possible worlds, of measure 1). 
However, as is common with “strong law” results, it says nothing about how fast convergence is 
likely to be. Thus, the G&F result is open to the “infinite long run” problem mentioned above. 
By contrast, the LRCT only shows that the likelihood approaches 1 that the likelihood ratios 
comparing false competitors to the true hypothesis approach 0 as evidence increases. However, 
this consequent of the LRCT also provides explicit information about how fast this kind of 
convergence is likely to be, and it shows exactly how the likely rate of convergence depends on 
how much the likelihoods for the possible outcomes differ according to the alternative 
hypotheses. Thus, although the consequent of the LRCT is weaker than the G&S in one way, it is 
stronger in another way. See Earman (1992) for a detailed critique of the G&S result. 
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of outcomes that would result in likelihood ratios for hj over hi that are less than some chosen 
small number ε > 0. This set is represented by the following expression: 
 

{e
n : P[en | hj·b·cn] / P[en | hi·b·cn] < ε} 

  
One may choose any small value of ε that seems interesting, and then form the corresponding 

set. Placing the disjunction symbol ‘∨’ in front of this expression yields an expression 
 

∨{e
n : P[en | hj·b·cn] / P[en | hi·b·cn] < ε},  

 
that represents the disjunction of all outcome sequences in this set. So, the expression 

‘∨{e
n : P[en | hj·b·cn] / P[en | hi·b·cn] < ε}’ just represents a particular sentence that says, in effect, 

“one of those sequences of outcomes from the first n experiments or observations will occur that 
makes the likelihood ratio for hj over hi less than ε.” 
 
The Likelihood Ratio Convergence Theorem says, for any specific ε you choose, that the 
likelihood of a disjunctive sentence of this sort, given that ‘hi·b·cn’ is true, i.e., 
 

P[∨{e
n : P[en | hj·b·cn]/P[en | hi·b·cn] < ε} | hi·b·cn],  

 
must have a value of at least 1−(ψ/n), for some explicitly calculable term ψ. And clearly this 
lower bound, 1−(ψ/n), will approach 0 as n increases. Thus, the true hypothesis hi implies that as 
the amount of evidence, n, increases, it is highly likely (as close to 1 as you please) that one of 
the outcome sequences en will occur that yields a likelihood ratio P[en | hj·b·cn] / P[en | hi·b·cn] 
less than ε, for any value of ε you may choose. As this happens, the posterior probability of hi’s 
false competitor, hj, must approach 0, as required by the Ratio Form of Bayes’ Theorem. 
 
The term ψ in the theorem depends on a measure of the empirical distinctness of the two 
hypotheses involved on the proposed sequence of experiments and observations. To specify this 
measure we need to contemplate not only the actual outcomes, but the collection of alternative 
possible outcomes of each experiment or observation. So, consider some sequence of 
experimental or observation conditions described by sentences c1,c2,…,cn. Corresponding to each 
condition ck there will be some range of possible alternative outcomes; let Ok = {ok1,ok2,…,okw} 
be a set of statements describing the alternative possible outcomes for condition ck. (The number 
of alternative outcomes will usually differ for distinct experiments c1,…,cn; so, the value of w 
depends on ck). For each hypothesis hj, the alternative outcomes of ck in Ok are mutually 
exclusive and exhaustive – that is, we have: 
 

P[oku·okv | hj·b·ck]  =  0  and  ∑u=1
w P[oku | hj·b·ck]  =  1. 

 
Expressions like ‘ek’ represent possible outcomes of ck – i.e., ‘ek’ ranges over the members of Ok. 
As before, ‘cn’ denotes the conjunction of the first n test conditions, (c1·c2·…·cn), and ‘en’ 
represents possible sequences of corresponding outcomes, (e1·e2·…·en). We’ll take ‘En’ to 
represent the set of all possible outcome sequences for cn. So, for each hypothesis hj (including 

hi), we have ∑e
n

∈ E
n  P[en | hj·b·cn] = 1. There are no substantive assumptions in any of this – only 

notational conventions.  
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5.2 About Probabilistic Independence 
 
In almost all scientific contexts the outcomes in a series of experiments or observations are 
probabilistically independent of one another relative to each hypothesis under consideration. We 
may divide the kind of independence involved into two types. 
 

Definition: Independent Evidence Conditions: 
 
(1) A sequence of outcomes ek is condition-independent of a condition for an additional 

experiment or observation ck+1, given h·b and its own conditions ck, if and only if 
P[ek | h·b·ck·ck+1] = P[ek | h·b·ck].  

 
(2) An individual outcome ek is result-independent of a sequence of other observations and 

their outcomes (ck−1·ek−1), given h·b and its own condition ck, if and only if 
P[ek | h·b·ck·(c

k−1·ek−1)] = P[ek | h·b·ck]. 
 
When these two conditions hold, the likelihood for a sequence of experiments or observations 
may be decomposed into the product of the likelihoods for individual experiments or 
observations. To see how the two independence conditions affect the decomposition, first 
consider the following formula, which holds even if neither independence condition is satisfied: 
 

(12) P[en | hj·b·cn]  =  ∏k=1
n P[ek | hj·b·cn·ek−1]. 

 
When condition-independence holds, the likelihood of the whole evidence stream parses into a 
product of likelihoods that probabilistically depend on only past observation conditions and their 
outcomes. They do not depend on the conditions for other experiments whose outcomes are not 
yet specified. Here is the formula: 
 

(13) P[en | hj·b·cn]  =  ∏k=1
n P[ek | hj·b·ck⋅(c

k−1·ek−1)]. 
 
Finally, whenever both independence conditions are satisfied we obtain the following 
relationship between the likelihood of the evidence stream and the likelihoods of individual 
experiments or observations:41 
 

(14) P[en | hj·b·cn]  =  ∏k=1
n P[ek | hj·b·ck].. 

 
In almost all scientific contexts both clauses of the Independent Evidence Condition will be 
satisfied. To see this, let us consider each independence condition more carefully. 
 
Condition-independence says that the mere addition of a new observation condition ck+1, without 

specifying one of its outcomes, does not alter the likelihood of the outcomes ek of other 
experiments ck. To appreciate the significance of this condition, imagine how the world would be 

                                                 
41 For derivations of equations (13) and (14) see  
(Hawthorne 2004) http://plato.stanford.edu/entries/logic-inductive/supplement3.html 
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if it were violated. Suppose hypothesis hj is some statistical theory, say, a quantum theory of 
superconductivity. The conditions expressed in ck describe a number of experimental setups, 
perhaps conducted in numerous labs, that test a variety of aspects of the theory (e.g., experiments 
that test electrical conductivity in different materials at a range of temperatures). Outcome 
sequence ek describes the results of these experiments. The violation of condition-independence 
would mean that merely adding to hj·b·ck a statement ck+1 describing the set-up of an additional 
experiment, but with no mention of its outcome, changes how likely the evidence sequence ek is: 
i.e., P[ek | h·b·ck·ck+1] ≠ P[ek | h·b·ck]. What (hj·b) says, via likelihoods, about the outcomes ek of 
experiments ck differs as a result of merely supplying a description of another experimental 
arrangement, ck+1. Condition-independence, when it holds, rules out such strange effects. 
 
Result-independence says that the description of previous test conditions together with their 

outcomes is irrelevant to the likelihoods of outcomes for additional experiments. If this condition 
were widely violated, then in order to specify the most informed likelihoods for a given 
hypothesis one would need to include information about volumes of past observations and their 
outcomes. What a hypothesis says about future cases would depend on how past cases have 
gone. Such dependence had better not happen on a large scale. Otherwise, the hypothesis would 
be fairly useless, since its empirical import in each specific case would depend on taking into 
account volumes of past observational and experimental results. However, even if such 
dependencies occur, provided they are not too pervasive, result-independence can be 
accommodated rather easily by packaging each collection of result-dependent data together, 
treating it like a single extended experiment or observation. The result-independence condition 
will then be satisfied by letting each term ‘ck’ in the statement of the independence condition 
represent a conjunction of test conditions for a collection of result-dependent tests, and by letting 
each term ‘ek’ (and each term ‘oku’) stand for a conjunction of the corresponding result-

dependent outcomes. Thus, by packaging result-dependent data together in this way, the result-

independence condition is satisfied by those (conjunctive) statements that describe the separate, 
result-independent chunks.42 
 
The version of the Likelihood Ratio Convergence Theorem I’ll present depends on the usual 
axioms of probability theory together with the Independent Evidence Conditions. It depends on 
no other assumptions (except those explicitly stated in the antecedent of the theorem itself). 
Thus, from this point on, let’s suppose that the following two assumptions holds. 
  

                                                 
42 In scientific contexts the most prominent kind of case where data may fail to be result-

independent is where some quantity of past data helps tie down the numerical value of a 
parameter not completely specified by the hypothesis at issue, and where the value of this 
parameter influences the likelihoods for outcomes of lots of other experiments. Such hypotheses 
(with their free parameters) are effectively disjunctions of more specific hypotheses, where each 
distinct disjunct is a distinct version of the original hypothesis that has a specific value for the 
parameter filled in. Evidence that “fills in the value” for the parameter just amounts to evidence 
that refutes (via likelihood ratios) those more specific, filled-in hypotheses that possess incorrect 
parameter values. For any specific, filled-in hypotheses, the evidence that bears on whether it has 
the correct parameter value will be independent of other evidence that relies on the parameter 
value. So, relative to each of these more specific hypotheses, result-independence holds. 
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Independent Evidence Assumptions: For each hypothesis h and background b under 
consideration, let’s assume that the experiments and observations can be packaged into 
condition statements, c1,…, ck, ck+1,…, and possible outcomes in a way that satisfies the 
following independence conditions: 
 
(1) Each sequence of possible outcomes ek of a sequence of conditions ck is condition-

independent of additional conditions ck+1 – i.e., P[ek | h·b·ck·ck+1] = P[ek | h·b·ck]. 
 
(2) Each possible outcome ek of condition ck is result-independent of sequences of other 

observations and possible outcomes (ck−1·ek−1) – i.e., P[ek | h·b·ck·(c
k−1·ek−1)] = 

P[ek | h·b·ck]. 
 

We now have all that is needed to begin to state the Likelihood Ratio Convergence Theorem. The 
convergence theorem comes in two parts. The first part applies to only those experiments or 
observations that have possible outcomes, according to hi, that alternative hj says are impossible. 
The second part of the theorem applies to all other experiments or observations. 
 
5.3 Likelihood Ratio Convergence under Conditions where Falsifying Outcomes are Possible 
 
The first part of the Likelihood Ratio Convergence Theorem applies whenever some of the 
experiments or observations in sequence cn have possible outcomes with non-0 likelihoods on 
hypothesis hi, but 0 likelihoods on alternative hj. Such outcomes are highly desirable. If they 
occur, the likelihood ratio comparing hj to hi will be 0, and hj will be falsified. A crucial 

experiment is a special case of this, the case where, for at least one possible outcome oku, 
P[oku | hi·b·ck] = 1 and P[oku | hj·b·ck] = 0. In the more general case hi together with b says that 
one of the outcomes of ck is at least minimally probable, whereas hj says that outcome is 
impossible: P[oku | hi·b·ck] > 0 and P[oku | hj·b·ck] = 0. 
 

Likelihood Ratio Convergence Theorem 1: The Falsification Theorem:43
  

Suppose cm, a subsequence of the whole evidence sequence cn, consists of experiments or 
observations with the following property: there are outcomes oku

 of each ck in cm deemed 

impossible by hj·b but deemed possible by hi·b to at least some small degree δ. That is, 

suppose there is a δ > 0 such that for each ck in cm, P[∨{oku : P[oku | hj·b·ck] = 0} | hi·b·ck] ≥ δ. 
Then, 
 

P[∨{e
n : P[en| hj·b·cn]/P[en | hi·b·cn] = 0} | hi·b·cn]  =  P[∨{e

n : P[en| hj·b·cn] = 0} | hi·b·cn] 
 
            ≥  1−(1−δ)m 
 

             which approaches 1 for large m. 
 
In other words, suppose hi says observation ck has at least a small likelihood of producing one of 

the outcomes oku that hj says is impossible – i.e., P[∨{oku: P[oku | hj·b·ck] = 0} | hi·b·ck] ≥ δ > 0. And 

                                                 
43 For proof see (Hawthorne 2004) http://plato.stanford.edu/entries/logic-
inductive/supplement4.html 
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suppose that some number m of experiments or observations are of this kind. If the number of 
such observations is large enough, and hi (together with b·cn) is true, then it is highly likely that 
one of the outcomes held to be impossible by hj will occur, and the likelihood ratio of hj over hi 
will then become 0. Bayes’ Theorem then goes on to imply that when this happens, hj is 
absolutely refuted – its posterior probability becomes 0. 
 
The Falsification Theorem is very commonsensical. First, notice that when there is a crucial 

experiment in the evidence stream, the theorem is completely obvious. That is, suppose for the 
specific experiment ck (in evidence stream cn) there are two incompatible possible outcomes okv 
and oku such that P[okv | hj·b·ck] = 1 and P[oku | hi·b·ck] = 1. Then, clearly, 

P[∨{oku: P[oku | hj·b·ck] = 0} | hi·b·ck] = 1, since oku is “one of the oku such that P[oku | hj·b·ck] = 0”. So 
where there is a crucial experiment available, the theorem applies with m = 1 and δ = 1. 
 
The theorem is equally commonsensical when there is no crucial experiment. To see what it says 
in such cases, consider an example. Let hi be some theory that implies a specific rate of proton 
decay, but a rate so low that there is only a very small probability that any particular proton will 
decay in a given year. Consider an alternative theory hj that implies that protons never decay. If 
hi is true, then for a persistent enough sequence of observations (i.e., if proper detectors can be 
built and billions of protons kept under observation for long enough), eventually a proton decay 
will almost surely be detected. When this happens, the likelihood ratio becomes 0. Thus, the 
posterior probability of hj becomes 0. 
 
It may be instructive to plug some specific numbers into the formula given by the Falsification 
Theorem, to see what the convergence rate might look like. For example, the theorem tells us 
that if we compare any pair of hypotheses hi and hj on an evidence stream cn that contains at least 
m = 19 observations or experiments, each having δ ≥ .10 for the likelihood of yielding a 
falsifying outcome, then the likelihood (on hi·b·cn) of obtaining an outcome sequence en that will 
yield a likelihood-ratio P[en | hj·b·cn] / P[en | hi·b·cn] = 0 must be least 1−(1−.1)19 = .865. 
  
A comment about the need for, and usefulness of such convergence theorems is in order, now 
that we’ve seen one. Given some specific pair of scientific hypotheses hi and hj, one may always 
directly compute the likelihood, given (hi·b·cn), that any specific sequence of experiments or 
observations cn will result in one of the specific sequences of outcomes that yields low likelihood 
ratios. So, given a specific pair of hypotheses and a proposed sequence of experiments, we don’t 
need a general Convergence Theorem to tell us the likelihood of obtaining refuting evidence. The 
specific hypotheses hi and hj tell us this themselves. Indeed, they tell us the likelihood of 
obtaining each specific outcome stream, including those that refute the competitor or produce a 
very small likelihood ratio for it. Furthermore, after we’ve actually performed an experiment and 
recorded its outcome, all that matters is the actual ratio of likelihoods for that outcome. 
Convergence theorems become moot. 
 
The point of Likelihood Ratio Convergence Theorem (both the Falsification Theorem, and the 
other part of the theorem, still to come) is to assure us in advance of the consideration of any 

specific pair of hypotheses that if the possible evidence streams that test hypotheses have certain 
characteristics that reflect the empirical distinctness of the hypotheses, then it is highly likely that 
one of the sequences of outcomes will occur that results in a very small likelihood ratio. These 
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theorems provide relatively loose, finite lower bounds on how quickly such convergence is likely 
to be. Thus, convergence theorems may assure us in advance of our using the logic of 
confirmation to test specific hypotheses, that this logic is likely to do what we want it to do – i.e., 
to result in the refutation of empirically distinct false alternatives to the true hypothesis, and to 
generate a high degree of positive confirmation for the true hypothesis. 
 
5.4 Likelihood Ratio Convergence under Conditions where No Falsifying Outcomes are Possible 
 
The Falsification Theorem shows what happens when the evidence stream includes possible 
outcomes that may falsify the alternative hypothesis. But what if no possibly falsifying outcomes 
are present? That is, what if hypothesis hj only specifies various non-zero likelihoods for possible 
outcomes? Or what if hj does specify 0 likelihoods for some outcomes, but only for those that hi 
says are impossible? Such evidence streams are undoubtedly much more common in practice 
than those containing possibly falsifying outcomes. To cover evidence streams of this kind we 
first need to identify a useful way to measure the degree to which hypotheses are empirically 
distinguishable by such evidence. 
 
Consider some particular sequence of outcomes en that results from observations cn. The 
likelihood ratio P[en | hj·b·cn] / P[en | hi·b·cn] measures the extent to which that outcome sequence 
distinguishes between hi and hj. But, as a measure of the power of evidence to distinguish among 
hypotheses, likelihood ratios themselves provide a rather lopsided scale, a scale that ranges from 
0 to infinity with the midpoint, the point where en doesn’t distinguish at all between hi and hj, at 
1. So, rather than using raw likelihood ratios to measure the ability of en to distinguish between 
hypotheses, it proves more useful to employ a symmetric measure. The logarithm of the 
likelihood ratio provides just such a measure. 
 

Definition: QI – the Quality of the Information.  
For each experiment or observation ck, define the quality of the information provided by 
possible outcome oku for distinguishing hj from hi, given b, as follows (where we take the log 
to be base 2): 

 
QI[oku | hi/hj | b·ck] = log[P[oku | hi·b·ck] / P[oku | hj·b·ck]]. 

 
Similarly, define QI[en | hi/hj | b·cn] = log[P[en | hi·b·cn] / P[en | hj·b·cn]]. 

 
We measure the Quality of the Information an outcome would yield in distinguishing between 
two hypotheses as the base-2 logarithm of the likelihood ratio. This is clearly a measure of the 
outcome’s evidential strength at distinguishing between the two hypotheses. By this measure, 
two hypotheses, hi and hj, assign the same likelihood value to a given outcome oku just in case 
QI[oku | hi/hj | b·ck] = 0. And whenever P[oku | hi·b·ck] / P[oku | hj·b·ck] = 2r, QI[oku | hi/hj | b·ck] = r, 
for any real number r. So, QI measures information on a logarithmic scale that is symmetric 
about the natural no-information midpoint, 0. Positive information (r > 0) favors hi over hj and 
negative information (r < 0) favors hj over hi. 
 
Given the Independent Evidence Assumptions it is easy to see that relative to each hypothesis 
(with background), hi·b and hj·b, the QI for a sequence of outcomes is just the sum of the QIs of 
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the individual outcomes in the sequence: 
 

(15) QI[en | hi/hj | b·cn]  =  ∑k=1
n  QI[ek | hi/hj | b·ck]. 

 
QI only measures the amount by which each specific outcome counts for or against the two 
hypotheses. But what we want to know is something about how the experiment or observation as 
a whole tends to produce distinguishing outcomes. The expected value of QI turns out to be very 
helpful in this regard. The expected value of a quantity is gotten by first multiplying each of its 
possible values by its probability of occurring, and then summing up these products. Thus, the 
expected value of QI is given by the following formula: 
 

Definition: EQI – the Expected Quality of the Information. 
Let’s call hj outcome-compatible with hi on evidence stream ck just when for each possible 
outcome sequence ek of ck, if P[ek | hi·b·ck] > 0, then P[ek | hj·b·ck] > 0. We also adopt the 
convention that if P[oku | hj·b·ck] = 0, then the term QI[oku | hi/hj | b·ck] · P[oku | hi·b·ck] = 0, 
since the outcome oku has 0 probability of occurring given hi·b·ck. 
 
For hj outcome-compatible with hi on ck, define  
 
 EQI[ck | hi/hj | b] = ∑u QI[oku | hi/hj | b·ck] · P[oku | hi·b·ck].  
 

Also, define EQI[cn | hi/hj | b] = ∑e
n
∈E

n QI[en | hi/hj | b] · P[en | hi·b·cn].  

 
Notice that when hj is not outcome-compatible with hi on evidence stream cm, Likelihood Ratio 

Convergence Theorem 1, the Falsification Theorem given in the previous section applies. 
  
The EQI of an experiment or observation is the Expected Quality of its Information for 
distinguishing hi from hj when hi is true. It is a measure of the expected evidential strength of the 
possible outcomes of an experiment or observation at distinguishing between the hypotheses. 
Whereas QI measures the ability of each particular outcome or sequence of outcomes to 
empirically distinguish hypotheses, EQI measures the tendency of experiments or observations to 
produce distinguishing outcomes. EQI tracks empirical distinctness in a very precise way, as 
we’ll see in a moment. 
 
The EQI for a sequence of observations cn turns out to be just the sum of the EQIs of the 
individual observations ck in the sequence:44 
 

(16) EQI[cn | hi/hj | b]  =  ∑k=1
n  EQI[ck | hi/hj | b] 

 
This suggests that it may be useful to average the values of the EQI[ck| hi/hj | b] over the number 
of observations n. We then obtain a measure of the average expected quality of the information 
from the experiments and observations that make up cn. 
 

                                                 
44 For a derivation see (Hawthorne 2004) http://plato.stanford.edu/entries/logic-
inductive/supplement5.html 
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Definition: EQI – The Average Expected Quality of Information. 
The average expected quality of information, EQI, from cn for distinguishing hj from hi, 
given hi·b, is defined as: 
 

 EQI[cn | hi/hj | b]  =  EQI[cn | hi/hj | b] / n . 
 
This definition together with equation (16) yields the following: 
 

  (17) EQI[cn | hi/hj | b] =  (1/n) ⋅ ∑k=1
n  EQI[ck | hi/hj | b] 

 
It turns out that the value of EQI[ck | hi/hj | b] cannot be less than 0; and it will be greater than 0 
just in case hi is empirically distinct from hj on at least one outcome oku – i.e., just in case for at 
least one oku, P[oku | hi·b·ck] ≠ P[oku | hj·b·ck]. The same goes for the average, EQI[cn | hi/hj | b]. 
 

Theorem: Nonnegativity of EQI.45 
EQI[ck | hi/hj | b] ≥ 0; and, EQI[ck | hi/hj | b] > 0 if and only if for at least one of its possible 
outcomes oku, P[oku | hi·b·ck] ≠ P[oku | hj·b·ck].  
Also, EQI[cn | hi/hj | b] ≥ 0; and EQI[cn | hi/hj | b] > 0 if and only if at least one experiment or 
observation ck has at least one possible outcome oku such that P[oku | hi·b·ck] ≠ P[oku | hj·b·ck].  

 
In fact it can be shown that increasing the fineness of the partition of the outcome space Ok = 
{ok1,…,okv,…,okw} by breaking it up into more distinct outcomes (if it can be so divided) always 
results in a larger value for EQI, provided that at least some of the additional outcomes have 
distinct likelihood ratio values.46 Thus, EQI tracks empirical distinctness in a very precise way. 
The importance of the Non-negativity of EQI result for the Likelihood Ratio Convergence 

Theorem will become apparent in a moment. 
 
We are now in a position to state the second part of the Likelihood Ratio Convergence Theorem. 
It applies to all evidence streams that do not contain possibly falsifying outcomes for hj when hi 
holds – i.e., it applies to all evidence streams for which hj is outcome-compatible with hi on each 
ck in the stream. 
 

Likelihood Ratio Convergence Theorem 2: The Probabilistic Refutation Theorem.
47 

Let γ > 0 be any number smaller than 1/e2 (≈ .135; where this ‘e’ is the base of the natural 
logarithm). And suppose that for each possible outcome oku of each observation condition ck 
in cn, either P[oku | hi·b·ck] = 0 or P[oku | hj·b·ck] / P[oku | hi·b·ck] ≥ γ. Choose any positive ε < 
1, as near to 0 as you like, but large enough that (for the number of observations n being 
contemplated) the value of EQI[cn | hi/hj | b] > −(log ε)/n. Then 
 
                 (log γ)2 

                                                 
45 For proof see (Hawthorne 2004) http://plato.stanford.edu/entries/logic-
inductive/supplement6.html 
46 See (Hawthorne 2004) http://plato.stanford.edu/entries/logic-inductive/supplement6.html 
47 For a proof see (Hawthorne 2004) http://plato.stanford.edu/entries/logic-
inductive/supplement7.html 
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P[∨{e
n : P[en | hj·b·cn]/P[en | hi·b·cn] < ε} | hi·b·cn]  >  1  –   (1/n) ⋅ ———————————— 

                 (EQI[cn | hi/hj | b] + (log ε)/n )2 
 

which approaches 1 for large n when EQI[cn | hi/hj | b] has a positive lower bound – i.e., 
when the sequence of observation cn has an average expected quality of information (for 
empirically distinguishing hj from hi) that doesn’t diminish towards 0 as the evidence 
sequence increases. 

 
This theorem provides a very reasonable sufficient condition for the likely refutation of false 
alternatives via exceedingly small likelihood ratios. The condition under which this happens 
draws only on a characterization of the degree to which the hypotheses involved are empirically 
distinct from each other. The theorem says that when these conditions of empirical distinctness 
are met, hypothesis hi (together with b·cn) provides a likelihood that is at least within 
(1/n) · (log γ)2 / (EQI[cn | hi/hj | b] + (log ε)/n)2 of 1 that some outcome sequence en will occur 
that yields a likelihood ratio smaller than chosen ε. It turns out that in almost every case the 
actual likelihood of obtaining such evidence will be much closer to 1 than this factor indicates. 
Thus, this theorem provides a rather loose lower bound on the likelihood of obtaining small 
likelihood ratios. It shows that the larger the value of EQI for an evidence stream, the more likely 
it is that the stream will produce a sequence of outcomes that yield very small likelihood ratios. 
But even if EQI remains quite small, a long enough stream, n, will almost surely do the trick.48 
 
Notice that the antecedent condition of the theorem, that “either P[oku | hi·b·ck] = 0 or 

P[oku | hj·b·ck] / P[oku | hi·b·ck] ≥ γ, for some γ > 0 but less than 1/ e 2 (≈ .135)”, does not favor 

hypothesis hi in any way. This condition only rules out the possibility that some outcomes might 
furnish extremely strong evidence against hj relative to hi. This condition is only needed because 
our measure of the evidential distinguishability of pairs of hypotheses, QI, blows up when the 
likelihood ratio P[oku | hj·b·ck] / P[oku | hi·b·ck] is extremely small. Furthermore, this condition is 
really no restriction at all on the application of the theorem to possible experiments or 
observations. If ck has some possible outcome description oku that would make P[oku | hj·b·ck] / 
P[oku | hi·b·ck] < γ (for a given small γ of interest), one may disjunctively lump oku together with 
some other outcome description okv for ck. Then, the antecedent condition of the theorem will be 

satisfied, but with the sentence ‘(oku∨okv)’ treated as a single outcome in the formula for EQI. It 
can be proved that the only effect of such “disjunctive lumping” is to make EQI a bit smaller 
than it would otherwise be. If, when the evidence is actually collected, such a “too refuting” 
outcome oku actually occurs, so much the better. We merely failed to take this possibility for 
refutation into account in computing our lower bound on the likelihood that refutation via 

                                                 
48 It should now be clear why the boundedness of EQI above 0 is important. Convergence 
Theorem 2 applies only when EQI[cn  | hi/hj | b]  >  −(log ε)/n. But this requirement is not a 
strong assumption. For, the Nonnegativity of EQI Theorem shows that the empirical distinctness 
of two hypotheses on a single possible outcome suffices to make the average EQI positive for the 
whole sequence of experiments. So, given any small fraction ε > 0, the value of −(log ε)/n 
(which is greater than 0) will eventually become smaller than EQI, provided that the degree to 
which the hypotheses are empirical distinct for the various observations ck does not on average 
degrade too much as the length n of the evidence stream increases. This seems a reasonable 
condition on the empirical distinctness of hypotheses. 
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likelihood ratios will occur. 
 
The point of the two Convergence Theorems explored in this section is to assure us, in advance 
of the consideration of any specific pair of hypotheses, that if the possible evidence streams that 
test them have certain characteristics which reflect their evidential distinguishability, it is highly 
likely that outcomes yielding small likelihood ratios will result. These theorems provide finite 
lower bounds on how quickly convergence is likely to occur, bounds that show one need not wait 
for convergence through some infinitely long run. Indeed, for any evidence sequence in which 
the probability distributions are at all well behaved, the actual likelihood of obtaining outcomes 
that yield small likelihood ratio values will inevitably be much higher than the lower bounds 
given by Theorems 1 and 2. 
 
In sum, according to Theorems 1 and 2, each hypothesis hi says, via likelihoods, the following: 
“given enough observations, I am very likely to dominate my empirically distinct rivals in a 
contest of likelihood ratios.” Even a sequence of observations with an extremely low average 

expected quality of information is very likely to do the job, provided that the sequence is long 
enough. Presumably, in saying this, the true hypothesis speaks truthfully, and its false 
competitors lie. Thus (by Equation 9), as evidence accumulates, the degree of confirmation for 
false hypotheses will very probably approach 0, which will indicate that they are probably false; 
and as this happens, (by Equations 10 and 11) the degree of confirmation of the true hypothesis 
will approach 1, indicating its probable truth. 
 
 
6. When the Likelihoods are Vague and/or Diverse 
 
Up to this point I’ve been supposing that likelihoods possess objective or agreed numerical 
values. Although this supposition is often satisfied in scientific contexts, there are important 
settings where it is unrealistic, where individuals are pretty vague about the numerical values of 
likelihoods, even though the evidence seems to weigh strongly against one hypothesis and in 
support of another. So let’s see how the supposition of precise, agreed values for likelihoods may 
be relaxed in a reasonable way. 
 
Let’s first consider an example of evidence for an important scientific hypothesis where the 
likelihoods are vague. Consider the following drift hypothesis: the land masses of Africa and 
South America were once joined together, then split and have drifted apart over the eons. Let’s 
compare it to an alternative contractionist hypothesis: the continents have fixed positions 
acquired when the earth first formed, cooled and contracted into its present configuration. On 
each of these hypotheses, how likely is it that: (1) the shape of the east coast of South America 
should match the shape of the west coast of Africa as closely as it in fact does; (2) the geology of 
the two coasts should match up so well; (3) the plant and animal species on these distant 
continents should be as similar as they are. One may not be able to determine anything like 
precise numerical values for such likelihoods. But experts readily agree that each of these 
observations is much more likely on the drift hypothesis than on the contractionist hypothesis. 
Jointly these observations constitute very strong evidence in favor of drift over its contraction 
alternative. On a Bayesian analysis this is due to the fact that experts in the scientific community 
widely agree (at least implicitly) that the ratio of the likelihoods strongly favors drift over 
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contraction. As equations 9-11 show, this suffices to strongly refute the contractionist hypothesis 
with respect to the drift hypothesis (unless the contractionist hypothesis is taken to be quite a bit 
more plausible than the drift hypothesis on other grounds). 49 
 
Recall now the reasons given earlier for the desirability of agreement or near agreement on 
values for likelihoods in scientific contexts. I argued that to the extent members of a scientific 
community disagree on the values of the likelihoods, they disagree about the empirical content of 
their hypotheses – about what each hypothesis says the world is like. Such disagreement in the 
empirical import may result in widely disparate assessments regarding which hypotheses are 
refuted or favored by a given body of evidence. Similarly, to the extent that the values of 
likelihoods are vague for an individual agent, he or she may be unable to determine which of 
several hypotheses is refuted or favored by a given body of evidence. 
 
Notice, however, that on a Bayesian account of confirmation the values of individual likelihoods 
are not really crucial to the way evidence sorts among hypotheses. Rather (as Equations 9-11 
show), it is ratios of likelihoods that do the heavy lifting. So, even if two confirmation functions 
Pα and Pβ disagree on the values of likelihoods, they may, nevertheless, largely agree on the 
refutation or support that accrues to various rival hypotheses provided that the following 
Directional Agreement Condition is satisfied:  
 

Directional Agreement Condition:  

                                                 
49 Historically the case for continental drift is somewhat more complicated. Geologists tended to 
largely dismiss the evidence referred to above until the 1960s. Although this evidence may seem 
to be quite strong, it was unconvincing because it was not sufficiently strong to overcome certain 
non-evidential plausibility considerations that made the drift hypothesis seem extremely 
implausible – much less plausible that the more traditional contraction view. The chief problem 
was that there appeared to be no plausible mechanism by which drift might occur. It was argued 
that no known force or mechanism could push or pull the continents apart, and that the less dense 
continental material cannot possibly push through the denser material that makes up the ocean 
floor. These objections were eventually overcome when a plausible mechanism was articulated – 
i.e. that the continental crust floats atop molten material and moves apart as convection currents 
in the molten material carry it along. The case was pretty well clinched when evidence for this 
mechanism was found in the form of spreading zones containing alternating strips of magnetized 
material at regular distances from mid-ocean ridges. The magnetic alignments of materials in 
these strips correspond closely to the magnetic alignments found in magnetic materials in 
dateable sedimentary layers at other locations on the earth. These magnetic alignments indicate 
time periods when the direction of earth's magnetic field has reversed. This gave geologists a 
way of measuring the rate at which the sea floor might spread, and the continents move apart. 
Although geologists may not be able to determine anything like precise values for the likelihoods 
of any of this evidence on each of the alternative hypotheses, the evidence is universally agreed 
to be much more likely on the drift hypothesis than on the contractionist alternative. Also, with 
the emergence of a plausible mechanism, the drift hypothesis no longer seems so 
overwhelmingly implausible due to non-evidential considerations. Thus, the weight of a 

likelihood ratio may be objective or public enough to strongly support a hypothesis over an 
alternative even in cases where precise values for likelihoods cannot be determined. 
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The likelihood ratios due to each of a pair of confirmation functions Pα and Pβ will be said to 
agree in direction (with respect to the possible outcomes of experiments or observations 
relevant to a pair of hypotheses) just in case each of the following conditions hold: 
• for each possible outcome ek of the experiments and observations ck in the evidence 

stream, Pα[ek | hj·b·ck] / Pα[ek | hi·b·ck] < 1 just in case Pβ[ek | hj·b·ck] / Pβ[ek | hi·b·ck] < 1, 
and Pα[ek | hj·b·ck] / Pα[ek | hi·b·ck] > 1 just in case Pβ[ek | hj·b·ck] / Pβ[ek | hi·b·ck] > 1. 

• each of these likelihood ratios is either close to 1 for neither confirmation function or for 
both functions. 

 
When this condition holds, the evidence will support hi over hj according to Pα just in case it 
does so for Pβ as well, although the strength of support may differ. Furthermore, although the 
rate at which the likelihood ratios increase or decrease as evidence accumulates may differ for 
these confirmation functions, the total impact of the cumulative evidence will ultimately affect 
the refutation and support of hypotheses in much the same way for each function. 
 
Thus, when likelihoods are vague or diverse, we may take the approach we employed for vague 
and diverse prior plausibility assessments. We may represent the vagueness in an agent’s 
assessments of both prior plausibilities and likelihoods in terms of a vagueness set – a set of 
confirmation functions that covers the range of values that are acceptable to the agent. Similarly, 
we may extend the diversity sets for communities of agents to include confirmation functions for 
both the range of likelihoods and the range of prior plausibilities (from individual vagueness sets) 
that represent the considered views of the members of the relevant scientific community. 
  
The Likelihood Ratio Convergence Theorem can still do its work in this context, provided the 
Directional Agreement Condition is satisfied by all confirmation functions in these extended 
vagueness and diversity sets. The proof of the theorem doesn’t depend on supposing that 
likelihoods are objective or have intersubjectively agreed values. It applies to each confirmation 
function Pα individually. The only real difficulty that comes from applying the theorem to a 
range of confirmation functions that disagree on the likelihoods is that the specific outcome 
sequences that strongly favors hi according to Pα may instead strongly favor hj according to Pβ. 
However, when the Directional Agreement Condition holds for a family of confirmation 
functions, this kind of confirmational bifurcation cannot happen. Directional Agreement means 
that the empirical import of hypotheses as represented by Pα and Pβ is similar enough that each 
evidence sequence must favor the same hypotheses for both of them. Thus, when the Directional 

Agreement Condition holds, if enough empirically distinguishing experiments or observations 
are forthcoming, all support functions in an extended vagueness or diversity set will very 

probably come to agree that likelihood ratios for empirically distinct false competitors of a true 
hypothesis are extremely small. As that happens, the community comes to agree on the refutation 
of these competitors, and the true hypothesis rises to the top of the heap.50 
 
What if the true hypothesis has empirically equivalent rivals? Then their posterior probabilities 

                                                 
50 Even if some part of the evidence gives rise to directionally disagreeing likelihood ratios (e.g., 
due to minor disagreements about empirical import), these may not interfere too much with 
agreement about evidential support for hypotheses, provided that the most substantial part of the 
evidence gives rise to overwhelmingly powerful directionally agreeing ratios. 
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must rise as well. The Likelihood Ratio Convergence Theorem only assures us that the 
disjunction of the true hypothesis with its empirically equivalent rivals will be driven to 1 as 
evidence lays low the empirically distinct rivals. The true hypothesis may itself approach 1 only 
if either it has no empirically equivalent rivals, or whatever equivalent rivals it has are also laid 
low by non-evidential plausibility considerations.51 
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