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INTRODUCTION

Eliminative induction is a method for finding the truth by using evidence to
eliminate false competitors. It is often characterized as “induction by means
of deduction; the accumulating evidence eliminates false hypotheses by log-
ically contradicting them, while the true hypothesis logically entails the evi-
dence, or at least remains logically consistent with it. If enough evidence is
available to eliminate all but the most implausible competitors of a hypoth-
esis, then (and only then) will the hypothesis become highly confirmed. I will
argue that, with regard to the evaluation of hypotheses, Bayesian inductive
inference is essentially a probabilistic form of induction by elimination.
Bayesian induction is an extension of eliminativism to cases where, rather
than contradict the evidence, false hypotheses imply that the evidence is very
unlikely, much less likely than the evidence would be if some competing
hypothesis were true. This is not, I think, how Bayesian induction is usually
understood. The recent book by Howson and Urbach,? for example, provides
an excellent, comprehensive explanation and defense of the Bayesian
approach; but this book scarcely remarks on Bayesian induction’s elimina-
tive nature. Nevertheless, the very essence of Bayesian induction is the refu-
tation of false competitors of a true hypothesis, or so I will argue.
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The eliminative nature of Bayesian inference shows up most promi-
nently in Bayesian convergence theorems. These theorems show that, under
certain conditions, wide ranging initial disagreement among Bayesian agents
regarding the plausibility of various hypotheses (as represented by prior
probabilities for hypotheses) will eventually be “washed out” by the evi-
dence. Evidence will eventually bring about a convergence to agreement on
the posterior probabilities of hypotheses, regardless of the values of the prior
probabilities. Thus, the influence of the subjective element in Bayesian infer-
ence, the subjective assessments of prior probabilities, can be overcome.

These Bayesian convergence theorems almost always rely on an under-
lying eliminative process. The prior probabilities only become “washed out”
as the evidence drives the posterior probabilities of hypotheses to 1 (confir-
mation) or 0 (refutation). In L. J. Savage’s theorem,? for example, the elim-
inative element is obvious. Savage’s theorem shows that if the accumulating
evidence is of the right character, and if the true hypothesis is not initially
too improbable (i.c., has anon-0 prior probability, prior to the evidence), then
false alternative hypotheses will almost certainly become highly refuted by
the evidence (i.c., obtain posterior probabilities, based on the evidence, arbi-
trarily close to 0). Hence, the true hypothesis will become highly confirmed
(i.e., achieve a posterior probability arbitrarily near 1). According to Savage’s
theorem, a false hypothesis will become highly refuted when it says that the
accumulating evidence is extremely unlikely, much less likely than the true
hypothesis would have it. The point of the theorem is to assure us that such
refutations are achievable when the evidence is of sufficiently good quality,
but falls short of logically contradicting false hypotheses.

In an exceptionally penetrating analysis of Bayesian induction, John
Earman* devoles a chapter to the examination of a number of Bayesian con-
vergence theorems. Earman argues that the assumptions under which a wide
variety of these theorems operate are too strong to apply in many important
cases of inductive scientific inference. Thus, he argues, the objective core of
Bayesian induction, which the convergence theorems are supposed to under-
write, is not generally assured.

Regarding Savage’s convergence theorem, Earman endorses the impor-
tant earlier critique of Hesse.5 Hesse points out that Savage’s theorem
assumes that the evidence consists of a sequence of independent, identically
distributed events; it assumes that the likelihoods of observational outcomes
are “objectively determined” relative to each theory or hypothesis; and it puts
no bounds on the rate at which convergence takes place. Hesse and Earman
argue that evidence for scientific theories will not generally satisfy the first
two conditions, and that the lack of bounds on the rate of convergence sug-
gests that convergence may take almost forever.

Earman ultimately rejects Bayesian induction (as it is usually under-
stood) and opts for a version of eliminative induction with Bayesian-like
considerations. He suggests that the version of eliminativism he favors might
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be dubbed Bayesian eliminativism. 1 will argue that Bayesian induction is
itself a form of induction by elimination, without the addition of any extra
eliminative element. Thus, I think, Earman is right about the form that scien-
tific inference should take, but Bayesian induction already fills most of the
bill.

Earman anticipates the possibility of a purely Bayesian form of elimi-
native induction. In the introduction to the seventh chapter of his book, his
“Plea for Eliminative Induction,” he says he will argue that®

... much of the bad press eliminative induction has received is

unjustified, and that to succeed at the level of scientific theories,
Bayesianism must incorporate elements of the eliminative view.

Later, on the same page, he adds:

Moreover, the ability to provide a Bayesian gloss does not mean
that Bayesianism has any real explanatory power. Indeed, the
eliminative inductivist will see the Bayesian apparatus merely as
a tally device to keep track of a more fundamental process.

I will argue that the Bayesian apparatus is indeed a tally device for elimina-
tive induction, a device that keeps a numerical tally of how hypotheses are
faring in the eliminative process. But I think there is no shame in this for
Bayesian induction; for, as we will see, any reasonable eliminative account
of induction should rely on a similar sort of tally device.

I will explore the eliminative nature of Bayesian induction and its con-
nection with Bayesian convergence. I will investigate very general conditions
under which Bayesian convergence may be achieved. Some of these condi-
tions are necessary for convergence (e.g., Theorem 4), and others are suffi-
cient (e.g., Theorems 5 and 6).

In section 1, I give a formal characterization of deductivist eliminative
induction. I show that in contexts where all of the competing hypotheses are
deductively related to the evidence, Bayesian induction is equivalent to elim-
inative induction plus a simple scheme for representing and maintaining
plausibility weightings among hypotheses not yet falsified.

In section 2, I investigate probabilistic eliminative induction, induction
in cases where hypotheses may fail to logically entail evidence, but instead
assign some probability to its occurrence. I will show how probabilistic
eliminative induction operates in a Bayesian framework, and establish a
fundamental connection between Bayesian convergence and eliminative
induction (Theorem 4). Roughly, Bayesian convergence can occur just in
case the evidence is strong enough to refute competing hypotheses. Differing
probability functions, which represent alternative assessments of the initial
plausibility to hypotheses, will not generally come into agreement on the pos-
terior probability of a hypothesis unless the evidence is either sufficiently
strong to refute that hypothesis or else is so powerful as to refute all of its
competitors. Thus, Bayesian convergence is essentially an eliminative
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process; for the most part, Bayesian convergence amounts to achieving
agreement about which hypotheses are practically refuted by the evidence.

In section 3, [ will develop a generalized form of Savage’s Bayesian con-
vergence theorem. It shows that if a hypothesis differs even slightly from the
true hypothesis in the likelihoods that it assigns to possible outcomes of
experiments and observations, then a large collection of such evidence will
almost certainly suffice to bring about the refutation of the hypothesis. The
generalized version of the theorem avoids the main objections raised against
Savage’s theorem by Earman and Hesse. In particular, this version doesn’t
depend on independent, identically distributed evidence; it doesn’t require
the likelihoods to be objective in any objectionable sense; and it puts bounds
on the rate at which convergence takes place, bounds that explicitly depend
on a quantitative information-theoretic measure of the quality of the evidence.

1. THE DEDUCTIVIST MODEL OF ELIMINATIVE
INDUCTION

In this section I will develop a formal representation of the deductivist ver-
sion of eliminative induction. I will show that the eliminative strategy for
finding the true hypothesis naturally suggests a tally device, a way of mea-
suring the impact of evidence on hypotheses, that is equivalent to Bayesian
conditionalization relative to evidence. This will set the stage for the suc-
ceeding sections, where we will see that Bayesian induction provides a gen-
eralization of eliminativism for hypotheses that are not deductively related
to the evidence.

1.1 THE LOGICAL STRUCTURE OF HYPOTHESIS TESTING

The central logical features of both eliminative and Bayesian induction
may be captured in a common framework, in terms of formal structures that
I will call induction structures. First I will specify the structure of a pre-
structure. Then I will impose additional conditions that, intuitively, an induc-
tion structure should satisfy.

A pre-structure for an induction structure is a quadruple S = <b,H,C,0>,
where, for some formal language L that is adequate for the expression of sci-
entific theories (i.e., at least a first-order language):

‘b’ is a sentence of L (intuitively, b expresses relevant, reason-

ably uncontroversial background knowledge or assump-
tions);

H=<h, hy, ... > is afinite or denumerable list of sentences of
L (each h; represents a competing hypothesis or theory
about some domain or subject matter);
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C =<cy, ¢, . .. > is a finite or denumerable list of sentences of
L (each ¢, is a description of initial conditions, or an exper-
imental setting, or of how an observation is conducted);

0 =<0y, 0y, . .. > is alist of lists of sentences of L, where O
has the same number of members as C;

each Oy = <0y 4,0y 5, .. ., Og > in O is a finite list of sentences
of L (the number, m, of sentences may differ among the
various Oy in O; intuitively, for each observation condition
¢y in C, Oy is a list of the alternative possible experimen-
tal or observational outcomes).

Let ‘F’ represent the logical entailment relation appropriate to the language
L,andlet ‘=°, ¢’, and ‘v’ be the symbols in L for negation, conjunction, and
disjunction, respectively. A pre-structure S = <b,H,C,0> is an induction
structure provided that it satisfies the following conditions:

1) fori#j, bk~ (hhy),ie., the hypotheses in H are mutually
exclusive;

2) for any h; and ¢y, and 1 # s, (b-hyc) F - (0g -0 ), ie., no
two outcomes of ¢, can both occur;

3) forany by and ¢, (b-hyep) F(og  v... v Og m)s i.€., one of
the outcomes of each ¢, must occur.

The roles that the various components of an induction structure (i.., b,
members of H and C, and members of the Oy in O) are intended to play in
the inductive confirmation of hypotheses should be pretty clear, but a few
words about the formal details are in order.

H is a possibly infinite list of hypotheses that express alternative theo-
ries about some common domain of phenomena. The members of H may be
broad, powerful scientific theories, or they may be much more specific, lim-
ited claims. For some induction structures, the list of hypotheses H may be
logically exhaustive relative to the common background knowledge b. That
is, {b, 7h;, 2 h,, . . .} may be a logically inconsistent set of sentences.
However, H need not be so all-inclusive. Hypotheses that are considered too
implausible to be worth testing (including those constructed around grue-
predicates) may be excluded from H. But the more exclusive H is, the greater
the danger of excluding the true hypothesis. I will assume that, however
exclusive, H does contain a true hypothesis. Of course, the logic of hypoth-
esis confirmation will not depend on which member of H is true. Rather, the
logic will specify how any given member of H would fare on evidence if it
were true. If the truth is not one of the possibilities in H, then it is simply out
of the running. If the true hypothesis is never considered, then there is no way
for evidence to support it, and no way for eliminative induction, Bayesian
induction, or any other method to confirm or support it with evidence.
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Usually the background knowledge or assumptions represented by ‘b’
will express relatively uncontroversial claims about the operation of instru-
mentation, and perhaps bridge principles that give empirical content to some
of the theoretical terms that occur in hypotheses in H (e.g., that trails in prop-
erly functioning bubble chambers are the tracks of charged particles). In
some cases ‘b’ may contain sophisticated physical theories (e.g., a theory
about the geophysics of the impact of large bodies with the earth, and another
about the physics of crystals and the force required to create shocked quartz);
and the hypotheses in H may make relatively narrow claims that are to be
evaluated relative to the presumed truth of these theories (e.g., the hypothe-
sis that a large asteroid struck the earth at the end of the cretaceous period,
and that the impact spread debris over a large part of the earth). I will assume
that the relevant background knowledge may be expressed by some finite
(perhaps very large) collection of sentences, and that all of these sentences
are conjoined into a single sentence ‘b’.

In deductivist versions of eliminative induction b must be of sufficient
strength to aid each possible hypothesis in conjunction with the initial con-
ditions ¢, (for each k) in the deductive entailment of one of the possible out-
comes oy, in Oy. In the more general context of Bayesian induction, (b-hy-c)
need not deductively entail outcomes. Rather, the background knowledge
may only aid (h;-c,) in the assignment of a probability of occurrence to each
possible outcome in O,. If each hypothesis in H is detailed enough to pro-
vide precise deductive or probabilistic implications from the initial condition
statements in C without any help from background assumptions, then ‘b’ can
be taken to be some simple tautology. In practice, however, some contingent
background knowledge is almost always presupposed in experimental or
observational contexts.

One may think of the ordering on initial conditions provided by C as
representing the order in which the evidence is gathered, the order in which
observations are made or in which experiments are performed. It will be
convenient to represent the conjunction of the first n members of C,
‘(ercy. . o €y)’, by ‘e,

Each possible outcome of the sequence of initial conditions c® is a con-
junction of the possible outcomes of n observations, one from each of O,
0,, ..., 0O, Thatis, for each k, let ‘e,” (from Oy) represent one of the pos-
sible evidential outcomes of c,. Then the conjunction ‘(e;-e,-. . ..e,)’ repre-
sents one possible conjunction of outcomes of the first n observation
conditions c®. I will employ the expression ‘€™ to represent conjunctions of
sequences of n outcomes. The expression ‘e®” is a meta-linguistic variable
that ranges over possible sequences of outcomes of ¢ for a given induction
structure. More picturesquely, each possible value of e” is a possible “path
through the outcome space” of c. Let En be the set of all such “paths.” The
sentences in E® represent each distinct possible sequence of outcomes for the
induction structure.
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A degree of idealization is necessary for a formal treatment of induc-
tive inference, but such idealizations are common in the theoretical specifi-
cation of a logic. For example, induction structures may possess an infinite
list of “all reasonable” hypotheses (a list that is inclusive enough to contain
the true hypothesis). The sentences of L are enumerable, so an enumeration
of all hypotheses must mathematically exist. But human reasoners will sel-
dom have a complete list of the reasonable alternatives before them. At any
given time most of the reasonable alternatives of a scientific theory will not
have been contemplated. However, once we see how inductive inference
should work for logically ideal reasoners, the concluding section of this
paper will address the implications for more limited beings.

In the next subsection I will focus on the deductivist version of induc-
tion structures, where each competing hypothesis logically entails one of the
possible outcomes of each observation c,.. Here induction structures will pro-
vide a formal model of eliminative induction as it is commonly understood.

1.2 THE DEDUCTIVIST MODEL OF ELIMINATIVE INDUCTION
An induction structure S will be called a deductive induction structure
(more simply, a deductive structure) just in case, in addition to conditions
1-3, above, it also satisfies the following condition:
4-d) for each sequence of observations c® (for all values of n)

and for each h; in H, there is a sequence of possible out-
comes €" in E" such that (b-h;-c") ke

Notice that for any given hypothesis h;, the sequence of possible outcomes
en that is entailed by (b-h;-c”) must be a single member of E", by condition
2 for induction structures. Hence, condition 4-d (‘d’ for ‘deductive’) implies
that each hypothesis in the structure logically entails exactly one sequence
of possible outcomes, one path through the space of possible outcomes.
Induction by elimination is usually framed in the context of deductive
structures. Suppose a deductive structure S contains the true hypothesis h,.
Will the evidence flush it out? The following theorem implies that it will.

THEOREM 1: Deductivist Version of Savage’s Convergence Theorem.

For a deductive induction structure S, suppose b and b, and the
¢ are true (for all n). Let h; be any alternative hypothesis in H
that differs with h; regarding some possible outcome ¢, of some
observation ¢, (i.e., (b-hy-c;) F e, and for some alternative out-
come o (not ey), (b-hgcy) F o).

Then, for n large enough (so that c" has ¢, as a conjunct), the
actual sequence of outcomes e will be whichever sequence of
outcomes is logically entailed by the true hypothesis—the e?
such that (b-h,-c) F en. And en will falsify hy, i.e., (b-cem) F —h;.
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According to this theorem the true hypothesis says that the evidence will
Jalsify those competitors that disagree with it on the evidence, and hence
eliminate them. The proof of the theorem is completely trivial—it follows
from the defining conditions for deductive induction structures. 1 have ele-
vated this result to the status of a theorem only because it is almost an exact
analog of Savage’s Bayesian convergence theorem. Savage’s theorem’
extends Theorem 1 to cases in which hypotheses need not deductively entail
the evidence. Later, in section 3, I will offer a generalized version of Savage’s
theorem.

In deductive structures, whenever any two hypotheses disagree on some
possible outcome, the evidence must eliminate at least one of them. Each
competitor of the true hypothesis will eventually be falsified, except those
that agree with the truth on all possible evidential outcomes (for the deduc-
tive structure). If there are evidentially indistinguishable alternatives to the
true hypothesis, only some sort of plausibility considerations (e.g., ontolog-
ical economy, explanatory power, comprehensiveness) can offer any hope
of ferreting out the truth among them.

Instrumentalists, of course, will be perfectly content if the evidence can
pare away all but an empirically equivalent set of hypotheses, provided each
hypothesis is empirically adequate to cover the intended range of phenom-
ena. Only realists need be concerned with finding the true hypothesis among
these. My concem in this paper is primarily with what evidence can do to dis-
tinguish among hypotheses. Although I will often speak as a realist, I do so
because realism has the tougher epistemological challenge to meet. In almost
all of what follows (including all formal results), whenever I speak of the true
hypothesis any empirically adequate hypothesis can play the same role.

Suppose that (for some structure) the true hypothesis has no evidentially
indistinguishable competitors, or that such competitors are laid low by plau-
sibility considerations. If H contains only a finite number of hypotheses, then
clearly the evidence will eventually (for some finite sequence of observations
cn) refute all of the false alternative hypotheses, and the truth will be what-
ever remains. But when the hypotheses are scientific theories, the number of
alternative hypotheses is (potentially) infinite. Although a single bit of evi-
dence may falsify an infinite number of the alternatives, there will generally
remain an infinite number among the unrefuted, and each successive bit of
evidence may leave an infinite number of remaining hypotheses. How can
eliminative induction find the truth when there are always so many unrefuted
alternatives? It cannot, as long as all unrefuted hypotheses are held on a par,
i.e., are considered equally plausible. It seems that eliminative induction can-
not uncover the truth, but only toss out an ever increasing number of the false
alternatives. Thus eliminative induction appears to reduce to Popperian
falsificationism 8

There is a simple way out of this quandary, a way that takes advantage
of the ordering that H imposes on hypotheses. Each hypothesis, including the
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true one, lies some finite distance from the beginning of the ordering.
Suppose b, is true. If all hypotheses before h; in H are evidentially distin-
guishable from it, then the evidence will eventually refute them, and h; will
rise to the top of the list (as ordered by H) of unrefuted hypotheses. Once at
the top, h; will remain there. Indeed, each of h;’s evidentially distinguishable
rivals farther out in H will also be eliminated eventually, and h; will become
preeminent. But, although this eliminative strategy must eventually yield the
true hypothesis (if it is in H), one can never be sure that the hypothesis
presently at the top of the unfalsified list is the truth. Still, the truth will sur-
face eventually.

There is nothing sacred about the ordering H imposes; any ordering of
the members of H will do. For any enumerative ordering of the hypotheses
in H, the true h, (and all of its evidentially indistinguishable competitors) will
eventually rise to the top of the list, and remain there. But although any order-
ing will do, it seems appropriate to order hypotheses so that those judged
more plausible are ranked above less plausible competitors. Of course, plau-
sibility is not a logical notion, and any ordering of the hypotheses is a logi-
cally possible plausibility ordering. But, if the true hypothesis happens to be
rated fairly highly by a plausibility ordering, then it will generally get to the
top of that ordering’s unrefuted list sooner than it would for orderings that
rate it less favorably. So it would be perverse for a person to employ an order-
ing that places hypotheses that she considers the most plausible far below
those she thinks highly implausible.

Total orderings on hypotheses fail to capture most of the characteristic
features of the notion of plausibility. For example, if there are a number of
equally plausible hypotheses, a total ordering must arbitrarily rank some
above others. Eliminative induction, however, is not very sensitive to the sub-
tleties of plausibility measures. Some ordering of hypotheses is required to
assist the refutationist strategy, and it makes good sense to place those
hypotheses one finds more plausible higher in the ordering. But, even if
judgements of plausibility are way off the mark, and even though plausibil-
ity is poorly represented by a total ordering, the elimination by falsification
of competing alternatives from an ordering for a deductive structure will
eventually yield up the truth (along with its empirically equivalent com-
petitors). Bayesian induction provides for a more sophisticated treatment of
plausibility orderings, but in Bayesian induction eliminative processes oper-
ate in much the same way.

1.3 THE DEDUCTIVIST SIDE OF BAYESIAN INDUCTION

A plausibility ordering functions as a kind of tally device for elimina-
tive induction, i.e., it keeps track of how well hypotheses are doing relative
to the evidence, and it will bring the truth (and its empirically equivalent
competitors) to the fore, given enough evidence. A mild extension of these
devices may be generated by associating a weight with each hypothesis.
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Intuitively, one might take these weights to represent the degree of plausi-
bility of a hypothesis relative to alternatives.

Define P, to be a possible plausibility rating for a deductive structure
S just in case Py is a function that assigns to each h; in H some positive
weight w; (relative to the background b for S), where the sum of these
weights is finite (i.e., Z; w; =r, for some positive real number r). The value
of the sum, r, may as well be taken as 1 since the weights can be normalized
by replacing w; with w;/r. I'll use the expression ‘Pyfh; |b] = w;” to say that
the degree of plausibility of h;, given that b is true, has weight w; according
to plausibility weighting Py, The sum of the weights is X; Py [h; |b] = 1.
Normalization to 1 is only a convenience. The important feature of plausi-
bility weights is not their numerical values, but the values of their ratios. The
ratio Py [h; | bl / Py [h; | b] represents the number of times more (or less) plau-
sible b is than h;, according to the plausibility weighting function Py on S.

In technical jargon, P, measures plausibility on a ratio scale. By intro-
ducing these weighting functions, and calling them plausibility weightings,
I do not mean to suggest that any real person has a ratio scale plausibility
rating for hypotheses. For one thing, real people are in no position to place
relative plausibilities on infinitely many alternative hypotheses. And even if
some computationally efficient method could be found to generate an ever
increasing (but necessarily always finite) list of plausible alternative hypothe-
ses, real people would probably be hard pressed to come up with precise rel-
ative weights for them. So, ratio scale plausibility functions on deductive
structures are certainly an idealization with regard to practical inductive rea-
soning. But for my purposes it suffices to regard these ideal functions as
merely a device that tracks the effects of eliminative induction. It is a better
device than total orderings of hypotheses, for it permits the representations
of relative plausibilitics when they are available. Ambiguity or indetermi-
nacy in relative plausibilities may be modeled as classes of these functions
that represent all ways that the ambiguity could be resolved into ratio scales.
Under the influence of eliminative induction the precise value of plausibil-
ity weights (assigned by a function or by a class of functions) will be of little
consequence, just as the precise order of hypotheses in a plausibility order-
ing made little real difference in the ability of eliminative induction to bring
the truth toward the top of the list. But, in general, the higher the weight of
the true hypothesis initially, the sooner it will attain a high plausibility rating
from evidence, since it will have to await the defeat of fewer competitors
in order to become the most plausible remaining hypothesis.

With weights in place, eliminative induction on deductive structures pro-
ceeds as always. But now, whenever a hypothesis in H is falsified by one of
the first n bits of evidence, its plausibility weight should be set to 0, relative
to the evidence, i.e., Py[h; | cr-en-b] = 0. Once a hypothesis receives a weight
of 0, its weight never rises; in effect it is dropped from the plausibility lList.
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The weights of the remaining, unfalsified hypotheses are not to change
relative to one another, but the weights of these hypotheses will not add to
1. Some positive weight will have been lost with the removal from the list
of those that are falsified. It is convenient to renormalize the weights on the
unfalsified hypotheses, so that they again sum to 1. Thus, define the updated
weight of each unfalsified hypothesis on the evidence as follows:

Pyfh; | chemb] = Pylhy | b] + 1 = wy/r, where r = Zry) Palb; | b},
for U the set of hypotheses in H that remain unfalsified on
(b-ch-en).

The new degree of plausibility for an unrefuted hypothesis is its original plau-
sibility divided by the sum of the original weights of all of the remaining
unfalsified hypotheses. Notice that the ratios of their original weights remains
unchanged. The evidence makes no difference to the relative plausibilities
of hypotheses it doesn’t refute.

Every plausibility weighting on a deductive induction structure eventu-
ally succumbs to eliminative induction. All false alternatives with weights
that initially rivalled that of the true hypothesis eventually obtain weights of
0. If the true hypothesis has no empirically equivalent competitors, then its
weight must converge to 1 as evidence increases. If there are empirically
equivalent alternatives to the truth, then the sum of the weights of these
hypotheses must converge to 1 as evidence increases.

Any P,, that updates weights in this way (i.e., by the renormalization of
weights for unrefuted hypotheses) is essentially a Bayesian probability func-
tion; indeed, all that Bayesian induction adds to eliminative induction on
deductive structures are constant relative plausibility weightings for unre-
futed hypotheses and renormalization of the absolute weights to sum to 1.
To see this, assume that Pg is a probability function on the language of a
deductive structure S. Then, provided that the truth of any given hypothesis
is irrelevant to the probability that the observational conditions ¢ hold (ie.,
Pglc® | h;b] = Pg[c® | b], which Bayesians implicitly assume), and provided
that the initial probabilities of all members of H add to 1 (i.e., Z; Pglh |bl=
1), Bayes’ theorem is as follows:

Pglen | cnhyb] x Plhy | b]

Pylh; | encnb] =
%, Pylen | cn-hyb] x Pglh; | b]

The axioms of probability theory imply that the values of Ppg[e® | ¢™-h;-b]
(the probability that the evidence would have occurred if (c“~hj-b) were true)
will be 0 when the evidence contradicts h;; and Pglen | ch;-b] = 1 when
(b~hj~c“) E en, Thus, Bayes’ theorem says that hypotheses are to have prob-
ability 0 on falsifying evidence. Hypotheses that entail the evidence are
updated by dividing their initial weights by the sum of the initial weights of
all as yet unfalsified hypotheses. It follows that the ratios of the updated
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probabilities of unfalsified hypotheses remain equal to the ratios of their
initial probabilities. Hence, for deductive structures Bayes’ theorem gives
precisely the updating scheme described earlier for plausibility weightings.

Although plausibility assignments may differ widely on the weights
they assign hypotheses, if there are no empirically equivalent competitors of
the truth in H, then all plausibility weightings (or Bayesian probability func-
tions) on a deductive structure S will converge 1o agreement on the plausi-
bilities for hypotheses as evidence increases. Convergence is guaranteed to
occur, because, for any given plausibility weighting, all the most plausible
competitors of the true hypothesis (and an ever increasing number of less
plausible competitors) will eventually be falsified. The plausibility weightings
of all falsified hypotheses become 0, and the renormalized weights of the true
hypothesis converge to 1. In short, the evidence brings about convergence of
opinion about the plausibilities of hypotheses; convergence is to 0 or 1.

If the true hypothesis is empirically equivalent to some set of alterna-
tives in H, then the only convergence to agreement that can be brought
about by the evidence is the agreement that the falsified hypotheses have a
plausibility weight of 0. Each plausibility function will eventually assign
almost all of the weight jointly to the true hypothesis and its empirical equiv-
alent alternatives. The various possible plausibility functions may differ
widely on the relative plausibilities of empirically equivalent hypotheses, and
the evidence cannot overcome such differences—nor should it.

2. PROBABILISTIC INDUCTION

Deductivist models of eliminative induction cannot represent the effect of
probabilistic evidence, evidence that the hypotheses imply only statistically
or probabilistically. Probabilistic evidence is of little consequence for hypoth-
eses when falsifying evidence can be found. But hypotheses that are empiri-
cally equivalent to the true hypothesis for deductively related evidence may
differ on the likelihoods they assign to a body of probabilistic evidence.
Such hypotheses are not truly empirically equivalent to the true hypothesis.
Indeed, the probabilistic evidence may come to highly refute false alterna-
tives (i.e., to make them highly unlikely) when falsifying evidence is not
available. Bayesian induction is a simple formalization of this idea. In this
section I will examine the eliminative nature of Bayesian induction. Roughly,
what I will show is that in Bayesian induction the influence of the values of
the subjective prior probabilities for hypotheses can become “washed out”
by the evidence (so that the values of posterior probabilities will come to
agreement) just in case the hypotheses become highly refuted or highly con-
firmed by the evidence. Thus, Bayesian agents who disagree on the initial
plausibilities of hypotheses (as represented by prior probabilities) can be
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-brought into agreement on the posterior probabilities by the evidence only
through eliminative means. Bayesian induction is a simple extension of the
deductivist model of eliminative induction to accommodate probabilistic
evidence. The essence of Bayesian induction is the relative elimination of
competing hypotheses.

2.1 THE STRUCTURE OF THEORY TESTING BY PROBABILISTIC EVIDENCE

In section 1.1, I defined the notion of an induction structure for hypoth-
esis evaluation, S = <b,H,C,0>. Recall that these structures are subject to
three conditions:

1) hypotheses in H are pairwise logically incompatible rela-
tive to b;

2) no two alternative outcomes of an observational condition
¢ can occur, given (h;b);

3) at least one of the possible outcomes in Oy (the list of
possible outcomes of condition c,) must occur, if (c;-h;-b)
holds.

Induction structures were called deductive induction structures if they also
satisfied:

4-d) for any n observations, c, each hypothesis (together with
background knowledge b) logically entails some conjunc-
tion e of outcomes.

When hypotheses only assign probabilities to outcomes, this fourth condi-
tion fails.

Bayesian induction emerges from the assignment of probabilities to the
sentences of induction structures. Probabilistic induction structures will
capture the essential features of Bayesian induction. Define a probabilistic
induction structure (more briefly, a probabilistic structure) as a pair <S,P>,
where S is an induction structure (i.e., S = <b,H,C,0> satisfies conditions
1-3 on induction structures) and P is some set of probability functions on
the language of the sentences in S, such that:

4) each probability function P, in P satisfies the axioms of
classical probability theory on the language of S;

5) for each Py in P, E; Po[h; | b] = 1;

6) for each P, in P there is some upper bound K > 0 such that,
for all pairs of hypotheses h; and h; in H, and for each n,
0 <P[c® | h;-b] / Pyfcn | h;-b] < K (more simply, but with
less generality, it would be reasonable to assume that
Pofcn | hyb] = Pofcn | hyb]);

7) the true hypothesis is in H (although we don’t know which
member of H it is), and for all P in P, if h is the true
hypothesis, then P,[h|b]>0;
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8) for any pair of probability functions P, and Py in P and
any h; in H, and for all possible sequences of n bits of evi-
dence e® (for each n), Pofen | c™h;b] = Pgle® | c™h;b] =
Plen | cn-hy-b].

I will briefly discuss Conditions 4 through 6, and then devote the next sub-
section to Conditions 7 and 8.

In section 1 we saw that for deductive structures the introduction of a
ratio scale measure on the relative plausibilities of hypotheses together with
a reasonable scheme for updating plausibilities on falsifying evidence is
tantamount to the application of a Bayesian probability function to sen-
tences of the structure. In that context the precise values of the plausibility
weights were of little consequence. Probabilistic structures will, of course,
capture the same ratio scale measures on relative plausibilities of hypothe-
ses, and, as it turns out, the precise values of the plausibility weights will be
of little consequence when sufficient probabilistic evidence is available.
Condition 4 merely formalizes the idea that a set P of possible plausibility
assignments will be associated with a probabilistic structure, and that the
plausibility assignments are to be consistent with the classical axioms of
probability theory, as Bayesian induction requires.?

From Conditions 1 and 4 it follows that the hypotheses are mutually
exclusive; for each pair of hypotheses in H, every probability function in P
will yield P [h; b | b] = 0. Condition 5 adds that the hypotheses in H are all
of the plausible alternative hypotheses for a probabilistic structure—they
have all of the weight (normalized to 1). Also notice that Conditions 2 and
3 together with 4 imply that for each hypothesis h; and observational condi-
tion ¢, the probabilities for possible outcomes (i.e., members of O,) must
sum to 1—i.e., Z; P[oy ; | ¢,-h;'b] = 1. These conditions also imply that for
any sequence of n observations, the sum of all the possible sequences of out-
comes (members of E7) is 1—i.e., for each n, Zgn; Plen | cnh;b] = 1.

Condition 6 on probabilistic structures says that the initial conditions do
not themselves function as evidence. The members of C describe initial
experimental or observational conditions that bear on the likelihoods
hypotheses assign to possible outcomes. The hypotheses should not sub-
stantially differ among themselves on the likelihood that the sequence of
initial conditions c® will occur. If hypotheses differ greatly on the likeli-
hood for a condition ¢, then ¢, should be classified among the evidential out-
comes in O rather than as initial conditions in C. It would be natural to
assume that the likelihoods of initial conditions are independent of particu-
lar hypotheses—i.e., P[c? | h;b] =Pyfcn | h;b] for each pair of hypotheses.
In that case, all occurrences of such likelihoods in the remainder of this paper
may be safely ignored, since Po[c? | h:b] / Py [c? | h;b] will equal 1. However,
I will only assume the weaker condition that these ratios are all bounded
above by some large number K, as stated in Condition 6.
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2.2 THE TRUE HYPOTHESIS, AND THE OBJECTIVITY OF LIKELIHOODS

Conditions 7 and 8 for probabilistic structures require more extensive
explanations than the first six conditions. This subsection will discuss them
in some detail.

A set of probability functions P for a probabilistic structure may con-
tain all possible probability functions that assign non-zero probability to the
hypotheses in H, or P may possess some more limited subset of probability
functions. Thus, various sets of probability functions can play the role of P
on the same induction structure S. Intuitively, a probability function may rep-
resent an ideal person’s rational belief function on sentences. 10 A set of prob-
ability functions P might, then, model the belief functions of a number of
ideal persons (i.e., Bayesian agents) who differ in their assessments of the
initial plausibilities of hypotheses. Alternatively, P may be used to represent
imprecision or uncertainty regarding the plausibilities for hypotheses for a
single Bayesian agent; the members of P may consist of just those probability
functions that are consistent extensions of some rather imprecise intuitions
about the range within which the relative plausibilities of the hypotheses lie.

Regardless of how P is understood, if a probability function in P assigns
a prior probability of 0 to a hypothesis, then no evidence can raise its poste-
rior probability above 0. So, if the true hypothesis is in H, and if each prob-
ability function in P is to have the ability to yield a non-zero posterior
probability for it, then each member of P must assign a non-zero prior prob-
ability to the true hypothesis. If, on the other hand, the true hypothesis does
not occur in H—i.e., if the true hypothesis is never seriously considered by
the Bayesian agents represented in induction structure S—then no mode of
reasoning can ever come to support it. Condition 7 on probabilistic structures
accommodates these concerns. It assumes only that the true hypothesis does
come under consideration and has a non-zero initial plausibility for all
Bayesian agents represented in probabilistic induction structure <S,P>.

Bayesians usually assume that hypotheses assign objective probability
values to each of the possible ways the evidence might turn out. Condition 8
captures this idea. It says that, for each hypothesis h; and sequence of possible
outcomes et on a probabilistic structure, the probability functions in P (for
the structure) must agree on the likelihood of the occurrence of e if (c™-h;b)
is true. To signify this “objectivity of likelihoods™ relative to a given set P,
the subscript will be dropped from the ‘P’ in expressions for likelihoods like
‘Ple" | c™h;b)’. However, Condition 8 does not require likelihoods to be
“absolutely objective”; it does not say that likelihoods must agree across all
probabilistic structures. Various probabilistic structures on the same induc-
tion structure S may well disagree on the numerical value of Pfe" | c™h;-b].
If there is imprecision or uncertainty regarding the numerical values of like-
lihoods, the ambiguity can be modeled as classes of probabilistic structures
on a common induction structure S. I won’t pursue the details here.
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Bayesians think of the likelihoods as objective with good reason. The
likelihoods represent the empirical content of hypotheses and theories. They
are the probabilistic counterparts of the logical entailments of outcomes by
hypotheses in deductive induction structures. Indeed, deductive structures
supplemented with weights on hypotheses are just special cases of proba-
bilistic structures, cases for which all the likelihoods have value 1 or 0.

If the hypotheses in H are explicitly statistical, or if they are stochasti-
cally tied to outcomes by a statistical model of measurement error in the
background b, then the objectivity of the likelihoods should be unproblem-
atic. They go by a logical version of the rule Lewis}! calls the Principal prin-
ciple. This principle may be formulated roughly as follows:

1. Suppose “(h;-b)’ logically entails that systems of type ‘¥ on
which a measurement of type Q is performed have a
propensity or statistical probability equal to r of produc-
ing a measurement outcome of type y. Let ‘c,’ say that a
particular system of type ¥ is measured appropriately (a Q

measurement is performed on it); and let ‘o’ say that the
measurement outcome is of type y.

2. In addition, suppose ‘(c,-h;b)’ does not logically entail
that the measured system belongs to any other statistical
reference class @ unless either ‘(c-h;'b)” logically entails
that @ assigns a statistical measure equal to r to outcomes
of type v, or else ‘(c-hyb)’ logically entails that every ¥
system is a @ system (1 e., that ¥ is a sub-reference class
of ®).

Then the likelihood assigned to ‘0’ by ‘(c-hyb) ist, i.e.,
Plo| ¢ hyb]=r.

Likelihoods arising from this principle are often called direct inferences, after
Carnap’s!2 term for a similar notion. In a logical theory of probability, like-
lihoods are treated as meta-linguistic logical relationships between pairs of
object language sentences, on a par with logical entailments. The idea s that
just as ‘all As are Bs, and ¢ is an A’ logically entails ‘c is a B’, so ‘the sta-
tistical measure of Bs among As isr, and cis an A’ probabilistically entails
to degree r that ‘c is a B’. Kyburg!3 has developed the most rigorous ver-
sion of a logical formulation of direct inference probabilities, a version in
which the probabilities for likelihoods depend only on the logical form of the
object language sentences. Although his system is incompatible with
Bayesian induction in some cases, Harper!4 has adapted Kyburg’s approach
to Bayesian probability functions.!> I think some such approach will provide
an adequate formalization of direct inference probabilities, although the
details are still not completely settled. But, however this logical program pans
out, when hypotheses are precise enough for the Principal principle to oper-
ate, it seems reasonable to require the probability functions in P to agree on
the probabilities for likelihoods.
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When hypotheses are not so precise as to furnish likelihoods via the
Principal principle, a certain degree of objectivity should still be expected
of them. To argue for this claim I must first briefly sketch how likelihoods
operate in Bayesian induction. Then we will see just how objective the like-
lihoods need to be.

Generally, as the amount of evidence increases, the likelihoods for the
accumulated evidence will decrease toward 0, even with respect to a true
hypothesis. For example, the likelihood of obtaining any specific sequence
of outcomes consisting of exactly 50 heads on 100 tosses of a coin is (1/2)100
on the hypothesis that the coin is “fair.” This sequence of outcomes supports
the “fairness hypothesis” so strongly not because it is likely, but rather
because the likelihood of this outcome is much smaller relative to alterna-
tive hypotheses, e.g., that the coin is “bent” or biased to a certain degree. In
Bayesian induction the relative likelihoods of the evidence with regard to
alternative hypotheses does all of the evaluative work. When a hypothesis
that has a non-zero prior probability says that the actual sequence of out-
comes is much more likely than does a competing hypothesis, I will say that
the competitor becomes highly refuted by the evidence relative to that
hypothesis, Highly refuted hypotheses are usually not falsified; additional
evidence might revive them. However, in section 3 we will see that under
certain minimal assumptions about the quality of the accumulating evidence,
false hypotheses will almost certainly become highly refuted by enough evi-
dence, and they will remain highly refuted on additional evidence. This
result does not depend essentially on the objectivity of likelihoods. Indeed,
in Bayesian induction the precise values of likelihoods are almost never
important (except when they are 0). Evidence only has an influence in so far
as the likelihood ratios, Pe® | ¢™h;b] / P[e® | c™hyb], rise or fall as the
amount of evidence increases. If this ratio goes toward 0, then h; becomes
highly refuted relative to h; on e® for the probabilistic structure in question.

When Bayesian refutation occurs, the precise values of likelihood ratios
are not really important. If two probability functions, P, and P, from dif-
ferent probabilistic structures do not represent radically different assess-
ments of the likelihoods, then any hypothesis that becomes increasingly
refuted for P, will do so for Pg. For example, it would suffice if the likeli-
hood ratios given by P, and Py are always within some very large constant
multiple of each other. When P,, and Py are so related, the likelihood ratios
(for a pair of hypotheses) go to O for Py, just in case they go to 0 for Pg. On
the other hand, if two probability functions assign radically different values
to likelihood ratios, then their values for likelihoods have to be very different,
t00. Any two such probability functions must disagree radically on the empir-
ical import of some hypothesis or theory; these probability functions widely
disagree about what the theory says the observable part of the world is like.
Effectively the two probability functions employ the same syntax to express
quite different theories, and this difference shows up in their radically

115



different empirical import. Thus, even when hypotheses are not so precise
as to furnish objective likelihoods via the Principal principle, the likelihoods
should be objective to the degree that all probability functions that represent
approximately the same understanding of the empirical import of each
hypothesis will come to highly refute the same hypotheses.

As it happens, practically none of the analysis of Bayesian induction in
the remainder of this paper relies on the objectivity of the likelihoods. In most
of what follows the reader may safely relativize likelihoods and their ratios
to a particular probability function, and write in a subscript ‘a’ where I’ve
left it out. In contexts where objective likelihoods are required I will say so
explicitly. However, the idea that likelihoods should be relatively objective
is a central theme in Bayesian induction. The whole point of using Bayes’
theorem to evaluate posterior probabilities of hypotheses (relative to evi-
dence) is that the likelihoods used in Bayes’ theorem are supposed to pro-
vide a fairly objective way of assessing the impact of evidence on the
plausibilities of hypotheses.

One further point about the defining conditions of induction structures
should be noted. Bayesians often assume that the individual bits of evidence
are probabilistically independent of one another relative to a hypothesis.
Independence would mean that the likelihood of the accumulated evidence
relative to b; is the multiplicative product of the likelihoods of each part of
the accumulation, i.e., P[e" | ¢ h; b] = [T Pley | ¢,-h; b]. For explicitly sto-
chastic hypotheses, where the Principal principle applies, the evidence can
usually be chunked into independent pieces. Indeed, it seems that any rea-
sonable scientific theory should provide a way to carve the evidence into sep-
arate, stochastically independent events. If a theory fails to do so, then each
time the theory is used to predict an observable event it has to employ all of
the past observational and experimental data as initial conditions. The fol-
lowing analysis of Bayesian induction will, however, in no way depend on
the independence of bits of evidence. Independence will not be assumed for
the possible outcomes in induction structures, but occasionally I will point
out the effect it would have, as a special case.

The next subsection will describe Bayesian induction in a manner that
makes the central role of likelihood ratios apparent. Then, the remainder of
the paper will investigate conditions under which the likelihood ratios bring
about the relative refutation or confirmation of hypotheses.

2.3 LIKELIHOOD RATIOS AND BAYES’ THEOREM

For any sequence of possible outcomes, v, the ratio of the likelihood
that e will occur if hypothesis b is true over the likelihood that e” will occur
if b is true is called the likelihood ratio for h; over h; relative to a possible
sequence of outcomes e". Let ‘LR[e" | j/i]’ represent this ratio, i.e., relative
to a given probabilistic structure <S,P>, define LR{e" | j/i] as follows:

LR[e" | j/i] = Ple" | c™hyb] / Ple® | chhyb) .
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The numerical value of a likelihood ratio represents the number of times more
(or less) likely the occurrence of outcome e” would be if h; were true than it
would be if h; were true. In Bayesian induction, likelihood ratios provide the
mechanism through which evidence has its impact on the relative plausibil-
ities of hypotheses. But, the likelihood ratios do not show up explicitly in
Bayes’ theorem as it’s usually written. In this subsection I will describe the
posterior probabilities of hypotheses relative to the evidence (i.e., the
Bayesian updating of their plausibility ratings) in a form that makes the role
of the likelihood ratios conspicuous.

When the sequence of outcomes e consists of independent conjuncts
€, where each is independent of the rest relative to any given hypothesis h
in H, then a likelihood ratio can be expressed as a product of the likelihood

ratios of the conjuncts:
Plen|cmhyb] o Pley | c-hy-b] .

Plen | cnh;b] Ple, | ¢-hyb]

LR[en| j/i] =

Though desirable, independence is not essential to the workings of likelihood
ratios, and I will not assume that it holds. But later I will discuss indepen-
dent outcomes as a special case.

For each P, in a probabilistic induction structure, the relative plausibil-
ity of one hypothesis over another relative to the evidence is measured by
the product of their likelihood ratio with their relative initial plausibilities:

@  Polbylenemdl ) pren|jiy x Poltil®] o Poler[bybl
P,[h; | en-cnb] P,[h; | bl P.lc? | h;-b]

This equality is a theorem of probability theory (i.e., for each hypothesis h,

P,[h | en-ctb] = Py[ench | b] + Pylencn | b] =
Ple® | c®h-b] X Py[c | h-bl X P[h | b] + P fencn | b]).

The last ratio on the right of (I) represents the relative plausibility of the
occurrence of the initial conditions, c®, on each hypothesis. It seems rea-
sonable to assume that the occurrence of the initial conditions is not a lot
more likely on one hypothesis than on another. Thus, Condition 6 on prob-
abilistic induction structures supposes that plausibility ratios for initial
conditions are bounded above (for all n). It would not be unreasonable to take
the value of this ratio to be 1, and then to ignore it throughout the rest of the
paper. I will continue to display these ratios, but only to show that if they are
bounded, then nothing of substance would be lost by ignoring them.

Equation (I) suggests a way to extend eliminative induction to proba-
bilistic evidence. Although a hypothesis, h;, might avoid falsification, it may
become increasingly refuted relative to an alternative, h;, provided that b;’s
initial plausibility is above 0 (for P,,) and the likelihood ratios LR[e" | j/i] go
to 0. In other words, if the evidence becomes increasingly less likely on b
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than on h;, and if h; has some plausibility, then the plausibility of h; must fall
toward 0. Indeed, the theorems in the next subsection will show that virtu-
ally the only worthwhile role evidence can play in Bayesian induction is this
eliminative role via likelihood ratios.

The relationship between relative plausibilities of hypotheses (on the
evidence) and the likelihood ratios, as expressed in equation (I), is really all
there is to Bayesian induction. The absolute probability of a hypothesis (for
a probability function P) comes directly from the sum of the relative plau-
sibilities. To see this, first consider the odds, Q, against a hypothesis h; rel-
ative to evidence, defined as follows:

I Pol-h;|encnb]

| en.cb
Q,[-h; | encnb] = Pqlhy | en-cn-b] )
P.ih; | enctb]

P, [h; | en-cnb]

The odds against a hypothesis is the sum of the relative plausibilities for its
competitors, the sum of instances of equation (I). The relationship between
the odds against a hypothesis and the likelihood ratios follows directly from
equations (I) and (II):

) ' alr
Q,[~h; | ercib] = T Llen | 3] x Poby | b] x P.fcn| hy-b] .
P,lh; | b] P,lc" | h;b]

The absolute probability of a hypothesis on evidence is related to the
odds against it by:

(V) p_[h;|ercnb] = 1/(1+Qqu[~h;|ercub]).

Equation (IV) follows easily from the definition of odds given in equation
(I1). Taken together, equations (ITI) and (IV) are a form of Bayes’ theorem.
The expression of Bayes’ theorem in terms of the odds against a hypothesis
makes the role of the likelihood ratios more perspicuous than does the more
usual form of the theorem:

) ng.. . n| k.
P, fh, | encub] = Plen | cn-h; b] X P fh; | b] X Pyfc? | by-b] _
%, Plen | cnh;-b] X Pyfh; | b] X Pofen | by bl

To see the role of likelihood ratios in Bayesian inference, consider equa-
tion (ITT). The odds against a hypothesis are at least 0, and can be arbitrarily
large. Equation (III) implies that if h; becomes increasingly refuted relative
to at least one alternative by, i.e., if L[e" | ifj} converges to 0, then its inverse,
L[er| j/i], blows up toward e and the odds against h; go to o with it. Hence,
by equation (IV), the probability of h; goes to 0. On the other hand, if every
alternative to h, becomes increasingly refuted relative to it, i.e., if for every
alternative h;, L[e® | j#i] converges to 0, then by equation (III) the odds
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against h; converge to 0. When this happens, equation (IV) says that the prob-
ability of h; converges to 1.

Now, suppose the accumulating evidence does not drive the probabil-
ity of b to either O or 1. Then for some alternative hypothesis b, the likeli-
hood ratios L[e" | j/i] will neither blow up nor converge to 0. If these
likelihood ratios do not go to extremes, but instead remain fairly close to 1,
then equation (I) implies that the relative probabilities of h; over h; on the evi-
dence will remain close to their initial relative probabilities. Indeed, if the

likelihood of evidence on h; agrees with the likelihood on by, then L{e® | i)
= 1, and the evidence yields no change in the relative plausibilities of h over
h;. When the evidence fails to take the likelihood ratios to extremes, the ini-
tial plausibility assessments, Pyfh; | b], will continue to significantly influ-
ence the revised plausibility assessments Pg[h; | co-en-b].

Clearly, evidence that yields extreme likelihood ratios will bring all
probability functions in a probabilistic structure into agreement on the pos-
terior probabilities of hypotheses, agreement converging on probabilities of
0 or 1. Such extreme evidence completely washes out the influence of the
prior probabilities by highly refuting all but one of the competitors. When
the evidence is not so extreme (i.e., when it fails to refute some competitors),
one might hope that evidence can at least overcome the differences in prior
probabilities for hypotheses and bring convergence to agreement on their
posterior probabilities. The various probability functions in a probabilistic
structure represent alternative assessments of the initial plausibilities of
hypotheses, and one might hope that evidence can overcome such initial dif-
ferences. In the next subsection we will see that this non-eliminative form
of convergence generally cannot happen.

2.4 THE ELIMINATIVE NATURE OF BAYESIAN INDUCTION

For a given probabilistic structure <S,P>, the probability functions in P
can disagree widely in the prior probabilities they assign to hypotheses.
Bayesians take P to represent a diversity of views on the initial plausibili-
ties of the alternative hypotheses among ideal Bayesian agents. Theorems 2
through 4 will specify stringent conditions that the evidence must satisfy in
order to bring convergence to agreement among functions in P on the pos-
terior probabilities of hypotheses. Thus, these conditions will characterize
what it takes for evidence to bring agreement among Bayesian agents regard-
ing the degree to which the hypotheses are plausible. Roughly, Theorem 2
will show that posterior probabilities for hypotheses converge to 0 just when
they become highly refuted via likelihood ratios that converge to 0. Theorem
3 will show, roughly, that posterior probabilities go to 1 just in case all alter-
native hypotheses are refuted by 0-converging likelihood ratios. Finally,
Theorem 4 will show that if any two modestly disagreeing probability
functions in P converge to agreement on the posterior probabilities for a
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hypothesis, then the agreement will only be reached as the posterior proba-
bilities converge to 0 or 1. Thus, we will see that for Bayesian induction, the
evidence overcomes the initial disagreement or uncertainty among ideal
Bayesian agents regarding the relative plausibilities of hypotheses just in case
itis powerful enough to highly refute competing hypotheses through dimin-
ishing likelihood ratios.

Theorems 2 and 3 formally express intuitively obvious relationships
between extreme likelihood ratios and posterior probabilities. I call them the
Zero-Converging and One-Converging Likelihood Ratio Theorems. The
Zero-Converging theorem states some necessary and some sufficient condi-
tions for likelihood ratios to bring posterior probabilities to converge to (.
The One-Converging theorem states conditions under which likelihood ratios
raise posterior probabilities to 1. I will omit the proofs of these theorems,
since they follow easily from the connections between likelihood ratios and
ratios of probabilities (equation (I)), between likelihood ratios and odds
(equation (IIT)), and between odds and posterior probabilities (equations (IT)
and (IV)).

THEOREM 2: Zero-Converging Likelihood Ratio Theorem.

Let P, be any probability function in a probabilistic induction
structure <S,P>, and let h; and h; (in H for S) be any distinct pair
of hypotheses such that P,[h, | b] > 0 and P, b | b] > 0. Then:

1) limy, (Po[h; | encnb] / Pylh; | en-cnb] ) = 0 jff
lim, LR["| jA] = 0;

2) if limg LR ji] = 0, then lim, Pfh; | en-cnb] = 0;

3) iflim, Pa[hj | etci-b] = 0 and there is a real number r such that,
for all n, P, [h; | encb] > r> 0, then lim, LR[."| j/i] = 0.

Theorem 2 says that for any sequence of outcomes, the likelihood ratios for
h; over h; converge to 0 just when the ratios of posterior probabilities for by
over h; converge to 0. And such convergence requires the posterior proba-
bilities of h; to go to 0 as well. On the other hand, the convergence to 0 of
the posterior probabilities for h; does not imply that the likelihood ratios of
h; over h; will go to 0, for the posterior probabilities for h; may go to 0 even
faster than those for h;. But, if the evidence is such that, for some h;, the
posterior probability of b, does not get arbitrarily close to 0, then the poste-
rior probability of any h; will converge to 0 if and only if its likelihood ratios
(overh)) goto 0.

All probability functions within a probabilistic structure agree on the
likelihoods. So, Theorem 2 implies that a hypothesis will become increas-
ingly refuted by decreasing likelihood ratios (relative to an alternative) just
in case, for every probability function in the probabilistic structure, the
posterior probability of the hypothesis converges to 0. The theorem affirms
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that refutation via likelihood ratios is related to posterior probabilities near
0, just as it should be, and that all plausibility measures in a structure come
to agree on the near-zero probabilities of highly refuted hypotheses.

THEOREM 3: One-Converging Likelihood Ratio Theorem.

Let P, be any probability function in a probabilistic induction
structure <S,P>, and let h; (in H for S) be any hypothesis such
that P {h; | b] > 0. Then:

1) if lim; P [h; | en.ch-b] = 1, then for every hj distinct from
h;, such that Pa[hj | b] > 0, lim,, LR[en | =0

2) if for every h; distinct from h; such that Py[h; Ib]>0,
lim, LR[e™ | j/i1 =0, and there is some real number K> 1
such that, for every such h;, for all n, LR{e? |iil <K
(i.e., the likelihood ratios are bounded above), and for all n,
P,lc™ | b;b] / Pyfen | h;b] < K (the ratios of likelihoods for
initial conditions are bounded above), then lim, P,[h; | en-ctb] = 1.

Theorem 3 says that the connection between posterior probabilities that
approach 1 and the refutation of all alternative hypotheses is just as one might
expect. If the posterior probability of h; goes to 1, then the likelihood ratios
of all competitors relative to h; must go to 0, and the alternatives become
increasingly refuted. If h; has empirically equivalent competitors, then only
the sum of their posterior probabilities can approach 1. If this sum goes to
1, then all other hypotheses must be refuted by 0-converging likelihood
ratios.

The “eventual” increasing refutation of all competitors is not quite suf-
ficient to guarantee that the posterior probability of a hypothesis goes to 1.
Ateach place in the sequence of evidence there may be an alternative hypoth-
esis for which the likelihood ratio relative to h; has not yet started toward 0.
And as this hypothesis becomes highly refuted, there may still be another as
yet unrefuted hypothesis with an even larger likelihood ratio than the last. So,
even if each altemmative is eventually refuted, there may always be another
likely contender, another alternative that has been made highly likely by the
evidence thus far. However, the second part of Theorem 3 implies that if the
likelihood ratios for false alternatives relative to a true hypothesis, h;, satisfy
a very plausible condition—they never become larger than some perhaps
very large finite number (and the probability ratios for initial conditions are
also bounded)—then the eventual increasing refutation of all altemnatives rel-
ative to h; will suffice to bring the posterior probability of h; arbitrarily close
to 1.

When h; has evidentially indistinguishable competitors, its posterior
probability cannot converge to 1, and the present version of Theorem 3 does
not apply. But, it is easy to generalize Theorem 3, as follows:
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THEOREM 3*: Extended One-Converging Likelihood Ratio Theorem.

Let W be any subset of the hypotheses in H such that all hypothe-
ses in W have non-zero initial probabilities:

1) iflim, ):[W P lh; | en-c-b] = 1, and for all h; in W,
lim,, P [h; f en-ctb] # 0, then for every h; notin W such
that Po[h; | b] > 0, lim, LR[en| j/i] = O for all h; in W;

2) if for every h; notin W such that Pq[h; | b] >0,
lim,, LR[e? | j/i] = 0 for each h; in W, and there is some real
K > 1 such that, for every such hj notin W and all h; in W,
for all n, LR[en | jfil £ K and, for all n, P[cn | hj~b] /
P,[cn | h;b] <K, then lim,, Zrw; Py[h; | en-crb] = 1.

Roughly, the sum of the posterior probabilities of a set of hypotheses
approaches 1 just in case all other alternative hypotheses are refuted via
0-converging likelihood ratios. This generalization applies both to sets, W,
of hypotheses that are evidentially indistinguishable from the truth, and also
to broader sets of hypotheses that do not differ significantly enough from the
true hypothesis on the likelihoods of the accumulating evidence.

All probability functions within a probabilistic structure agree on the val-
ues for likelihoods. So, as a hypothesis undergoes increasing refutation (via
likelihood ratios that approach 0), the probability functions in the induction
structure must converge to agreement at 0 for the posterior probabilities of
the hypothesis. And if all alternatives of a hypothesis become increasingly
refuted, then all probability functions in P converge to agree at 1 for the pos-
terior probabilities of the hypothesis. But, we might hope that there is another
way for the evidence to force diverse probability functions into agreement
on posterior probabilities, agreement for hypotheses that are neither highly
refuted nor highly confirmed. Can convergence fo agreement occur without
convergence to 0 or 1? Theorem 4 will show that if a pair of probability func-
tions differ only modestly (in a sense that I am about to explain) on initial
probability assignments, then convergence to agreement can occur ornly if the
evidence increasingly refutes all but one alternative, and its posterior prob-
ability goes to 1.

DEFINITION: Modestly Different Probability Functions.

A pair of probability functions P, and Pg on a common induc-
tion structure will be said to modestly differ with each other rel-
ative to h; in H if and only if one of them, say P, is related to
the other as follows:

i) Pglhy | b] > 0;

ii) there is a real number M > 1 such that, for each alterna-
tive hj to h;, PB[hj | b >M x Pu[hj | b] > 0;
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iit) for every hypothesis h in H, PB[cn | h-b] = Pfcn | hb]
(for all n);

iv) P, and Py agree on the likelihoods, i.e., for every hypoth-
esis h in H and for each possible outcome sequence en,
Pglen | cn-h-b] = P_[en | cmh-b] (for all n).

Suppose, for example, that P,[h, | b] = 3/4, and for j > 2, Pyl | b] = 1/2+1,
One of the probability functions that differs modestly from P, with respect
to h, is a function Py such that (for M = 2) Pglh, | b} =2x Pylh | b] = 1/2),
for j > 2; and Pg[h, | b] = 1/2. Indeed, for any given probability function,
every other probability function that can be generated from it by increasing
the initial probabilities of all alternatives to h; by at least some constant mul-
tiple M > 1 will differ modestly from the original probability function with
regard to h;. Similarly, given any probability function Pg, all probability func-
tions P, whose prior probabilities for the alternatives to hypothesis b, are
somewhere below (e.g., less than 99.99% of) the respective prior probabili-
ties that Py assigns will modestly differ from Pg (where 1/M = 9999 in this
case). Then, the only hypothesis to which Py assigns a higher prior proba-
bility than P, is h;.

The next theorem says that if any two modestly different probability
functions (which agree on likelihoods) converge to agreement on the pos-
terior probability of a hypothesis, then either the posterior probabilities for
the hypothesis converge to 0 or else they converge to 1. In light of the pre-
vious two theorems this means that convergence to agreement is possible
only when eliminative induction operates through zero-converging likeli-
hood ratios.

THEOREM 4: Non-Zero Convergence is Convergence to One.

Consider any probabilistic induction structure <S,P>. Let h; be
some hypothesis in H, and suppose there is a P, in P that satis-
fies the following conditions:

i) there is a real number r such that, for all n, Pfh; | en-cb]
>r>0, and

i) there is a Py that modestly differs with P, relative to h;,
and

iii) limy | Poh; | encnb] - Pglh; | encnb] | =0.
Then  lim, Py[h;]en-ctb] = 1.

Thus, if all probability functions in P come arbitrarily close to
agreement on the posterior probabilities for h;, then (by Theorem
3) they do so only as the evidence (via likelihood ratios) increas-
ingly refutes all alternatives to h;.

(Proof is in the appendix.)
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The upshot is that generally Bayesian convergence can occur in only two
ways. The first is for a hypothesis to become increasingly refuted, via like-
lihood ratios, relative to an alternative. In that case, all probability functions
assign posterior probabilities for the hypothesis that converge toward 0 as
evidence accumulates. The other way that Bayesian convergence can occur
(for probability functions that modestly differ) is when all probability func-
tions assign posterior probabilities to a hypothesis that converge to 1, and
assign posterior probabilities that converge to 0 to all alternatives. For this
to happen, all competitors of the hypothesis must become increasingly
refuted by way of likelihood ratios.

There are, of course, special classes of probability functions for which
convergence short of 0 and 1 may occur. Suppose that all probability func-
tions in P agree on the prior probabilities for most hypotheses, but disagree
on the prior probabilities for some finite subset of hypotheses. If each of the
finitely many hypotheses on which there is initial disagreement becomes
increasingly refuted by the evidence, then all probability functions in P will
converge on values for posterior probabilities for the unrefuted hypotheses,
posterior probabilities that need not be 0 or 1. But, if P contains even one
probability function that modestly differs from another on the initial plausi-
bilities of hypotheses, then convergence to agreement occurs for these two
probability functions (and so, for all members of P) only at 0 or 1.

If the true hypothesis has empirically equivalent alternatives that are not
laid low by plausibility considerations, then the influence .of their initial
probabilities cannot be washed out. Equation () says that their relative pos-
terior probabilities remain at the relative weights of their initial probabilities.
The influence of initial probabilities is overwhelmed by evidence only for
those hypotheses that the evidence increasingly refutes.

Is there any reason to think that empirically distinct alternatives to the
true hypothesis will be increasingly refuted by the accumulating evidence?
Theorem 1 says that if hypotheses differ on deductively entailed evidence,
false competitors will eventually be falsified. The two theorems in the next
section extend Theorem 1. They show that a sufficient amount of “low
quality” probabilistic evidence will almost certainly suffice to increasingly
refute each empirically distinct competitor of the true hypothesis.

3. BAYESIAN REFUTATION AND THE QUALITY
OF THE POTENTIAL EVIDENCE

Under what circumstances is it likely that a given alternative to the true
hypothesis will be refuted? Bayesian refutation of a false hypothesis is log-
ically assured when the true hypothesis logically entails the occurrence of
an event that is logically inconsistent with the false hypothesis (Theorem 1).
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Although we do not know which hypothesis is true, we know that all of the
empirically distinct alternatives to the true hypothesis on deductively related
evidence can be falsified by evidence, and the posterior probability of the true
hypothesis will rise. But suppose hypothesis h; is empirically distinct from
the true hypothesis only with respect to probabilistic evidence. The central
question for Bayesian induction then becomes:

If a hypothesis b, is true, under what circumstances is it likely

that an alternative, h;, will become highly refuted relative to h;

by probabilistically related evidence—i.e., under what condi-

tions is it likely that a sequence of outcomes, e, will occur for
which the likelihood ratios, LR[e" | j/i], go to O as n increases?

1 will offer an answer to this question in the form of a generalized version
of Savage’s theorem.!6 T will describe very general conditions on proba-
bilistic evidence that, when satisfied, make it highly likely that empirically
distinct alternatives to the true hypothesis will become highly refuted via like-
lihood ratios.

I will rely on two theorems to make my case, Theorems 5 and 6. They
show that if a hypothesis empirically differs from the true hypothesis on the
probabilistic likelihoods of some possible outcomes, and if the expected
quality of the accumulating evidence is, on average, not extremely poor, then
it is highly probable that some sequence of outcomes will occur that will
drive the likelihood ratios toward 0. This claim will be made precise with the
aid of an information-theoretic measure of the expected quality of the infor-
mation from observations, a measure of the potential power of an experiment
or measurement {or other observation) to discriminate between hypotheses.
The ability of observations to discriminate between hypotheses depends
entirely on the degree to which two hypotheses disagree on the likelihoods
for the various possible outcomes that might result from experiments or
measurements. If on average these likelihoods differ (even minutely), then
the acquisition of a large enough quantity of this evidence will very prob-
ably (as near to 1 as you like) yield outcomes that collectively bring the like-
lihood ratios as close to 0 as you please.

Throughout this section I will restrict attention to a single probability
function P, that satisfies the rules for probabilistic induction structures on
an induction structure S. The objectivity of likelihoods is not essential in what
follows, but I will continue to drop the subscript ‘e’ from P, in expressions
containing only likelihoods. This will emphasize the fact that none of the fol-
lowing considerations depend on the values P, assigns as initial probabili-
ties to hypotheses. I will also restrict attention to a pair of hypotheses h; and
h;; h; will often play the role of the true hypothesis. The following sufficient
conditions for the likely Bayesian refutation of Iy, relative to h; apply equally
to any pair of hypotheses from an induction structure, and apply to every
probability function, P, that satisfies the conditions for probabilistic induc-
tion structures.
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3.1 THE REFUTATION OF HYPOTHESES THAT DENY REAL POSSIBILITIES

It will be convenient to divide the labor between two cases. First I will
treat the special case in which some really possible outcomes—outcomes that
have non-zero likelihoods on the true hypothesis—are assigned likelihoods
of 0 by alternative h;. The next subsection treats the more difficult case
where h; assigns some positive likelihood to all of the real possibilities.

Suppose that, for each n, every possible sequence of events e" to which
h; assigns a non-zero likelihood can be extended by at least one of the next
possible outcomes, 0,,, ,, (for the next observation ¢, ;) to a sequence en+!
to which h; assigns likelihood 0. If b; is the true hypothesis, and if it assigns
non-zero likelihoods to some of these outcome sequences, then an event that
refutes h; is almost sure to occur eventually. The true hypothesis probabilis-
tically asserts that such refutation is likely, approaching certainty as the evi-
dence increases.

THEOREM 5: The Special Refutation Theorem.

If for all ek such that Pfek | ck-b-h] > 0, the following two con-
ditions hold:

1) Plek | ck+L-b-hy] = P[ek | ck-b-y}, and similarly for h;;
2) P{v {0, | Ploy, | cK-ekl-b-hy) = 0} | ck-eki-h;b] 2 8 >0,
then P{v{en|LR[en]j/i] =0} |cmh;b] =1 - (1-8),

and thus, lim, P[v{e® | LR[e?| j/i] = 0} | cn-h;b] = 1.
(See the appendix for proof.)

The first condition in the antecedent of Theorem 5 merely asserts that the
likelihoods assigned by h; (and by hy) to the possible sequences of out-
comes ek are independent of the initial condition ¢y, ; for the next observa-
tion or experiment. The expression in the second condition ‘v {0y | Ploy |
ckek-l.b-hy] = 0} represents the sentence formed by taking the disjunction
of all possible outcomes of the k observation, ¢, that have 0 probability
relative to h; (conjoined with ck-ek-1-b). Similarly, ‘v{e | LR[en| j/i] = 0}
describes the disjunction of all possible outcome sequences for the first n
observations that would yield a likelihood ratio of 0 for h; over h;.

Theorem 5 says that if hypothesis h; assigns at least some minuscule
probabilities, 3, to disjunctions of possibilities that h; says are impossible,
then h; says (in terms of likelihoods) that increasing evidence will almost
surely yield one of the outcomes that h; says is impossible. When this occurs,
the likelihood ratio of h; over h; will be 0, and h; will be refuted. The poste-
rior probability of h; will be 0.

Notice that the theorem does not assume that future outcomes are inde-
pendent of past outcomes. If, for likelihoods relative to b and to by, all out-
comes in the sequences €k gre independent of one another, then reference to
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evidence on the right sides of conditional probabilities may be dropped from
Condition 2 of Theorem 5—i.e., both occurrences of ‘ck-ek-1’ may be
replaced by ‘c)’ in Condition 2.

The claim that the theorem makes is really quite obvious. For example,
let hypothesis h; be a quantum theory of protons that implies that a proton
has some perhaps quite low probability of decay in any given year; and con-
sider an altemative theory, hy, that says protons never decay (or that the prob-
ability of a proton decay is 0). If b, is true, then eventually a proton decay
will almost surely be detected, and h; will be proved false (provided proper
detectors can be built and billions of protons are kept under observation for
long enough).

In the most general case Theorem 5 applies only to some subsequence
of the total sequence of observations. Only some experiments or observations
will have possible outcomes that have non-0 likelihoods relative to b; and
likelihoods of O for h;. Theorem 5 puts a lower bound on the likelihood that
any such subsequence of experiments or observations will produce out-
comes that absolutely refute h;, alower bound that depends on the size of the
subsequence. If there is a large enough finite (or an infinite) subsequence of
such observations available, then h; will almost surely receive a posterior
probability of 0 on this part of the evidence, and thus will receive a poste-
rior probability of 0 on the full sequence of evidence. But if there is only a
rather small number of such possibly refuting observations available, and if
the actual outcomes fail to refute h;, one may still hope that the rest of the
evidence, the sequence of all other experiments or observations, will bring
the likelihood ratios for h; over h; near to 0. The next subsection describes
conditions under which the rest of the evidence can be expected to highly
refute b; relative to h;, evidence arising from possible outcomes that do not
have likelihoods of 0 according to h; unless their likelihoods are 0 for h;, too.

3.2 THE RELATIVE REFUTATION OF HYPOTHESES BY PROBABILISTIC
EVIDENCE

Theorem 6 will show that if the average expected quality of informa-
tion (from a sequence of observations or experiments) for distinguishing
between a true hypothesis and a competitor does not diminish to 0, and if the
average variance in the quality of information is bounded above, then it
is highly probable (as near 1 as you please) that a sequence of outcomes will
occur that will drive the likelihood ratio of the competitor compared to the
true hypothesis toward 0. Thus, probabilistic evidence will almost surely
come to refute empirically distinct competitors to the true hypothesis to any
desired degree, provided that a large enough number of observations can
be made. In order to state Theorem 6 precisely I will first introduce an
information-theoretic measure of the expected quality of the information for
a possible experiment or observation, a measure of the potential power of an
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experiment or measurement (or other evidence gathering observation) to
discriminate between hypotheses. I will also introduce a measure of the
variance in the quality of information for a sequence of experiments or
observations. For a sequence of observations, the variance indicates how
closely the quality of information for possible outcomes approximates the
expected quality of information. 1 will briefly discuss these measures, and
then state Theorem 6 and discuss its implications.

We will consider only sequences of observations for which each possible
outcome that is assigned a non-zero likelihood by b, is also assigned a non-
zero likelihood by h; Theorem 5 applies to any observations that violate this
condition. The likelihood ratios LR[e® | i/j] will all be finite (and positive),
since their denominators will always remain above 0 and their numerators
are non-negative and less than or equal to 1.

Consider some particular sequence of outcomes et, The likelihood ratio
LR[e" | i/j] effectively measures the extent to which the information content
of e" distinguishes between h; and h;. Likelihood ratios measure information
content on a lopsided scale, a scale that ranges from O to infinity with the
“midpoint” of the measure at 1. That is, LR[e"| i/j] = 1 just when e does not
distinguish at all between h; and h;, when h; and h; assign the same likelihoods
to en. Likelihood ratios below 1 indicate that the evidence favors h; over h;.
A likelihood ratio of .01, for example, indicates that h; confers a likelihood
on outcome e® that is 100 times higher than that conferred by h;, whereas a
likelihood ratio of 100 would indicate the converse (i.c., that h; makes the
evidence 100 times more likely than does hy). It will be convenient to employ
a measure of the ability of e? to empirically distinguish between hypotheses
that is more symmetric than the raw likelihood ratios. The logarithm of the
likelihood ratios provides just such a measure.

I will define QI[e" | i/j1, the quality of information supplied by e" with
regard 1o h; over h;(given (c™b)), as the base-2 logarithm of the likelihood
ratio LR[e" | i/j]. Whereas the quantity of information for e® is represented
by ‘n’, QI measures its guality. The following relationships hold for QI:

Qlfen| ifi] = log LR[e"| ifj] = log P[e? | c™hyb] - log Plen | c-hy-b]
-log LR[en| j/i] = - QIfen| j/il.

QI measures information on a scale that is symmetric about the natural mid-
point 0. When h; and h; make the evidence equally likely, QI[e | i/j] = 0. That
the logarithm is base-2 simply means that if a likelihood ratio LR[e? | i/j] has
a value equal to 2f (r > 0), then QIfe? | i/j] = r; and if LR[e? | i/j] = 1/2¢, then
QIfer | i/j] = -r. Base-2 logarithms are commonly used in information-
theoretic measures of information, in connection with measures of binary bits
of information, but for my purposes nothing of substance will hang on the-
base of the log. QI is merely an alternative way to represent likelihood
ratios. It measures the degree to which evidence plays a part in the support
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or refutation of one hypothesis over another, but on a more symmeltric scale.

Suppose we are contemplating whether to make some sequence of n
observations, c. What value can we expect QI to take for these observations?
Statisticians measure the expected value of a quantity by first multiplying each
of its possible values by their respective probabilities of occurrence, and then
summing these products. By this measure, the expected value of QI for h; over
h; depends on the probabilities of the various possible outcome sequences "
(in Em). And the probability that any given sequence e® occurs depends on
which hypothesis is true. Thus, we will measure the expected value of the
quality of information for observations c® in support of h; over h; relative to

j
the truth of hypothesis h,. Define this function, EQI?[i/j | i] as follows:

EQI[i/j | i] = Zjgn) Qllen] ifj) X Plen | cnh;:b].

Recall that in this subsection we are assuming that whenever h; assigns a like-
lihood of 0 to a sequence e?, so does h;. By convention I will take the value
of QI[en | ifj] x P[en | c™h;b] to be 0 when Plen | ¢»h;-b] = 0, although tech-
nically in such cases LR[e® | i/j] is undefined since its denominator is 0.
Assigning these products a value of 0 is just a way of excluding them from
any influence on the value of EQI?[i/j | i]. This is reasonable because if h; is
true, then such outcome sequences have 0 probability of occurring.

Whereas QI measures the ability of a particular sequence of outcomes o
empirically distinguish between a pair of hypotheses, EQI" is a measure of
the ability of a sequence of experiments or observations to produce distin-
guishing outcomes. For a given sequence of observations c*, the most likely
values of QI are those that would result from the most likely possible outcome
sequences en. Indeed, if b, is true, then the most likely outcome sequences are
those that will produce values of QI near EQI", as n increases (this claim can
be proved by the same technique employed to prove Theorem 6).

The values of EQI® must be positive if by is empirically distinct from h;.
That is, if for at least one possible sequence e, P[e” | cb;-b] # P[en | cby-b)
> 0, then the values of EQIR[i/j | i] must be positive; otherwise, values of
EQIr{i/j | i) must be 0, and the two hypotheses agree on the likelihoods of
all possible outcomes of the first n observations. Savage proves this claim
from a more general theorem about the expected values of logarithms of
random variables.!?

By averaging the values of EQIN[i/j | i] over the number of observations
n, we obtain a measure of the average expected quality of the information to
be obtained from the n observations c®. I will denote this average by under-
lining ‘EQI’, thus:

EQI'[i/j | i) = EQP(ifj | i] + n.

This function measures the degree to which on average each of the obser-
vations may be expected to produce outcomes that distinguish between h; and
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h;, if b is true. Theorem 6 will merely assume that the value of EQI"[i/j | ]
does not become arbitrarily close to 0 as n increases, i.c., that the two
hypotheses disagree by some minimal amount (on average) on the likeli-
hoods of possible outcomes of observations. I will discuss this condition fur-
ther after stating the theorem.

For any particular sequence of outcomes €®, the quality of its distin-
guishing information (for distinguishing between a pair of hypotheses) will
be some distance above or below the expected quality of information for the
observations c2. A measure of this distance is given by the square of the dif-
ference in values, (QIfer| i/j] - EQIP[i/j | i] )2. The variance of the quality of
information (due to c®, for distinguishing between h; and h;, given hy) will
be represented by ‘VQIR[i/j | i]’; it measures the expected value of these
squared distances:

VQI'[Yj | i] = Zgeny (Qllen | ¥} - EQIM{i/j | i])2 X Plen | e b].

Again the convention is that if P[en | c™h;-b] = 0 for a given e?, then the term
(QIfer | ij} - EQIR[i/j | i])2 x P[en | c™h;'b] equals 0. Variance is a common
measure in statistics of the degree to which a quantity is spread out around
its expected value. It is easy to see that VQI?[i/j | i] will be positive unless
h; and h; agree on the likelihoods of all possible sequences of outcomes in
En, in which case both EQI[i/j | i] and VQIr[i/j | i] equal 0.

The average variance, averaged with respect to the number of distinct
observations, is defined as follows: YQIP[i/j | il = VQI*[i/j | il + n. This func-
tion plays an important role in Theorem 6. I will discuss it in more detail after
stating the theorem.

THEOREM 6: The General Refutation Theorem.

Suppose that there is a positive (lower bound) 8 such that,
for some (large enough) positive integer N, for every n > N,

EQI"(i/j | 1] 2 .

Then, for any m > 1 (as large as you please), there is a positive
integer M such that, foralin> M,
. V n ./. .
Plv{en| LR{e| jAl < 1/2m} | cvhob] 3 1- x vorusiia
n  (EQI"if[1] - (m/n))?

Suppose, in addition, that there is some constant K > 1 (K as
large as you like) and some positive integer L such that, for all

n> L, VOIN[ifj | i] < (K-1) x EQIN(ifj | il2.

Then, for any m > 1 (as large as you please), there is a positive
integer M such that, foralln > M,

P{v{e" | LR[e"| j/i] < 1/2m} | ¢"h;b] > 1 - K/n, and
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lim, P{v{en | LR[e"| j/i} < 1/2m} | cnh;b] = 1.
(Proof is in the appendix.)

Theorem 6 implies that if h; is true, and if, relative to h;, the average expected
quality of the information (for h; over hy) for a sequence of observations does
not become arbitrarily small, and if the average variance of the information
is bounded above (or at least does not outrun the square of the average
expected quality by an unbounded amount), then a sufficient number of
these observations will, with a probability as near to 1 as you like, produce
a sequence of outcomes that will refute h; relative to h; to whatever degree
is desired. Notice that the theorem places explicit lower bounds on the like-
lihood, given h;, that the n observations will yield some sequence of out-
comes that makes the likelihood ratio for b; over h; smaller than a specific
fraction. And these lower bounds depend explicitly on the average expected
quality and on the average variance in quality of the information for the n
observations or experiments.

Theorem 6 does not depend on the assumption that likelihoods are
objective; it holds for each probability function that satisfies the conditions
on probabilistic structures. Of course, probability functions that disagree
about likelihoods may end up disagreeing about which hypotheses become
refuted by a particular sequence of outcomes, due to their disagreement
about the empirical import of hypotheses. But, provided that probability
functions agree on empirical import to the extent that their respective like-
lihood ratios for pairs of hypotheses lie within some large fixed multiple of
one another, they must eventually agree among themselves about which
hypotheses become highly refuted.

Theorem 6 does not assume that the outcomes of different observations
are stochastically independent of one another. It only supposes that
EQIn[i/j | i] never gets smaller than some positive constant §, where 8 may
be chosen as near to 0 as you wish. However, stochastic independence
relative to a hypothesis is not an implausible assumption (as I argued ear-
lier). So, consider the special case in which evidence consists of independent
outcomes relative to the hypotheses. The expected quality of information may
be defined for each individual observation or experiment ¢, as follows:

EQL[i/j | il = Zio,; Qlloy] ifj] % Plog | o hybl.

From the definition of EQI" and the independence of outcomes, it follows that
EQIn[i/j | i] = -, EQLi/j | il. So, for sequences of independent events,
EQIr(i/j | i] = - EQL[i/j | il + n. That this value is bounded below by some
small & > 0 simply means that on average the values of the EQL[i/j | i]
are greater than 8 (although EQI[i/j | i] may be O for some values of k). This
condition is easily satisfied if periodically some observation is made for
which h; and h; disagree on the likelihoods of at least one of the outcomes by
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some minimal amount, and if such outcomes have some minimal likelihood
of occurring according to h;. That is, there will be some & > 0 such that (for
all n) EQI*i/j | il > 8 provided that, for some lower bounds 8, > 0 and §, >
0, periodically some observations are made (e.g., ¢,) for which one of the
possible outcomes (e.g., 0) bears the following relationship to h; and h;:

Pfo | ¢;-h;-b] > &, and either LR([o | i/j]> 8, or LR[o | j/i] > §,.

(The supposition that such observations are made “periodically” just means
that in the sequence of observations C for the induction structure, the fre-
quency with which such observations occur does not diminish to 0 as n
increases. It would be best if every observation could distinguish the two
hypotheses by at least some minimal amount; but, it will suffice if such
observations do not become increasingly scarce among the sequence of all
observations.)

When the outcomes of different observations are stochastically inde-
pendent of one another (relative to the hypotheses), the variance for the
observations c® is just the sum of the variances for the individual observa-
tions, ¢;. That is, the individual variances for QI[e, | ifj], for each ¢, (given
that h; is true), are given by:

VQI [ | il = Z[Ok] (QI[ok's| ifj] - EQL[ifj | i] )2 x Plog | o-hyb].

If the evidence consists of independent events (relative to h; and to hj), then
it can be shown that VQI{i/j | i] = £, _;» VQI,[i/j | i], hence, YQIr[i/j | i] =
Zy-" VQLi/j | il + n. Thus, the assumption in Theorem 6 that YQI[i/j | i]
doesn’t get too large (compared to EQI"[i/j | i]2) will be satisfied if the vari-
ance in the quality of information for each independent observation does not
become larger than some fixed (perhaps quite large) upper bound.

When the possible outcomes for the sequence of observations are not
only independent, but also identically distributed, Theorem 6 reduces to a
version of the theorem proved by Savage. Identically distributed outcomes
most commonly result from the repetition of identical statistical experiments
(e.g., repeated tosses of a coin, or a series of identical measurements on quan-
tumn systems prepared in identical states). For such experiments a hypothe-
sis should specify the same likelihoods for the same kinds of outcomes from
one observation to the next. If each independent observation is distributed
in the same way, then EQI, [i/j | i] and VQI,[i/j | i] are positive constants (for
all k). So, EQI"(i/j | i] and YQI®[i/j | i} will be positive constants, equal to
EQI,[i/j | il and VQI,[i/j | i], respectively. Thus, the conditions for Theorem
6 are satisfied automatically for a sequence of independent, identically dis-
tributed outcomes. However, Theorem 6 is much more general. The theo-
rem holds even when the sequence of observations encompasses completely
unrelated observations and experiments, observations with nothing in com-
mon but that they are empirically related to a common set of competing the-
ories or hypotheses.
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Through Theorems 1, 5, and 6, each hypothesis says that, given enough
observations, it will very likely dominate its empirically distinct competitors
in a contest of likelihoods. And even a sequence of observations with an
extremely low average expected quality of information is likely to do the job.
Presumably the true hypothesis, if present, speaks truthfully about this, and
its competitors lie.

CONCLUSION

I have argued that Bayesian induction, in so far as it is objective, is essen-
tially a form of induction by elimination. The likelihood ratios are the mech-
anism through which evidence can eliminate false hypotheses. Theorem 4
(together with Theorems 2 and 3) implies that the only general way in which
the influence of the values of prior probabilities for hypotheses can be over-
come by the evidence (i.e., washed out) is for evidence to increasingly refute
hypotheses. If all competitors of a hypothesis become increasingly refuted,
then its posterior probability will be driven to 1, but this is the only general
way in which agreement can be achieved for the posterior probability of a
hypothesis that is not increasingly refuted. Theorems 5 and 6 assure us that
if hypotheses are empirically different enough (so that the quality of infor-
mation for the sequence of observations does not become arbitrarily small),
then, very probably, the evidence will increasingly refute false hypotheses
relative to the true hypothesis.

What do these formal results portend for inductive practice? They do
seem to suggest a certain inductive strategy for the evaluation of scientific
theories. The strategy they suggest, though, is nothing any fancier than com-
mon sense scientific method: continually develop and test alternative
hypotheses against one another. In testing one hypothesis against another,
one should make the kinds of observations and conduct the kinds of
experiments that, if either hypothesis is true, are likely to produce outcomes
that are much more unlikely according to one hypothesis than according to
the other (e.g., observations and experiments for which EQI[i/j | i] and
EQI{j/i | j] are large, and VQI[i/j | i] and VQI[j/i | j] are small). If the true
hypothesis is never considered, then of course no mode of reasoning can
come to support it. But if the true hypothesis ever does come under consid-
eration, then Theorems 5 and 6 assure us that empirically distinct competi-
tors will almost surely be eliminated by a long enough sequence of
observations. Thus, for any way of assigning relative initial probabilities to
hypotheses, the true hypothesis (perhaps along with some of its empirically
equivalent competitors) will eventually obtain relative posterior probabili-
ties much larger than empirically distinct alternatives, as described by equa-
tion (I). In this way the true hypothesis (and its empirical equivalents) will
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eventually become the most likely hypothesis, and will continue to survive
all challenges.

In Bayesian induction, empirically equivalent hypotheses maintain the
relative values for posterior probabilities established by their initial proba-
bilities, according to equation (I). Thus, a true hypothesis can become highly
confirmed only if the initial plausibilities of its empirically equivalent com-
petitors are judged to be much lower than the initial plausibility of the true
hypothesis. Some sort of plausibility considerations always do play a role in
the decisions scientists make about which hypotheses to develop and test.
These considerations often involve ontological presuppositions native to the
subject matter.!8 Prior probabilities merely provide a slot in the Bayesian
machine into which initial plausibilities can be inserted. The values of ini-
tial plausibilities continue to significantly influence the values of posterior
probabilities unless (and until) sufficient evidence is forthcoming to elimi-
nate alternatives. Indeed, initial plausibilities for hypotheses may even be
changed over time (contrary to the usual recommendation of Bayesians); i.e.,
one may switch from probability function Py, to Pg if new plausibility con-
siderations dictate. Nothing in Theorems 5 and 6 requires that one hold to
fixed values for initial plausibilities. The evidence does the same work on
likelihood ratios regardless of the values for priors. Provided that such shifts
among prior probability assignments do not repeatedly discount the true
hypothesis by assigning it ever lower prior probabilities (approaching 0), the
true hypothesis will very probably come to be rated as much more plausible
on the evidence than any of its empirically distinct competitors.

APPENDIX: PROOFS OF THEOREMS 4, 5, AND 6

THEOREM 4: Non-Zero Convergence is Convergence to One.

Consider any probabilistic induction structure <S,P>. Let h; be
some hypothesis in H, and suppose there is a P, in P that satis-
fies the following conditions:

i) there is a real number r such that, for all n, P[h; | e™c®b]
>r>0, and

ii) there is a Pg that modestly differs with P, relative to h;, and
iii) lim, | P,[b; | encnb] - Pplh; | en-cn-b] | =o0.
Then lim, Py[h; | encib] = 1.

Proof: Assume that the antecedent of the theorem holds. Without loss of
generality, we may suppose that Py modestly differs from Py in the follow-
ing way, for some real number M > 1:

Py[h; | b] > 0; and

for each alternative h; to h; (in H), Pglh; | b] > M x P,[h; [ b]> 0.

134



Clearly, Py[h; | b] > Pg[h; | b]. Also notice that
0 < Pglh; | bl = 1 - Iy Pylh; | b <
1-M X Ep; Pofby | b] =1 - M x (1 - Pylh; | b]) = M X Py[h; | b] - (M-1).
Now calculate the differences in the ratios of initial probabilities, as follows:
Pglh[b]  Pylh;|b] 5 MxPfh;[b]  Pylh;|b]
Pglh; | b] Py[h; | b] M x Polh; | b] - (M-1)  Pylh;|b]

_ (M-1) % Pafh; | b] 0.

M x Py[h; | b] - (M-1) Pylh; | b]

The factor (M-1) + [M x P,[h, | b] - (M-1)] is a positive constant; call it ‘K.
Now the strategy of the proof is to show that for any € > 0, there is a 8
=Kxr2xe/(1+Kxrxe)>0such that

if | Pylh; | en-cnb] - Pglh; | en-cn-b) | <3, then Quf~h; | encnb] <e.

Once this is proved, it follows immediately that

if lim, | Pyfh; | en-cnb] - Pglhy; | encn-b] | =0, then
Hm,, Q[ h; | en-c-b] =0, so lim, Py[h; | en-cn-b] = 1.

Suppose 8> | Po[h; | en-cnb] - Pylh; | en-cnb] |, where § is as above.
Then Pgh; | e™-co-b] > Pyfh; [ercnb] - 8> r-8=1/(1 + Kx1X€)
(since Py[h; | en-cnb] > 1). So, 1/(Pyfh; | en-cn-b] x Pglh; | emcb)) <
(1 + K x r x e)/r2. The latter relationship will play a role in the following
derivation.

It is easy to check that | P [h; | en-cnb] - Pglh; | en-cn-b] | =
| Q[ by | encn-b] - Q[ by | en-cab] | x Py[h, | en-cnb] x Pylh; | en-ca-bl.
S0, K x € > 8/(Py[h; | en-cn-b] x Pylh; | en-cn-b])

> | Qgl-h; | encrb] - Q[ by | encnb) |

Pylh; | b] _ Polhy | b] 9 Plct| by b]
Py Ih; I b] Polh; I b] Pglct i h; b]

%, Llen| j) x [

Pa[hjlb] < Pu[c"|hj-b]

T Lien| il x K x
Pyl |b]  P.lcn| bl

Thus, €3> Q[~h;|ercrb]. O

THEOREM 5: The Special Refutation Theorem.

If forall ek such that Pek | ck-b-h;] > 0, the following two con-
ditions hold:

1) Plek | ck+lb-hy} = Ple | ¢&-b-hy], and similarly for h;;
2) Plv{og, | Ploy, | ck-ek-l-b-h] =0} | ckek-lh;:b] >8>0,
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then P[v{en|LR[en|j/i]=0}|c™h:b]>1 - (1-8),

and thus, lim, P[v{e" | LR[e?] j/i] = 0} | c*h;b] = 1.
Proof: Assume that the antecedent of the theorem holds. Notice that, for
eachn, P[e" | cb-h;] = T, _, Ple, | ck-e¥-1-b-h;}, and similarly for h;. So (with
all terms for which P[en | c*-b-h;] = 0 deleted from the sums):

Plv{en I LR[en | jlil# 0} | cthybl=ZX {eM | LRI | ji] = 0) Plen | ci-h;-b]
= X (en|ppen| ] %0} ([Ty_1" Pley | ck-ek-1-b-hy])
= I (o0 k=10 Pley | -k b 0) (TTi=y™ Pley | ck-ek-L-b-hy])
= X (¢9| for all ok a conjunct of &%, Ploks | ckeklnib# 0 =y Pleg | ck-ek-1b-hy]
= Theet™ (2 ok | Ploker | ek on) #0) PLOkr | ck-ek-1.b-hy])
= M " Plvy{oy, | Ploy, | &-ek-Lb-hy] # 0} | ck-ek-Lh;-b]
I,_,» (1-6) = (1-8)n.

IA

The rest follows easily. (1

THEOREM 6: The General Refutation Theorem.

Suppose that there is a positive (lower bound)  such that,
for some (large enough) positive integer N, for all n > N,
EQIM{i/j | il > 8. Then, for any m > 1 (as large as you please),
there is a positive integer M such that, foralln > M,

P[v{en | LR[en| jfi] < 1/2m} | ch-hyb] > 1 L Vi | i
n  (EQI'(ifj | i] - (m/n))2

Suppose, in addition, that there is some constant K > 1 (K as
large as you like) and some positive integer L such that, for all
n> L, VOI[i/ | i] < (K-1) x EQI"[i/j | i]2. Then, for any m > 1
(as large as you please), there is a positive integer M such that,
for all n > M, P[v{en | LR[en| j/i] < 1/2m} | chh;b] > 1 - K/n,
and lim, P[v{e? | LR[e"| j/i} < 1/2m} | ¢"h;b] = 1.

Proof: 1 will derive the inequality in the first part of the theorem, and then
treat the second part.

Given any m, choose M large enough so that both M > N (i.e., for all n
>M, EQIi/j | i] > 8) and & - (m/M) > 0 (i.e., M > m/3). Then for each n >
M, we have EQI[i/j | i] - (m/n) > EQI"[i/j | i] - (m/M) > § - (m/M) > 0.

Now, by definition,

VQIP[j | i] = Ziga) (Qllen | 4] - EQIM[¥j | i1)2 x Plen | ch;:b).
So, (1/n) x VQI*[ifj | i
= Zigm ((Qlle | j¥/n) - EQIM[i/j | i])2 X P[e" | ch;:b]
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v

Tien | quger |if] < my (BQIPLG | i1 - (QUfen | /j1/n))2 x Plen | e-hy b]
Zien | qQrien | i) < mp (EQIPLY3 | i] - (m/n))? x Plen | cm-hy b).
Then, (1/n) x YQI[¥j | i] / (EQI"[i/j | i] - (m/n))?

Zien | quen (41 s my PLe” | nib]

Plv{en | QI[en|ifj] <m} | c™h;b]

P[v{e"| LR[en] ifj] <2} | c™hy;b)

1 - P{v{en| LR[en| i/j} > 2m} | ct-h;b]

1 - P[v{en| LR[e"| j/i] < 1/2m} | c™hy:b].

v

v

This completes the proof of the first part of the theorem.

For the proof of the second part, assume the antecedent of the second
part of the theorem. We can make M (as defined earlier in the proof) large
enough (i.e., M > L) so that, for some positive integer K, for every n > M,
YOIr(i/j | il < (K-1) x EQIM[i/j | i]2.

Since 8, m, and K are constants, we can also make sure {0 choose M
large enough that 0 < 2 x (m/M) x K < & < EQI[i/j | i] for every n > M.
Then, for everyn >M, 0 < 2 x (m/n) x K < 8 < EQI[i/j | i]. It follows that
EOQIn(ifj | i} - (m/n) x K > (m/n) x K > 0, so (EQI[i/j | i] - (m/n) x K)2 >
((m/n) x K)2 > (m/n)? x K x (K-1);

EQIN[ij | i]2 - 2 (m/n) x K x EQI[i/j | i} + (m/n)2 x K2 > (m/n)? X
K2 - (m/n)? x K; [(m/n)2 - 2 (m/n) x EQI"fi/j | i]] x K > - EQIN[i/j | i]2.

Therefore, (EQIMi/jj | i] - (m/n)2 xK =
EQI"fi/j | ]2 x K + [(m/n)2 - 2 (m/n) x EQIP[i/j | i} x K
> BQI[ifj | i]2 x K - EQI'[i/j | il = (K-1) x EQI"{ijj | i}? 2
YOI/ | i].
And so, Plv{en | LR[e | j/i] < 1/2m} | co-h;b]
> 1 - (U/n) x YQIP[ifj | 1] / (EQI(ifj | i] - (m/n))?
>1-(I/myxK.O
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